Homework Exercise Set 2: STA 7249

1. (7.24) A multivariate generalization of the exponential dispersion family is

$$f(\mathbf{y}_i; \boldsymbol{\theta}_i, \phi) = \exp\{[\mathbf{y}_i' \boldsymbol{\theta}_i - b(\boldsymbol{\theta}_i)]/a(\phi) + c(\mathbf{y}_i, \phi)\},\$$

where θ_i is the natural parameter. Show that the multinomial variate $\mathbf{y}_i = (y_{i1}, \dots, y_{i,J-1})'$ (with a 1 in a position if that outcome occurred, and 0 otherwise) for a single trial with parameters $\{\pi_j, j=1,\dots,J-1\}$ is in the (J-1)-parameter exponential family, with baseline-category logits as natural parameters.

2. (7.36) Suppose we express $\pi_j(\mathbf{x}) = \frac{\exp(\alpha_j + \boldsymbol{\beta}_j' \mathbf{x})}{1 + \sum_{j=1}^{J-1} \exp(\alpha_h + \boldsymbol{\beta}_h' \mathbf{x})}$ as

$$\pi_j(\mathbf{x}) = \frac{\exp(\alpha_j + \boldsymbol{\beta}_j' \mathbf{x})}{\sum_{h=1}^{J} \exp(\alpha_h + \boldsymbol{\beta}_h' \mathbf{x})}.$$

Show that dividing numerator and denominator by $\exp(\alpha_J + \boldsymbol{\beta}_J' \mathbf{x})$ yields new parameters $\alpha_j^* = \alpha_j - \alpha_J$ and $\beta_j^* = \beta_j - \beta_J$ that satisfy $\alpha_J = 0$ and $\boldsymbol{\beta}_J = \mathbf{0}$. Thus, without loss of generality, $\alpha_J = 0$ and $\boldsymbol{\beta}_J = \mathbf{0}$.

- 3. (7.29) Is the proportional odds model a special case of a baseline-category logit model? Explain why or why not.
- 4. (7.35) For the cumulative probit model $\Phi^{-1}[P(Y \leq j)] = \alpha_j \beta' \mathbf{x}$, explain why a 1-unit increase in x_i corresponds to a β_i standard deviation increase in the expected underlying latent response, controlling for other predictors.
- 5. (7.36) For cumulative link model $G^{-1}[P(Y \le j \mid \mathbf{x})] = \alpha_j + \beta' \mathbf{x}$, show that for $1 \le j < k \le J 1$, $P(Y \le k \mid \mathbf{x}) = P(Y \le j \mid \mathbf{x}^*)$ where \mathbf{x}^* is obtained by increasing the *i*th component of \mathbf{x} by $(\alpha_k \alpha_j)/\beta_i$. Interpret.
- 6. (7.34) A response scale has the categories (strongly agree, mildly agree, mildly disagree, strongly disagree, don't know). One way to model such a scale uses a logit model for the probability of a don't know response and uses a separate ordinal model for the ordered categories conditional on response in one of those categories. Explain how to construct a likelihood to do this simultaneously.
- 7. (7.42) A cafe has four entrées: (chicken, beef, fish, vegetarian). Specify a discrete choice model for the selection of an entrée using x = gender (1 = female, 0 = male) and $u = \cos t$ of entrée, which is a characteristic of the choices. Interpret the model parameters.
- 8. (7.1) For Table 1, let Y = belief in life after death, $x_1 =$ gender (1 = females, 0 = males), and $x_2 =$ race (1 = whites, 0 = blacks). Table 2 shows the fit of the model

$$\log(\pi_j/\pi_3) = \alpha_j + \beta_j^G x_1 + \beta_j^R x_2, \quad j = 1, 2,$$

with SE values in parentheses.

			Table	1:
		Ве	Belief in Afterlife	
Race	Gender	Yes	Undecided	No
White	Female	371	49	74
	Male	250	45	71
Black	Female	64	9	15
	Male	25	5	13

Source: 1991 General Social Survey

		Table 2:	
	Belief Categories for Logit		
Parameter	(Yes/No)	(Undecided/No)	
Intercept	0.883 (.243)	-0.758 (.361)	
Gender	0.419(.171)	0.105 (.246)	
Race	0.342 (.237)	0.271 (.354)	

- (a) Find the prediction equation for $\log(\pi_1/\pi_2)$.
- (b) Using the yes and no response categories, interpret the conditional gender effect using a 95% confidence interval for an odds ratio.
- (c) Show that for white females, $\hat{\pi}_1 = \hat{P}(Y = \text{yes}) = 0.76$.
- (d) Without calculating estimated probabilities, explain why the intercept estimates indicate that for black males $\hat{\pi}_1 > \hat{\pi}_3 > \hat{\pi}_2$. Likewise, use the intercept and gender estimates to show the same ordering applies for black females.
- (e) Without calculating estimated probabilities, explain why the estimates in the gender and race rows indicate that $\hat{\pi}_3$ is highest for black males.
- (f) For this fit, $G^2=0.9$. Explain why residual df=2. Deleting the gender effect, $G^2=8.0$. Test whether opinion is independent of gender, given race. Interpret.