
STA 4504 - 5503: Outline of Lecture Notes, c©Alan Agresti

Categorical Data Analysis

1. Introduction

• Methods for response (dependent) variable Y having
scale that is a set of categories

• Explanatory variables may be categorical or contin-
uous or both
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Example

Y = vote in election (Democrat, Republican, Indepen-
dent)

x’s - income, education, gender, race

Two types of categorical variables

Nominal - unordered categories

Ordinal - ordered categories

Examples
Ordinal

patient condition (excellent, good, fair, poor)

government spending (too high, about right, too low)
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Nominal

transport to work (car, bus, bicycle, walk, . . . )

favorite music (rock, classical, jazz, country, folk, pop)

We pay special attention to

binary variables (success - fail)

for which nominal - ordinal distinction unimportant.

3



Probability Distributions for Categorical Data

The binomial distribution (and its multinomial dis-
tribution generalization) plays the role that the normal
distribution does for continuous response.

Binomial Distribution

• n Bernoulli trials - two possible outcomes for each
(success, failure)

• π = P (success), 1− π = P (failure) for each trial

• Y = number of successes out of n trials

• Trials are independent

Y has binomial distribution
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P (y) =
n!

y!(n− y)!
πy(1− π)n−y, y = 0, 1, 2, . . . , n

y! = y(y − 1)(y − 2) · · · (1) with 0! = 1 (factorial)
Example Vote (Democrat, Republican)

Suppose π = prob(Democrat) = 0.50.

For random sample size n = 3, let y = number of Demo-
cratic votes

p(y) =
3!

y!(3− y)!
.5y.53−y

p(0) =
3!

0!3!
.50.53 = .53 = 0.125

p(1) =
3!

1!2!
.51.52 = 3(.53) = 0.375

y P (y)
0 0.125
1 0.375
2 0.375
3 0.152

1.0
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Note

• E(Y ) = nπ
V ar(Y ) = nπ(1− π), σ =

√

nπ(1− π)

• p = Y
n
= proportion of success (also denoted π̂)

E(p) = E

(

Y

n

)

= π

σ

(

Y

n

)

=

√

π(1− π)

n

• When each trial has > 2 possible outcomes, num-
bers of outcomes in various categories have multinomial
distribution
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Inference for a Proportion

We conduct inferences about parameters using
maximum likelihood

Definition: The likelihood function is the probability of
the observed data, expressed as a function of the param-
eter value.

Example: Binomial, n = 2, observe y = 1

p(1) = 2!
1!1!

π1(1− π)1 = 2π(1− π)

= ℓ(π)

the likelihood function defined for π between 0 and 1
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If π = 0, probability is ℓ(0) = 0 of getting y = 1

If π = 0.5, probability is ℓ(0.5) = 0.5 of getting y = 1

Definition The maximum likelihood (ML) estimate
is the parameter value at which the likelihood function
takes its maximum.

Example ℓ(π) = 2π(1− π) maximized at π̂ = 0.5

i.e., y = 1 in n = 2 trials is most likely if π = 0.5.

ML estimate of π is π̂ = 0.50.
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Note

• For binomial, π̂ = y
n
= proportion of successes.

• If y1, y2, . . . , yn are independent from normal (or many
other distributions, such as Poisson), ML estimate µ̂ = ȳ.

• In ordinary regression (Y ∼ normal) “least squares”
estimates are ML.

• For large n for any distribution, ML estimates are
optimal (no other estimator has smaller standard error)

• For large n, ML estimators have approximate normal
sampling distributions (under weak conditions)

9



ML Inference about Binomial Parameter

π̂ = p =
y

n

Recall E(p) = π, σ(p) =
√

π(1−π)
n .

• Note σ(p) ↓ as n ↑, so
p→ π (law of large numbers, true in general for ML)

• p is a sample mean for (0,1) data, so by Central
Limit Theorem, sampling distribution of p is approxi-
mately normal for large n (True in general for ML)
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Significance Test for binomial parameter

Ho : π = πo

Ha : π 6= πo (or 1-sided)

Test statistic

z =
p− πo
σ(p)

=
p− πo
√

πo(1−πo)
n

has large-sample standard normal (denoted N(0, 1))
null distribution. (Note use null SE for test)

p-value = two-tail probability of results at least as ex-
treme as observed (if null were true)
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Confidence interval (CI) for binomial parameter

Definition Wald CI for a parameter θ is
θ̂ ± zα

2
(SE)

(e.g, for 95% confidence, estimate plus and minus 1.96
estimated standard errors, where z.025 = 1.96)

Example θ = π, θ̂ = π̂ = p

σ(p) =
√

π(1−π)
n

estimated by

SE =
√

p(1−p)
n

95% CI is p± 1.96
√

p(1−p)
n

Note Wald CI often has poor performance in categorical
data analysis unless n quite large.
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Example: Estimate π = population proportion of vege-
tarians

For n = 20, we get y = 0

p = 0
20

= 0.0

95% CI: 0± 1.96
√

0×1
20

= 0± 0,

= (0, 0)
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• Note what happens with Wald CI for π if p = 0 or 1

• Actual coverage probability much less than 0.95 if π
near 0 or 1.

