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Homework Exercise Set 1: STA 7249

1. (4.30 and 4.31) Show that the normal distribution N(µ, σ2) is in the ex-
ponential dispersion family, and identify the components. Formulate the
ordinary regression model as a GLM.

2. (4.25) A binomial GLM πi = Φ(
∑

j βjxij) with arbitrary inverse link
function Φ assumes niYi has a bin(ni, πi) distribution. Find wi in wi =

(∂µi/∂ηi)
2/Var(Yi) and hence Ĉov(β̂). For logistic regression, show wi =

niπi(1 − πi).

3. (4.37) In a GLM, suppose Var(Y ) = v(µ) for µ = E(Y ). Show that
the link g satisfying g′(µ) = [v(µ)]−1/2 has the same weight matrix W

(t)

at each cycle. Show that this link for a Poisson random component is
g(µ) = 2

√
µ.

4. (4.34) Consider the value β̂ that maximizes a function L(β). Let β(0)

denote an initial guess.

(a) Using L′(β̂) = L′(β(0)) + (β̂ −β(0))L′′(β(0)) + · · ·, argue that for β(0)

close to β̂, approximately 0 = L′(β(0)) + (β̂ − β(0))L′′(β(0)). Solve

this equation to obtain an approximation β(1) for β̂.

(b) Let β(t) denote approximation t for β̂, t = 0, 1, 2, . . .. Justify that
the next approximation is

β(t+1) = β(t) − L′(β(t))/L′′(β(t)).

5. (4.20) For the logistic regression model with a single predictor x and with
β > 0, show (a) as x → ∞, π(x) is monotone increasing, (b) the curve for
π(x) is the cdf of a logistic distribution having mean −α/β and standard
deviation π/(|β|

√
3).

6. (4.29) Consider the class of binary models π(x) = Φ(α+βx) and Φ−1[π(x)] =
α + βx. Suppose the standard cdf Φ corresponds to a probability density
function φ that is symmetric around 0.

(a) Show that x at which π(x) = 0.5 is x = −α/β.

(b) Show that the rate of change in π(x) when π(x) = 0.5 is βφ(0). Show
that this is .25β for the logit link and β/

√
2π (where π = 3.14...) for

the probit link.

(c) Show that the probit regression curve has the shape of a normal cdf

with mean −α/β and standard deviation 1/ | β |.

7. (4.38) For noncanonical links in a GLM, show the observed information
matrix may depend on the data and hence differs from the expected in-
formation. Illustrate using the probit model.
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8. (5.36) Construct the log likelihood function for the model logit[π(x)] =
α + βx with independent binomial outcomes of y0 successes in n0 trials
at x = 0 and y1 successes in n1 trials at x = 1. Derive the likelihood
equations, and show β̂ is the sample log odds ratio.

9. (4.22) Let Yi be a bin(ni, πi) variate for group i, i = 1, . . . , N , with {Yi}
independent. Consider the model that π1 = · · · = πN . Denote that
common value by π. For observations {yi}, show π̂ = (

∑
yi)/(

∑
ni).

When all ni = 1, for testing this model’s fit in the N × 2 table, show that
X2 = n. Thus, goodness-of-fit statistics can be completely uninformative
for ungrouped data.

10. (5.37) A study has ni independent binary observations {yi1, . . . , yini
} when

X = xi, i = 1, . . . , N , with n =
∑

i ni. Consider the model, logit(πi) =
α + βxi, where πi = P (Yij = 1).

(a) Show that the kernel of the likelihood function is the same treating
the data as n Bernoulli observations or N binomial observations.

(b) For the saturated model (that is, as many parameters as observa-
tions), explain why the likelihood function is different for these two
data forms. (Hint: The number of parameters differs.) Hence, the
deviance reported by software depends on the form of data entry.

(c) Explain why the difference between deviances for two unsaturated
models does not depend on the form of data entry.

(d) Suppose each ni = 1. Show the deviance depends on π̂i but not yi.
Hence, it is not useful for checking model fit.

11. (6.28) A threshold model can motivate the probit model. For it, there is an
unobserved continuous response Y ∗ such that the observed yi = 0 if y∗

i ≤ τ
and yi = 1 if y∗

i > τ . Suppose y∗

i = µi + εi, where µi = α+βxi and where
{εi} are independent from a N(0, σ2) distribution. For identifiability one
can set σ = 1 and the threshold τ = 0. Show the probit model holds
and explain why β represents the expected number of standard deviation
change in Y ∗ for a 1-unit increase in x.

12. (6.29) Consider the choice between two options, such as two product
brands. Let U0 denote the utility of outcome y = 0 and U1 the utility
of y = 1. For y = 0 and 1, suppose Uy = αy + βyx + εy, using a scale
such that εy has some standardized distribution. A subject selects y = 1
if U1 > U0 for that subject.

