Lecture 4 Expected value + variance (Vas) Wednesday linear combinations January 18

EV Var of

Con outcome is a sixtle possibility of extends in factoin

Probability for Applied Statistics

Undefined terms: Sample space, outcomes, events - in event is any ordered of

set of all possible outcomes of an montain experiment involving change of the theory of the soin for

A probability distribution is a function on the space of all events, which satisfies

Threadily of the whole sample space is 1.

(2) In any event A, 0= P(A) = 1

(3) addition rule for mutually exclusive events

Definition. Random variable A function from the sample space to the real line.

Eg X = { 1 & Reach

Expected Value and Variance: Discrete Case

values of X, where the weights are given by the probabilities. value of X, denoted E(X), is the weighted average of all the possible Expected Value: If X is a discrete random variable, then the expected

are p_1, p_2, p_3, \ldots , then In symbols, if the possible values are x_1, x_2, x_3, \ldots , and the probabilities

$$E(X) = \sum x_i p_i.$$

between the possible values of X and the expected value of X, where the denoted Var(X), is the weighted average of the squared distance weights are given by the probabilities *Variance:* If X is a discrete random variable then the *variance of* X,

 p_1, p_2, p_3, \ldots , and the expected value is μ , then In symbols, if the possible values are x_1, x_2, x_3, \ldots , the probabilities are

$$Var(X) = \sum_{\text{equated}} (x_i - \mu)^2 p_i$$
 [in other words, $Var(X) = E((X - \mu)^2)$].

SD or standard deviation of X is $\sqrt{\operatorname{Var}(X)}$ Standard Deviation: For a random variable X with variance Var(X), the

variable X: game of Texas hold 'em.. Here is the probability distribution for the random represent the number of aces in a randomly selected deal of two cards in the Example. Mean and SD of the distribution for the number of aces. Let X

 X_i (Value of X) 0 1 2 p_i (Probability) 0.8507 0.1448 0.0045

- Find $E(X) = \mu_X$, the mean of the probability distribution of X.
- Find the standard deviation of the probability distribution of X.

Answers: In R :

Expected Value and Variance: Continuous Case

discrete case, but require calculus for the actual formula. For continuous r.v. X, E(X) and Var(X) are defined similarly to the

Normal r.v., $X \sim N(\mu, \sigma)$, we have $EX = \mu$ and $Var(X) = \sigma^2$.

deviation (see p. 14). For normal r.v.s, there is an important interpretation of the standard

Rules for Expected Value and Variance of Linear Combinations

 a_1, a_2, \ldots, a_n and c are constants. Then: Suppose X_1, X_2, \ldots, X_n are random variables with means $\mu_1, \mu_2, \ldots, \mu_n$, respectively, and variances $\sigma_1^2, \sigma_2^2, \dots, \sigma_n^2$, respectively. Suppose

Whether or not the X's are independent,

$$E(a_1X_1 + \dots + a_nX_n + c) = a_1E(X_1) + \dots + a_nE(X_n) + c$$

= $a_1\mu_1 + \dots + a_n\mu_n + c$
= $\sum_{i=1}^n a_i\mu_i + c$

If the X's are independent,

$$Var(a_1X_1 + \dots + a_nX_n + c) = a_1^2 Var(X_1) + \dots + a_n^2 Var(X_n)$$

$$= a_1^2 \sigma_1^2 + \dots + a_n^2 \sigma_n^2$$

$$= \sum_{i=1}^n a_i^2 \sigma_i^2$$

Question:

mean and SD of the weighted average, $.25X_1 + .75X_2$. However, the SDs are different. $SD(X_1)=.2$ and $SD(X_2)=.1$. Find the Suppose that both methods are unbiased. That is, $E(X_1) = \mu$, $E(X_2) = \mu$. measurement techniques (two different clocks) for measuring the period. Call the true period of a pendulum μ . Suppose there are two Call the measurement for clock 1 $X_{
m l}$, and the mst. for clock 2 $X_{
m 2}$

Answer:

$$E(.25X_1 + .75X_2) = .25\mu + .75\mu = \mu,$$

And, assuming the two msts. are made independently of each other, by the rule for expected value of a linear combination of r.v.'s

$$Var(.25X_1 + .75X_2) = .25^2(Var(X_1)) + .75^2(Var(X_2))$$

= .0625(.04) + .5625(.01) = .008125

So, $SD(.25X_1 + .75X_2) = \sqrt{.008125} = .09014$