• Wald 95% CI = set of πo values for which p-value >
.05 in testing

Ho : π = πo Ha : π 6= πo

using

z = p−πo
√

p(1−p)
n

(denominator uses estimated SE)
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Definition Score test, score CI use null SE

e.g. Score 95% CI = set of πo values for which p-value
> 0.05 in testing

Ho : π = πo Ha : π 6= πo

using

z = p−πo
√

πo(1−πo)
n

← note null SE in denominator

(known, not estimated)
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Example π = probability of being vegetarian

y = 0, n = 20, p = 0

What πo satisfies

±1.96 = 0−πo
√

πo(1−πo)
20

?

1.96
√

πo(1−πo)
20 = |0− πo|

πo = 0 is one solution

solve quadratic → πo = .16 other solution

95% score CI is (0. 0.16), more sensible than Wald CI
of (0, 0).
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• When solve quadratic, can show midpoint of 95% CI
is

y+1.962/2
n+1.962

≈ y+2
n+4

•Wald CI p± 1.96
√

p(1− p)/n also works well if add
2 successes, add 2 failures before applying (this is the
“Agresti-Coull method”)

• For inference about proportions, score method tends
to perform better than Wald method, in terms of having
actual error rates closer to the advertised levels.

• Another good test, CI uses the likelihood function

(e.g. CI = values of π for which ℓ(π) close to ℓ(π̂)

= values of πo not rejected in “likelihood-ratio test”)

• For small n, inference uses actual binomial sampling
dist. of data instead of normal approx. for that dist.
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2. Two-Way Contingency Tables

Example: Physicians Health Study ( 5 year)

HEART ATTACK

GROUP
Yes No Total

Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

ր
2x2 table

Contingency table - cells contain counts of outcomes.
I × J table has I rows, J columns.
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A conditional dist refers to prob. dist. of Y at fixed
level of x.

Example:

Y

X
Yes No Total

Placebo .017 .983 1.0
Aspirin .009 .991 1.0

Sample conditional dist. for placebo group is

.017 =
189

11, 034
, .983 =

10, 845

11, 034

Natural way to look at data when

Y = response var.

X = explanatory var.
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Example: Diagnostic disease tests

Y = outcome of test: 1 = positive 2 = negative

X = reality: 1 = diseased 2 = not diseased

Y

X
1 2

1
2

sensitivity = P (Y = 1|X = 1)

specificity = P (Y = 2|X = 2)

If you get positive result, more relevant to you is
P (X = 1|Y = 1). This may be low even if sensitivity,
specificity high. (See pp. 23-24 of text for example of
how this can happen when disease is relatively rare.)
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What if X, Y both response var’s?

{πij} = {P (X = i, Y = j)} form the joint distribu-
tion of X and Y .

π11 π12 π1+
π21 π22 π2+
π+1 π+2 1.0

marginal probabilities

Sample cell counts {nij}

cell proportions {pij}

pij =
nij
n with n =

∑

i

∑

j nij
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Definition X and Y are statistically independent if
true conditional dist. of Y is identical at each level of x.

Y

X
.01 .99
.01 .99

Then, πij = πi+π+j all i, j

i.e., P (X = i, Y = j) = P (X = i)P (Y = j), such as

Y

X
.28 .42 .7
.12 .18 .3
.4 .6 1.0
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Comparing Proportions in 2x2 Tables

Y

X
S F

1 π1 1− π1
2 π2 1− π2

Conditional Distributions

π̂1 − π̂2 = p1 − p2

SE(p1 − p2) =

√

p1(1− p1)

n1
+
p2(1− p2)

n2

Example: p1 = .017, p2 = .009, p1 − p2 = .008

SE =

√

.017× .983

11, 034
+
.009× .991

11, 037
= .0015

95% CI for π1− π2 is .008± 1.96(.0015) = (.005, .011).

Apparently π1 − π2 > 0 (i.e., π1 > π2).
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Relative Risk = π1
π2

Example: Sample p1
p2
= .017

.009 = 1.82

Sample proportion of heart attacks was 82% higher for
placebo group.

Note

• See p. 58 of text for SE formula

• SAS provides CI for π1/π2.

Example: 95% CI is (1.43, 2.31)

• Independence ⇔ π1
π2

= 1.0.
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Odds Ratio

Group
S F

1 π1 1− π1
2 π2 1− π2

The odds the response is a S instead of an F = prob(S)
prob(F )

= π1/(1− π1) in row 1.

