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Section 19.10 Pooling Sums of Squares in Two-Factor Analysis of Variance
If interaction effect is statistically insignificant with a P-value well over .20,
we can drop the interaction term. The advantages of this approach:

» We gain degree(s) of freedom for error.
» The model and followup analysis are logically consistent.

The model equation for the additive model (model w/out interaction):
{

E(Yij) = p. +a;+ 5 %%

Analysis Notes:

1 The sums of squares for A and B are the same as before. &8@%\& ?

2 The new error sum of squares is the sum of the error and interaction
sums of squares from the interaction model.

3 Degrees of freedom for error is
abn—1)4+ (a—1)(b—-1)=abn—a—-b+1

dt(Brror\  db(hB)
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Ex Corn Yield

Fit the additive model. ((Additive model means the model without
interaction.)

> m2 <- aov(yield ~ fertilizer + manure, data=yileld.df)

> summary (m2)

Df Sum Sgq Mean Sg F value Pr (>F)
fertilizer 1 17.67 17.672 6.332 0.0222 =
manure 1 19.21 19.208 6.883 0.0178

Residuals ¢ 17 47.44 2.791

Do the tests for main effects of fertilizer and manure, exactly as in the
interaction model. The mean squares for fertilizer and manure are
exactly the same as before, but the F statistics and P-values are slightly
different, because there is a different mean square for residuals, and
more d.f. for the denominator of the F statistics.
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Inferact on wmodel ¥t for Corn Mefld  dgfes

> ml <- aov(yield " manurexfertilizer,data=yield.df)

> anova (ml)
Analysis of Variance Table

Response: yield
Df Sum Sg Mean Sgq F wvalue Pr (>F)

manure 1 19.208 19.208 6.9218 0.01816 =
fertilizer 1 17.672 17.672 6.3683 0.02258 =«
manure:fertilizer 1 3.042 3.042 1.0962 0.310660
Residuals 16 44.400 2.7775

Three F tests are given in the table.
Each F statistic (labelled “F value”) is a ratio of mean squares:

MS(Factor)
MS(Residuals)

mg$“H
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Example Corn yield

Follow-up analysis

Let’s find the 95% CI for effect of fertilizer (High - Low).

The point estimate is: Yhigh — Yiow = 1.88

Estimate the model parameter o* by the MS(Residuals) = 2.7907.

There are 10 observations in each fertilizer level, so the SE of the effect
estimate is 1/2.7907(1/10 + 1/10) = .7471.

Resulting 95% confidence interval is (.30, 3.46) (work not shown). This is
based on a r distribution with 17 d.f., after pooling sums of squares. The
Cl does not include zero, so we conclude the main effect of fertilizer is
significant at level o = .05.




Removable interaction

Sometimes the Y variable can be transformed so as to “remove the
interaction.” So long as this does not cause unequal variance or other

model violations, it is a good thing.

The following example is to illustrate an interaction removable by
transformation.
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Example: Poisons The data is T = survival time (in ten-hour time units)
of groups of four animals randomly allocated to three poisons and four
treatments. The experiment was part of an investigation to combat the
effects of certain toxic agents. #

> library ("boot")
> data (polisons)
> plot.design (poisons)

Plot of factor level means:
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> interaction.plot (treat,poison, response=time) %.MMEQR *Fw
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> *ox\,h. a0V &—
> anova (toxic.aov)

Analysis of Variance Table

Response: time

Df Sum Sg Mean Sg F wvalue Pr (>F)
poison 2 1.03301 0.51651 23.2217 3.331e-07 **x*
treat 3 0.92121 0.30707 13.8056 3.777e-06 =*x**
poison:treat 6 0.25014 0.04169 1.8743 0.1123 S
Residuals 36 0.80072 0.02224 e cortt accept s

pecase P & ,2°0
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Example: Poisons Data were transformed to Y = 1/T = rate of dying
because the transformed data satisfied model assumptions better than

the original data.

Questions: Is there a difference in mean rate of dying among the three
poisons? Is there a difference in mean rate of dying among the four

treatments?

And first, we have to answer the question: Does effect of treatment
depend upon the poison; that is, is there an interaction effect?

This is a 3 x 4 factorial design with four observations per cell (four
replications). Both of the factors, poisons and treatments, are of equal
interest.



Let our response variable be Y = 1/T = rate of dying
this as number of animals who die in a ten-hr period if they died at the given

time. For example, the first animal in the dataset had a survival time of .31 =
.31 x 10hrs = 3.1hrs. The reciprocal 1/.31 = 3.2258 is the expected number of

animals who would die in ten hours if they die at that rate.
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Cell means:

A B C D
I 2.49 1.16 1.86 1.69
IT 3.27 1.39 2.71 1.70
ITT 4.80 3.03 4.26 3.09

Cell SDs:

A B C D
I 0.50 0.20 0.49 0.36
IT 0.82 0.55 0.42 0.70
ITT 0.53 0.42 0.23 0.24
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Design plot, showing poison and treatment averages (main effects):
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Interaction plots:
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Check assumptions:

» Randomization—we were told treatments were allocated at random,
so this assumption is satisfied.

» Normality — Normal quantile-quantile plot of studentized residuals
looks more like a straight line than before transformation, so normality
is better satisfied for the transformed than for the raw data. (Fill in
some detail in class.)

» Constant variance—The plot of studentized residuals vs. fitted values
shows no gross violation of the assumption.

And we would like to also assume no interaction. We will check this
assumption with an F test.



3. Constant variance means variance should be roughly the same across all
twelve experimental conditions.
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W&Mnﬁn ,\K = ﬁ\ﬂ,.\s?
ot ?t,_u_qﬂ step of analysis is to check the assumption of “no interaction” We
use a preliminary F test to do this.

Fit the model with interaction. Below is the resulting ANOVA table:

Df Sum Sg Mean Sg F wvalue Pr (>F)

poison 2 34.88 17.439 72.64 2.31le—-13 *xx%
treat 3 20.41 6.805 28.34 1.38e-09 *x*x
poison:treat ©6 1.57 0.262 1.09 0.387
Residuals 36 8.64 0.240 |

H, : No interaction between poison and treatment, in effect on rate
H, : There is some interaction

Hy: (aB);=0fori=1,...,3;j=1,...,4
H, :Notall (8); =0

F =1.09, null distr. Fg 36, P = .387, and since P > .2 we can accept H,
and proceed to fit the simpler, additive model.
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The reason we want to use the additive model is primarily that it is easier to
analyze and to explain—the principle of parsimony.
Check df:

Sample size:
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