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Comparison of means from two normal samples (any sample sizes)
Basic Framework
Assume:

1. The Y’s are a random sample of size ny from a normal population with
mean uny and SD oy, both unknown; Y is the sample mean and Sy is
the sample SD.

2. The Z's are a random sample of size nz from a normal population with
mean uz and SD o, both unknown; Z is the sample mean and Sz is
the sample SD.

3. The two samples are independent of one another.
4. The two standard deviations are equal; that is, oy = o3.

Want:

1. A confidence interval for uy — uz.
2. Hypothesis tests concerning uy — uz.

Companion slides for STA 4211 lectures. Not a substitute for attending lecture.
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We want a confidence interval (Cl) for uy — uz. This is an interval
estimate of a population parameter. Width of interval is determined by:
variance of observations in both groups, sample sizes, confidence level.

True or false: The higher the confidence level, the narrower the
confidence interval.

Also consider how variance and sample size affect width of the Cl.

We also want hypothesis tests about uy — uz. We can test for any value
of the parameter uy — uz, but we almost always test whether it is zero.

Three forms of hypothesis test about py — pz:
> Hy: py —pz =0 vs. Hylpy —puz >0
» Ho: py —pz =0 vs. Hy: py —puz <0
> Hy: py —pz =0 vs. Hyl py —puz #0



HERE  WE EXFPLAIN THE TH EORY WA oN THE NEXT
Goals: Construct a confidence interval and hypothesis test for py — pz. %b@m

We use the statistic Y — Z to estimate uy — uz.

First note that Y — Z is a linear combination of two normal random variables:

Y-Z=(1)Y+(-1)Z
Now, find E(Y — Z) and Var(Y — Z) using the rules on p. 18, and the results for
the sample mean (p. 20, Lecture 5).
First, write E(Y — Z) = (1)EY + (—=1)EZ = py — pz
So, Y — Z is an unbiased estimator of py — pz.

Next consider the variance:

_ _ 2 2 2 2 1
Var(Y — Z) = (122 4 (122 = 2 4 22 QNAP n lv

ny nz ny nz ny nz
because Y and Z are independent random variables, and because ...

Finally, we need to estimate o, and it turns out that the best way to do this is
with the “pooled estimate.”
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The standard two-sample t procedures: Theory

Basic Facts
1. E(Y - 2) = py — pz
2. MDCV = q/\| + —

3. Y— as a normal q_m:_g:_o:
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Note the general structure of the quantity in Basic Fact 5:

Estimate — Parameter

St. error of Estimate _
00 \!Rv D
n\\t

This is the same structure as for the one-sample ¢ procedures, so the Cl
for uy — pz will have the same structure as before, also:
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Let’s move on to create the hypothesis test.
Recall, we have Hy : iy — uz =0VvS. H, : py — pz # 0
Goal: Choose between Hy and H,.

First step: Form a test statistic which measures how far the data are from the
null hypothesis value of the parameter.

Numerator of Tobs is ¥ —Z — (uy — pz)°, where (uy — uz)? is the value specified

by Ho, which here is zero. Numerator, then, is just Y — Z.

Logic of hypothesis testing: Assume Ho, which we are trying to disprove. Use
“proof by contradiction.” We want to prove H, by first assuming Ho and then
showing that the data contradict this assumption.
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The standard two-sample t-test:

Form L
) A
T = )
A_ Hv?? 1)S2 + (nz — 1)S3
l_|
ny ngz (ny +nz —2)

If the null hypothesis is true, and the two population variances are equal,
then the distribution of this is ¢ with ny + nz — 2 df.
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Explanation of use of P-value in “proof by contradiction”
We have a test statistic:

N,ocm —

which has a known null distribution.
Null distribution: This is the sampling distribution of the test statistic if the null
hypothesis is true.

Sepers|
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Tob
The P-value is computed as “the probability o*. a value of the test statistic as
extreme or more so than you observed, assuming the null hypothesis.”

Interpretation of P-value. The P-value is a measure of how unusual our data
is if Hy is true. “Small P is bad for null.”
This P-value is used to establish that we have (or don’t have) a contradiction
of Hy. “Small P is good for alternative.”
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