= π2/(1− π2) in row 2.

e.g., if odds = 3, S three times as likely as F .

e.g., if odds = 1
3, F three times as likely as S.

25



Odds = 3 ⇒ P (S) = 3
4
, P (F ) = 1

4

P (S) =
odds

1 + odds

odds = 1
3 ⇒ P (S) = 1/3

1+1/3 =
1
4

Definition: Odds Ratio

θ =
π1/(1− π1)

π2/(1− π2)
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Example

Heart Attack
Yes No Total

Placebo 189 10,845 11,034
Aspirin 104 10,933 11,037

Sample Proportions
p1 1− p1 .0171 .9829 1.0

=
p2 1− p2 .0094 .9906 1.0

Sample odds =

.0171

.9829
=

189

10, 845
= .0174, placebo

=
104

10, 933
= .0095, aspirin
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Sample odds Ratio

θ̂ =
.0174

.0095
= 1.83

The odds of a heart attack for placebo group were 1.83
time odds for aspirin group (i.e., 83% higher)

Properties of odds ratio

• Each odds > 0, and θ > 0.

• θ = 1 when π1 = π2 ; i.e., response independent of
group

• The farther θ falls from 1, the stronger the association

(For Y = lung cancer, some stufies have θ ≈ 10 for X
= smoking, θ ≈ 2 for X = passive smoking)
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• If rows interchanged, or if columns interchanged, θ →
1/θ.

e.g. θ = 3, θ = 1
3
represent same strength of association

but in opposite directions.

• For counts

S F
n11 n12

n21 n22

θ̂ = n11/n12
n21/n22

= n11n22
n12n21

= cross-product ratio

(Yule 1900) (strongly criticized by K. Pearson!)
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• Treats X,Y symmetrically

Heart Attack
Placebo Aspirin

Yes
No

→ θ̂ = 1.83

• θ = 1 ⇔ log θ = 0

log odds ratio symmetric about 0

e.g., θ = 2⇒ log θ = .7

θ = 1/2⇒ log θ = −.7

• Sampling dist. of θ̂ skewed to right, ≈ normal only
for very large n.

Note:We use “natural logs” (LN on most calculators)

This is the log with base e = 2.718...
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• Sampling dist. of log θ̂ is closer to normal, so con-
struct CI for log θ and then exponentiate endpoints to
get CI for θ.

Large-sample (asymptotic) standard error of log θ̂ is

SE(log θ̂) =

√

1

n11
+

1

n12
+

1

n21
+

1

n22

CI for log θ is

log θ̂ ± z∝
2
× SE(log θ̂)

(eL, eU) is CI for θ

31



Example: θ̂ = 189×10,933
104×10,845 = 1.83

log θ̂ = .605

SE(log θ̂) =

√

1

189
+

1

10, 933
+

1

104
+

1

10, 845
= .123

95% CI for log θ is

.605 ± 1.96(.123) = (.365, .846)

95% CI for θ is

(e.365, e.846) = (1.44, 2.33)

Apparently θ > 1
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e denotes exponential function

e0 = 1, e1 = e = 2.718 . . .

e−1 = 1
e = .368

ex > 0 all x

exp fn. = antilog for natural log scale ℓn

e0 = 1 means loge(1) = 0

e1 = 2.718 loge(2.718) = 1

e−1 = .368 loge(.368) = −1

loge(2) = .693 means e.693 = 2
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Notes

• θ̂ not midpoint of CI, because of skew

• If any nij = 0, θ̂ = 0 or ∞, and better estimate and
SE results by replacing {nij} by {nij + .5}.

• When π1 and π2 close to 0

θ =
π1/(1− π1)

π2/(1− π2)
≈ π1

π2
the relative risk
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Example: Case-control study in London hospitals
(Doll and Hill 1950)

X = smoked > 1 cigarette per day for at least 1 year?

Y = Lung Cancer

X

Lung Cancer
Yes No

Yes 688 650
No 21 59

709 709

Case control studies are “retrospective.” Binomial sam-
pling model applies to X (sampled within levels of Y ),
not to Y .

Cannot estimate P (Y = yes|x),

or π1 − π2 =
P (Y = yes|X = yes)− P (Y = yes|X = no)

or π1/π2
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We can estimate P (X|Y ), so can estimate θ.

θ̂ =
P̂ (X = yes|Y = yes)/P̂ (X = no|Y = yes)

P̂ (X = yes|Y = no)/P̂ (X = no|Y = no)

=
(688/709)/(21/709)

(650/709)/(59/709)

=
688× 59

650× 21
= 3.0

Odds of lung cancer for smokers were 3.0 times odds for
non-smokers.

