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Suppose that X;,X>, ..., X, are a random sample from a distribution with
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Distribution of the sample mean X

Suppose we draw a random sample of size n from a population with
expected value 1 and standard deviation o.
Let X be the mean of the sample. Then: .

showed on previous page
1 The mean of the distribution of X is equal to .

2 The standard deviation of the distribution of X is mmg:co%_,\ moaqo\_ &wﬁﬁ Page

3 If nis large, then the distribution of X is approximately normal (Central
Limit Theorem), and if the distribution of the X’s is normal, the
distribution of X is exactly normal for any sample size n.

In either case, we use the following as if it were exactly true:
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Concept. The statistic Xbar, before drawing the sample, is a random
variable, so it has a probability distribution; we call it the "sampling
distribution" of Xbar.
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