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Model for randomized block design with one
observation per cell

We assume the additive two-way model, the same as the additive model
discussed for the two-way factorial design. However, different notation is
used to emphasize the nature of the randomized block design, which is
different from the nature of the factorial experiment.
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3\ confrast &\ ‘randomn effects ¥

Model for randomized blocks design with :xmn_ effects for blocks

Rows represent blocks; columns represent treatments. Let n, = no. of
blocks = no. of rows in the two-way layout. Let r = no. of treatments =
no. of columns in the two-way layout.

Model equation for observation ¥;;, , which is the response for the j™"
i th . N\t
treatment in the i block: row,” colymn, ,
block Fregtmen

Nw.“.t\:l_lbm+d|_vm®. Rze\\\\,g

firane ol L E&

where

(... IS a constant,

p: are constants for the block (row) effects; > % p; = 0
7; are constants for the treatment effects; Mmu_ =0

Assumptions on the ¢;: independent, normally distributed, with mean 0
and constant variance o*
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Notation for observed means
p.ﬁ.

LetY; = |hm|5 be the mean of observations in the ith block, =l *7 7

letY; = 221 % pe the mean of observations in the jth treatment, \w SCAVAS

ny
and let ¥, =L >" > ¥y, be the grand mean.
Further,
letp, =Y. — Y.
and7, =Y;—Y
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Fitted values:

Note: ¥; simplifiesto ¥; +Y,;— 7.
Residuals:

ei=Yj—Y;=Y; Y, —Y;+7.

pome. o My sifischion
ol wﬁ.: ¢ \i%ﬁ\ g
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Sums of squares

There are three sums of squares, for Blocks, Treatments, and Block x
Treatment interaction. Below are the formulas for “by-hand” calculation of

the sums of squares.
YWoway nzZ

b SSA ¢ SSBL=) r(¥;,-7.)

Nm\\c mmm &~ SSTR = MawAﬂ.\. - ﬂvw

IMPORTANT: With only one observation per cell, the interaction sum of
squares is used as the error sum of squares.
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Degrees of freedom:
df(Blocks) = n, — 1
df(Treatment) =r — 1
df(BL.Tr) = (n, — 1)(r — 1)

Recall: A Mean Square is a sum of squares, divided by its degrees of
freedom. A mean square is a statistic and has a sampling distribution.

Mean Squares in RCB Design, formulas

MSBL = mmm_ll
np — 1
MSTR = |||mm._.m
r—1

SSBL.TR

MSBL.TR = (o — 10— 1)
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Expected Mean Squares

2
E(MSBL) = ¢* + r 2.0

np, — 1

2

E(MSTR) = o2 + 1, Wld_

E(MSBL.TR) = ¢°
ANOVA table

Source Sum of df Mean Expected
of Variation = Squares Square Mean Square
Blocks SSBL ny — 1 MSBL o+ ref
Treatments SSTR r—1 MSTR 0% + ny Wm
Error SSBL.TR (n, —1)(r—1) MSBL.TR o’



F Test for Treatment Factor
Hypotheses to be tested:
Hy:mm=m=---=7=0 vs.

H,: At least one T; is not zero.

Test Statistic:

MSTR
MSBL.TR

NuocmH

Null distribution:. Nﬂxl~k§|_v?.|:

P-value: area to the right of the observed F statistic, under the curve of
the null distribution

Decision rule: Reject Hy at level «, if P < a. If you do reject Hy, go on to
do followup analysis of treatment (column) means, using whichever of
Bonferroni, Scheffé, or Tukey methods is appropriate.
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F Test for Blocks

Since Block is a “nuisance factor,” we are not too interested in testing for
block effects.

However, we would like to see a significant F test for blocks, because this
gives an indication that this factor was useful for blocking.

The main statistical reason for forming blocks is to reduce error
variability by comparing every treatment within each group of units in a
block.

If the F test for Block is significant, this indicates that it was valuable to
“take out” block effects from the error.



Example of randomized blocks design: Risk premium
Data

Method ()
Block — Utility Worry Comparison  Average
1 (oldest) 1 5 8 4.7
2 2 8 14 8.0
3 7 9 16 10.7
4 6 13 18 12.3
5 (youngest) 12 14 17 14.3
Average 5.6 9.8 14.6 10.0

Y=Y, +Y{-Y =47+56-100=.3
Q:HM\:lW:HHI.w”.Q
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Ex: Risk Premium Create the dataframe, fit the randomized blocks

model, and get the ANOVA table.

vV + V + V V V V

anova (riskprem.aov)

Df Sum Sg Mean S5Sg
block 4 171.333 42.833
method 2 202.800 101.400
Residuals 8 23.867 2.983

confidence <- ¢(1,2,7,6,12,
method <- factor (rep(c("utility","worry","comp"),c(5,5,3)))
block <- factor(rep(l:5,3))

riskprem <- data.frame (confidence=confidence,

5,8,9,13,14,8,14,16,18,17)

method=method,block=block)

riskprem.aov <- aov(confidence ~ block + method,

data=riskprem)

F value Pr (>F)
14.357 0.0010081 =*x
33.989 0.0001229 *x*x%

We should look at relevant plots, and check assumptions before drawing

conclusions from the F tests.



Get the plots of factor level means for both blocks and treatment.

> plot.design(confidence =~ block + method)
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> interaction.plot (method, block, response=confidence)
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method

184



Nz&&,\ggwm( ﬂ?.of\iﬁ_
Ex Risk premium Wrap up the analysis.

Based on the residual plots (not shown in the notes), the assumption of
normality of errors appears reasonably well-satisfied.

From the plot of residuals versus fitted values, and from Tukey’s 1 df test,
we have justified use of the additive model.

So, now proceed to carry out the analysis of treatment effects, based on
the model fit we have reported earlier.
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P fest
wrags (reatrent)
The F test for differences among executives’ confidence in the three
methods of quantifying risk premium is highly significant
(Fops = 33.99, P = .00012.)

For followup analysis, let’s do all pairwise comparisons of means by
Tukey’s method:

95% family-wise confidence level

worry-utility

comp-utility
L

_ T T T 1 T
2 4 6 8 10 12

comp-worry

Differences in mean levels of method
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Ex Risk premium We now look at information obtained from this
experiment about the blocking variable (age). Since the F test for Blocks
is highly significant (Fops = 14.357, P = .0010081), it appears that the use
of Age as block variable led to improved efficiency.

We can in fact compute a more specific estimate of efficiency of blocking.
Efficiency of Blocking

Call the error variance with randomized blocks o7. For a completely
randomized design with the same experimental units, a different error
variance would have been obtained; call this error variance o2.

The ratio o7 /07 is used to measure the relative efficiency of blocking.