In fact, if P (Y = yes|X) is near 0, then θ ≈ π1/π2 =
rel. risk, and can conclude that prob. of lung cancer is ≈
3.0 times as high for smokers as for non-smokers.
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Chi - Squared Tests of Independence

Example

JOB SATISFACTION
INCOME

Very Little Mod. Very
Dissat. Satis. Satis. Satis

< 5000 2 4 13 3 22
5000-15,000 2 6 22 4 34
15,000-25,000 0 1 15 8 24
> 25,000 0 3 13 8 24

4 14 63 23 104

Data from General Social Survey (1991)
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Ho: X and Y independent

Ha: X and Y dependent

Ho means

P (X = i, Y = j) = P (X = i)P (Y = j)

πij = πi+π+j

Expected frequency µij = nπij
= mean of dist. of cell count nij

= nπi+π+j under Ho.

ML estimates µ̂ij = nπ̂i+π̂+j

= n
(ni+

n

)(n+j

n

)

=
ni+n+j

n

called estimated expected frequencies
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Test Statistic

X2 =
∑

all cells

(nij − µ̂ij)
2

µ̂ij

called Pearson chi - squared statistic (Karl Pearson,
1900)

X2 has large-sample chi-squared dist. with
df = (I − 1)(J − 1)

I = number of rows, J = number of columns

P -value = P (X2 > X2 observed)

= right - tail prob.

(Table on p. 343 text)
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Example: Job satisfaction and income

X2 = 11.5

df = (I − 1)(J − 1) = 3× 3 = 9

Evidence against Ho is weak.

Plausible that job satisfaction and income are indepen-
dent.
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Note

• Chi-squared dist. has µ = df , σ =
√
2df ,

more bell-shaped as df ↑

• Likelihood-ratio test stat.

G2 = 2
∑

nij log

(

nij

µ̂ij

)

= −2 log
[

maximize likelihood when Ho true

maximize likelihood generally

]

G2 also is approx. χ2, df = (I − 1)(J − 1).
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Example: G2 = 13.47, df = 9, P -value = .14

• df for X2 test
= no. parameters in general - no. parameters under Ho

Example: Indep. πij = πi+π+j

df = (IJ − 1)− [(I − 1) + (J − 1)]

∑

πij = 1
∑

πi+ = 1
∑

π+j = 1

= (I − 1)(J − 1) ← Fisher 1922 (not Pearson 1900)

• X2 = G2 = 0 when all nij = µ̂ij.

• As n ↑, X2→ χ2 faster than G2→ χ2, usually close
if most µ̂ij > 5
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• These tests treat X,Y as nominal. Reorder rows
columns, X2, G2 unchanged

Sec. 2.5 (we skip) presents ordinal tests. We re-analyze
with ordinal model in Ch. 6 (more powerful, much smaller
P -value).
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Standardized (Adjusted) Residuals

rij =
nij−µ̂ij√

µ̂ij(1−pi+)(1−p+j)

Under Ho: indep., rij ≈ std. normal N(0, 1)

so |rij| > 2 or 3 represents cell that provides strong
evidence against Ho

Example: n44 = 8, µ̂44 =
24×23
104 = 5.31

r44 =
8− 5.31

√

5.31(1− 24
104)(1− 23

104)
= 1.51

None of cells show much evidence of association.
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Example

RELIGIOSITY

GENDER

Very Mod. Slightly Not
Female 170 340 174 95

(3.2) (1.0) (-1.1) (-3.5)
Male 98 266 161 123

(-3.2) (-1.0) (1.1) (3.5)

General Social Survey data (variables Sex, Relpersn)

X2 = 20.6, G2 = 20.7, df = 3, P -value = 0.000

• SAS (PROC GENMOD) also provides
“Pearson residuals” ( label reschi)

eij =
nij − µ̂ij
√

µ̂ij

which are simpler but less variable than N(0, 1).

(
∑

e2ij = X2)
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SPSS

ANALYZE menu

CROSSTABS suboption

click on STATISTICS

options include X2 test

click on CELLS

“adjusted standardized”

gives standardized residuals

When enter data as contingency table

Income Satis. Count
1 1 2
1 2 4
. . .
. . .

Select WEIGHT CASES option on DATA menu,

tell SPSS to weight cases by count
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STATA and SAS

See www.ats.ucla.edu/stat/examples/icda

for sample programs for examples from 1st edition of
text.

R

link to Laura Thompson manual

pp. 35-38 for chi-squared test, standardized residuals,

function chisq.test
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Partitioning Chi-squared

χ2
a + χ2

b = χ2
a+b for indep. chi-squared stat’s.

Example: G2 = 13.47, X2 = 11.52, df = 9

Compare income levels on job satisfaction

Income Job Satisfac.