(a) If ε0 and ε1 are independent N(0, 1) random variables, show that
P (Y = 1) satisfies the probit model.

(b) If εy are independent extreme value random variables, with cdf F (ε) =
exp[− exp(−ε)], show P (Y = 1) satisfies the logistic regression model.

13. (6.32) Let yi, i = 1, . . . , n, denote n independent binary random variables.
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(a) Derive the log likelihood for the probit model Φ−1[π(xi)] =
∑

j βjxij .

(b) Show the likelihood equations for the logistic and probit regression
models are

∑

i

(yi − π̂i)zixij = 0, j = 0, . . . , p,

where zi = 1 for the logistic case and zi = φ(
∑

j β̂jxij)/π̂i(1− π̂i) for
the probit case. (When the link is not canonical, there is no reduction
of the data in sufficient statistics.)

14. (4.23) Suppose Yi is Poisson with g(µi) = α + βxi, where xi = 1 for
i = 1, ..., nA from group A and xi = 0 for i = nA + 1, ..., nA + nB

from group B. Show that for any link function g, the likelihood equa-

tions
∑N

i=1
(yi−µi)xij

Var(Yi)

∂µi

∂ηi
= 0, j = 1, . . . , p imply that fitted means µ̂A

and µ̂B equal the sample means.

15. (4.27) Let yij be observation j of a count variable for group i, i = 1, . . . , I ,
j = 1, . . . , ni. Suppose {Yij} are independent Poisson with E(Yij) = µi.

(a) Show that the ML estimate of µi is µ̂i = ȳi =
∑

j yij/ni.

(b) Simplify the expression for the deviance for this model. (For testing
this model, it follows from Fisher (1970 p. 58, originally published in
1925) that the deviance and the Pearson statistic

∑
i

∑
j(yij−ȳi)

2/ȳi

have approximate chi-squared distributions with df =
∑

i(ni−1). For
a single group, Cochran (1954) referred to

∑
j(y1j − ȳ1)

2/y1 as the
variance test for the fit of a Poisson distribution, since it compares
the sample variance to the estimated Poisson variance ȳ1.)

16. (4.26) A GLM has parameter β with sufficient statistic S. A goodness-of-
fit test statistic T has observed value to. If β were known, a P -value is
P = P (T ≥ to; β). Explain why P (T ≥ to | S) is the uniform minimum
variance unbiased estimator of P .

17. (4.24) For binary data with sample proportion yi based on ni trials, we
use quasi-likelihood to fit a model using variance function v(πi) = φπi(1−
πi)/ni. Show that parameter estimates are the same as for the binomial
GLM, but the covariance matrix multiplies by φ.

18. (4.6) An experiment analyzes imperfection rates for two processes used
to fabricate silicon wafers for computer chips. For treatment A applied
to 10 wafers, the numbers of imperfections are 8, 7, 6, 6, 3, 4, 7, 2, 3, 4.
Treatment B applied to 10 other wafers has 9, 9, 8, 14, 8, 13, 11, 5, 7,
6 imperfections. Treat the counts as independent Poisson variates having
means µA and µB .

(a) Fit the model log µ = α + βx, where x = 1 for treatment B and x
= 0 for treatment A. Show that exp(β) = µB/µA, and interpret its
estimate.
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Table 1:
No. No. No. No. No. No.

Game Made Attempts Game Made Attempts Game Made Attempts
1 4 5 9 4 12 17 8 12
2 5 11 10 1 4 18 1 6
3 5 14 11 13 27 19 18 39
4 5 12 12 5 17 20 3 13
5 2 7 13 6 12 21 10 17
6 7 10 14 9 9 22 1 6
7 6 14 15 7 12 23 3 12
8 9 15 16 3 10

Source: www.nba.com

(b) Test H0: µA = µB with the Wald or likelihood-ratio test of H0:
β = 0. Interpret.

(c) Construct a 95% confidence interval for µB/µA. (Hint: First con-
struct one for β.)

(d) Test H0: µA = µB based on this result: If Y1 and Y2 are independent
Poisson with means µ1 and µ2, then (Y1 | Y1 + Y2) is binomial with
n = Y1 + Y2 and π = µ1/(µ1 + µ2).

19. (4.13) Table 1 shows the free-throw shooting, by game, of Shaq O’Neal
of the Los Angeles Lakers during the 2000 NBA (basketball) playoffs.
Commentators remarked that his shooting varied dramatically from game
to game. In game i, suppose Yi = number of free throws made out of ni

attempts is a bin(ni, πi) variate and {Yi} are independent.

(a) Fit the model, πi = α, and find and interpret α̂ and its standard
error. Does the model appear to fit adequately? (Note: You could
check this with a small-sample test of independence of the 23 × 2
table of game and the binary outcome.)

(b) Adjust the standard error for overdispersion. Using the original SE
and its correction, find and compare 95% confidence intervals for α.
Interpret.