VD LS MS VS
< 5 2 4 13 3
5 -15 2 6 22 4

VD LS MS VS
15-25 0 1 15 8
> 25 0 3 13 8

VD LS MS VS
< 15 4 10 35 7
> 15 0 4 28 16
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X2 G2 df
.30 .30 3
1.14 1.19 3
10.32 11.98 3

(P = .02 P = .01)
11.76 13.47 9

Note

• Job satisfaction appears to depend on whether income
> or < $ 15,000

• G2 exactly partitions, X2 does not

• Text gives guidelines on how to partition so separate
components indep., which is needed for G2 to partition
exactly.
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Small-sample test of indep.

2 x 2 case (Fisher 1935)

n11 n12 n1+

n21 n22 n2+

n+1 n+2 n

Exact null dist. of {nij}, based on fixed row and column
totals, is

P (n11) =

(

n1+
n11

)(

n2+
n+1−n11

)

(

n
n+1

)

Where
(

a
b

)

= a!
b!(a−b)!

Hypergeometric dist.
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Example Tea Tasting (Fisher)

GUESS

Poured First

Milk Tea
Milk ? 4
Tea 4

4 4 8

n11 = 0,1,2,3, or 4

4 0
0 4

has prob.

P (4) =

(

4
4

)(

4
4−4
)

(

8
4

) =

(

4!
4!0!

)(

4!
0!4!

)

(

8!
4!4!

)

=
4!4!

8!
=

1

70
= .014

P (3) =

(

4
3

)(

4
1

)

(

8
4

) =
16

70
= .229
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n11 P (n11)
0 .014
1 .229
2 .514
3 .229
4 .014

For 2 x 2 tables,

Ho: indep⇔ Ho : θ = 1 for θ = odds ratio

For Ho : θ = 1, Ha : θ > 1,

P -value = P (θ̂ > θ̂obs)
= .229 + .014 = .243.

Not much evidence against Ho

Test using hypergeometric called Fisher’s exact test.
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For Ha : θ 6= 1, P -value =

two-tail prob. of outcomes no more likely than observed

Example: P -value = P (0)+P (1)+P (3)+P (4) = .486

Note:
• Fisher’s exact test extends to I × J tables (P -value

= .23 for job sat. and income)

• If make conclusion, e.g., rejecting Ho if p ≤ α = .05,
actual P (type I error) < .05 because of discreteness (see
text)
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Three - Way Contingency Tables

Example: FL death penalty court cases

Victim’s Defendant’s Death Penalty
Race Race Yes No % Yes
White White 53 414 11.3

Black 11 37 22.9
Black White 0 16 0.0

Black 4 139 2.8

Y = death penalty (response var.)
X = defendant’s race (explanatory)
Z = victim’s race (control var.)
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53 414
11 37

0 16
4 139

are partial tables

They control (hold constant) Z

The conditional odds ratios are:

Z = white : θ̂XY (1) =
53×37
414×11 = .43

Z = black : θ̂XY (2) = 0.00 (.94 after add .5 to cells)

Controlling for victim’s race, odds of receiving death
penalty were lower for white defendants than black de-
fendants.
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Add partial tables→ XY marginal table

Yes No
W n11 n12

B n21 n22

θ̂XY = 1.45

Ignoring victim’s race, odds of death penalty higher
for white defendant’s.

Simpson’s Paradox: All partial tables show reverse as-
soc. from that in marginal table.

Cause ?

Moral ? Can be dangerous to “collapse” contingency
tables.
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Def. X and Y are conditionally independent given Z,
if they are independent in each partial table.

In 2× 2×K table,

θXY (1) = · · · = θXY (K) = 1.0

Note Does not imply X and Y indep. in marginal
two-way table

Example

Clinic Treatment Response Y
Z X S F θ
1 A 18 12 1.0

B 12 8
2 A 2 8 1.0

B 8 32

Marginal A 20 20 2.0
B 20 40
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3. Generalized Linear Models

Components of a GLM

1. Random Component

Identify response var. Y

Assume independent observ’s y1, . . . , yn from particu-
lar form of dist., such as Poisson or binomial

Model how µi = E(Yi) depends on explanatory var’s
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2. Systematic component

Pick explanatory var’s x1, . . . , xk for linear predictor

α + β1x1 + β2x2 + · · · + βkxk

3. Link function

Model function g(µ) of µ = E(Y ) using

g(µ) = α + β1x1 + · · · + βkxk

g is the link function
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Example

• log(µ) = α + β1x1 + . . . uses g(µ) = log(µ).

log link often used for a “count” random component,
for which µ > 0.

• log( µ
1−µ) = α + β1x1 + . . . uses g(µ) = log( µ

1−µ), the
logit link.

Often used for binomial, with µ = π between 0 and 1

(logit = log of odds)

• µ = α + β1x1 + . . . uses g(µ) = µ, identity link
e.g., ordinary regression for normal response.
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Note:

• A GLM generalizes ordinary regression by

1. permitting Y to have a dist. other than normal

2. permitting modeling of g(µ) rather than µ.

• The same ML (max. likelihood) fitting procedure ap-
plies to all GLMs. This is basis of software such as PROC
GENMOD in SAS.

(Nelder and Wedderburn, 1972)
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GLMs for Binary Data

Suppose Y = 1 or 0

Let P (Y = 1) = π, “Bernoulli trial”

P (Y = 0) = 1− π

This is binomial for n = 1 trial

E(Y ) = π

V ar(Y ) = π(1− π)

For explan. var. x, π = π(x) varies as x varies.

Linear probability model π(x) = α + βx
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This is a GLM for binomial random component and
identity link fn.

V ar(Y ) = π(x)[1 − π(x)] varies as x varies, so least
squares not optimal.

Use ML to fit this and other GLMs.

ex. Y = infant sex organ malformation

1 = present, 0 = absent

x = mother’s alcohol consumption
(average drinks per day)
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Alcohol Malformation Proportion
Consumption Present Absent Total Present
0 48 17,066 17,114 .0028
< 1 38 14,464 14,502 .0026
1-2 5 788 793 .0063
3-5 1 126 127 .0079
> 6 1 37 38 .0262

Using x scores (0, .5, 1.5, 4.0, 7.0), linear prob. model
for π = prob. malformation present has ML fit

π̂ = α̂ + β̂x = .0025 + .0011x

At x = 0, π̂ = α̂ = .0025

π̂ increases by β̂ = .0011 for each 1-unit increase in
alcohol consumption.
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Note

• ML estimates α̂, β̂ obtained by iterative numerical
optimization.

• To test Ho : β = 0 (independence), can use

z =
β̂ − 0

SE(β̂)

(for large n has approx std. normal dist. under null)

ex. z = .0011
.0007 = 1.50

For Ha : β 6= 0, P -value = 0.13

Or, z2 approx. χ2
1 (ex. z2 = 2.24)

• Could use Pearson X2 (or G2) to test indep., but ig-
nores ordering of rows

• Alternative way to apply X2 (or deviance G2) is to
test fit of model. (see printout)

(compare counts to values predicted by linear model)
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• Same fit if enter 5 binomial “success totals” or the
32,574 individual binary responses of 0 or 1.

• Model π(x) = α + βx can give π̂ > 1 or π̂ < 0

More realistic models are nonlinear in shape of π(x).
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Logistic regression model

log

[

π

1− π

]

= α + βx

is GLM for binomial Y with logit link

ex. logit(π̂) = log
(

π̂
1−π̂
)

= −5.96 + .32x

π̂ ↑ as x ↑, and P -value =.012 for Ho : β = 0.

(but, P = .30 if delete “present” obs. in > 6 drinks!!)

Note

• Chap. 4 studies this model

• For contingency table, one can testHo : model fits, us-
ing estimated expected frequencies that satisfy the model,
with X2, G2 test stat.’s.

ex. X2 = 2.05, G2 = 1.95 for Ho : logistic regr. model

df = 3 = 5 binom. observ. - 2 parameters (P -value
large, no evidence against Ho)
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• Both the linear probability model and logistic regres-
sion model fit adequately

How can this be?

logistic≈ linear when π̂ near 0 or near 1 for all observed
x.
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GLMs for count data

When Y is a count (0,1,2,3,...) traditional to assume
Poisson dist.

P (y) =
e−µµy

y!
, y = 0, 1, 2, . . .

• µ = E(y)

µ = V ar(Y ), σ =
√
µ

• In practice often σ2 > µ, greater variation than Pois-
son predicts (overdispersion)

• Negative binomial dist. has separate σ2 parameter
and permits overdispersion.
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Poisson regression for count data

Suppose we assume Y has Poisson dist., x an explana-
tory var.

Model µ = α + βx identity link

or log(µ) = α + βx log link

loglinear model (Ch. 7 for details about this link)

ex. Y = no. defects on silicon wafer

x = treatment (1 = B, 0 = A) dummy (indicator) var.

10 wafers for each

A : 3, 7, 6, . . . ȳA = 5.0

B : 6, 9, 8, . . . ȳB = 9.0
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For model µ = α + βx (identity link)

µ̂ = 5.0 + 4.0x

x = 0 : µ̂A = 5.0 (= ȳA)

x = 1 : µ̂B = 9.0 (= ȳB)

β̂ = 4.0 = µ̂B − µ̂A has SE = 1.18

(← test, CI for β)

For loglinear model log(µ) = α + βx

log(µ̂) = 1.609 + .588x

x = 0 : log µ̂A = 1.609, µ̂A = e1.609 = 5.0

x = 1 : log µ̂ = 1.609 + .588 = 2.197, µ̂B = e2.197 = 9.0
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Inference for GLM parameters

CI: β̂ ± zα
2
(SE)

Test: Ho : β = 0

1. Wald test

z = β̂
SE has approx. N(0, 1) dist.

For Ha : β 6= 0, can also use Wald stat.

z2 =
(

β̂
SE

)2

is approx. χ2
1.

CI = set of βo values for Ho : β = βo such that

|β̂ − βo|/SE < zα/2
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2. Likelihood-ratio test

ℓ0 = maximized likelihood when β = 0

ℓ1 = maximized likelihood for arbitrary β

Test stat. = −2 log
(

ℓ0
ℓ1

)

= −2 log ℓ0 − (−2 log ℓ1)

= −2(L0 − L1)

Where L = maximized log likelihood
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ex. Wafer defects

Loglinear model log(µ) = α + βx

β = log µB − log µA

HO : µA = µB ⇔ β = 0

Wald test

z = β̂
SE

= .588
.176

= 3.33

z2 = 11.1, df = 1, P = .0009 for Ha : β 6= 0.

Likelihood-ratio test

L1 = 138.2, L0 = 132.4

Test stat. −2(L0 − L1) = 11.6, df = 1 P = .0007

PROC GENMOD reports LR test result with ‘type 3’
option
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Note

• For very large n, Wald test and likelihood ratio test
are approx. equivalent, but for small to moderate n the
LR test is more reliable and powerful.

• LR stat. also equals difference in “deviances,” goodness-
of-fit stats.

ex. 27.86 - 16.27 = 11.59

• LR method also extends to CIs:

100(1 − α)% CI = set of βo in Ho : β = βo for which
P -value > α in LR test.

(i.e., do not reject Ho at α- level)

GENMOD: LRCI option
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β = log µB − log µA = log
(

µB
µA

)

eβ = µB
µA

eβ̂ = e.5878 = 1.8 = µ̂B
µ̂A
.

95% CI for β is .588 ± 1.96 (.176) = (.242, .934).

95% CI for eβ = µB
µA

is

(e.242, e.934) = (1.27, 2.54).

We’re 95% confident that µB is between 1.27 and 2.54
times µA.

CI based on likelihood-ratio test is (1.28, 2.56).
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Deviance of a GLM

The saturated model has a separate parameter for each
observation and has the perfect fit µ̂i = yi

For a model M with maximized log likelihood LM ,

deviance = -2[LM − LS], where S = saturated model

= LR stat. for testing that all parameters not in M
equal 0.

i.e., for

Ho : model holds

Ha : saturated model
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For Poisson and binomial models for counts,

Deviance = G2 = 2
∑

yi log
(

yi
µ̂i

)

← for M

When µ̂i are large and no. of predictor settings fixed,
G2 and

X2 =
∑ (yi−µ̂i)2

µ̂i
(Pearson)

are used to test goodness of fit of model
(i.e., Ho : model holds).

They are approx. χ2 with
df = no. observations - no. model parameters

78



ex. Wafer defects

µ̂i = 5 for 10 observ’s in Treatment A

µ̂i = 9 for 10 observ’s in Treatment B

For loglinear model, log µ = α + βx

deviance G2 = 16.3

Pearson X2 = 16.0

df = 20-2 = 18

These do not contradict HO : model holds,

but their use with chi-square dist. is questionable

• µ̂i not that large

• theory applies for fixed df as n ↑ (happens with con-
tingency tables)
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Note

• For GLMs one can study lack of fit using residuals
(later chapters)

• Count data often show overdispersion relative to
Poisson GLMs.

i.e., at fixed x, sample variance > mean, whereas var.
= mean in Poisson.

(often caused by subject hetrogeneity)

ex. Y = no. times attended religious services in past
year.

Suppose µ = 25. Is σ2 = 25 (σ = 5)?
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Negative binomial GLM

More flexible model for count that has

E(Y ) = µ, V ar(Y ) = µ +Dµ2

where D called a dispersion para.

As D → 0, neg. bin. → Poisson.

(Can derive as “gamma dist. mixture” of Poissons, where
the Poisson mean varies according to a gamma dist.)
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ex. GSS data “In past 12 months, how many people
have you known personally that were victims of homi-
cide?”

Y Black White
0 119 1070
1 16 60
2 12 14
3 7 4
4 3 0
5 2 0
6 0 1

Model log(µ) = α + βx

Black: ȳ = .52, s2 = 1.15

White: ȳ = .09, s2 = .16
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For Poisson or neg. bin. model,

log µ̂ = −2.38 + 1.73x

e1.73 = 5.7 = .522
.092

= ȳB
ȳW

However, SE for β̂ = 1.73 is .147 for Poisson, .238 for
neg. bin.

Wald 95% CI for eβ = µB/µW is

Poisson: e1.73±1.96(.147) = (4.2, 7.5)

Neg bin: e1.73±1.96(.238) = (3.5, 9.0)

In accounting for overdispersion, neg. bin. model has
wider CIs.

LR CIs are (e1.444, e2.019) = (4.2, 4.7) and (3.6, 9.2)
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For neg. bin. model, estimated dispersion para. D̂ =
4.94 (SE = 1.0)

ˆV ar(Y ) = µ̂ + D̂µ̂2 = µ̂ + 4.94µ̂2

strong evidence of overdispersion

When Y is a count, safest strategy is to use negative
binomial GLM, especially when dispersion para. is sig-
nificantly > 0.
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Models for Rates

When yi have different bases

(e.g., no. murders for cities with different popul. sizes)

more relevant to model rate at which events occur.

Let y = count with index t

Sample rate y
t
, E
(

Y
t

)

= µ
t
.

Loglinear model log
(

µ
t

)

= α + βx

or log(µ)− log(t) = α + βx

See text pp. 82-84 for discussion
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4. Logistic Regression

Y = 0 or 1

π = P (Y = 1)

log
[

π(x)
1−π(x)

]

= α + βx

logit[π(x)] = log
[

π(x)
1−π(x)

]

Uses “logit” link for binomial Y . Equivalently,

π(x) =
exp (α + βx)

1 + exp (α + βx)
,

where exp (α + βx) = eα+βx.

Properties

• Sign of β indicates whether π(x) ↑ or ↓ as x ↑

• If β = 0, π(x) = eα

1+eα
constant as x ↑ (π > 1

2
if α > 0)

• Curve can be approximated at fixed x by straight line
to describe rate of change.
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e.g., at x with π(x) = 1
2
, slope = β

(

1
2

) (

1
2

)

= β
4
.

at x with π(x) = 0.1 or 0.9, slope = β (0.1) (0.9) =
0.09β

Steepest slope where π(x) = 1
2.

• When π = 1
2, log

[

π
1−π
]

= log
[

0.5
0.5

]

= log(1) = 0 =
α + βx −→ x = −α

β is the x value where this happens

• 1
β ≈ distance between x values with π = 0.5 and

π = 0.75 (or 0.25).

• ML fit obtained with iterative numerical methods.
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Ex. Horseshoe crabs

Y = 1 if female crab has satellites.

Y = 0 if no satellite.

x = weight (kg) (x̄ = 2.44, s = 0.58)

n = 173

ML fit: logit[π̂(x)] = −3.69 + 1.82x

or π̂(x) = exp (−3.69+1.82x)
1+exp (−3.69+1.82x)

• β̂ > 0 so π̂ ↑ as x ↑

• At x = x̄ = 2.44,

π̂ =
exp (−3.69 + 1.82(2.44))

1 + exp (−3.69 + 1.82(2.44))
=

e0.734

1 + e0.734
=

2.08

3.08
= 0.676
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• π̂ = 1
2 when x = −α̂

β̂
= 3.69

1.82 = 2.04.

• At x = 2.04, when x ↑ 1, π̂ ↑ approx. β̂π̂(1 − π̂) =
β̂
4
= 0.45.

However, s = 0.58 for weight, and 1−unit change is too
large for this approx. to be good.
(actual π̂ = 0.86 at 3.04)

As x ↑ 0.1 kg, π̂ ↑ approx 0.1β̂π̂(1− π̂) = 0.045
(actual π̂ = 0.547).

• At x = 5.20 (max. value), π̂ = 0.997. As x ↑ 0.1,
π̂ ↑≈ 0.1(1.82)(0.997)(0.003) = 0.0006.

Rate of changes varies as x does.
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Note

• If we assume Y ∼ Normal and fitted model
µ = α + βx,

µ̂ = −0.145 + 0.323x

At x = 5.2, µ̂ = 1.53! (for estimated prob. of satellite)

• Alternative way to describe effect (not dependent on
units) is

π̂(x2)− π̂(x1)

such as π̂(UQ)− π̂(LQ)

Ex.

For x = weight, LQ = 2.00, UQ = 2.85

At x = 2.00, π̂ = 0.48; at x = 2.85, π̂ = 0.81.

π̂ increases by 0.33 over middle half of x values.
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Odds ratio interpretation

Since log
(

π
1−π
)

= α + βx, the odds

π

1− π
= eα+βx

When x ↑ 1, π
1−π = eα+β(x+1) = eβeα+βx

−→ odds multiply by eβ, which is odds at x+1
odds at x

β = 0⇐⇒ eβ = 1, odds stay constant.

Ex. β̂ = 1.82, eβ̂ = 6.1

Estimated odds of satellite multiply by 6.1 for 1 kg in-
crease in weight.

If x ↑ 0.1, e0.1β̂ = e0.182 = 1.20.

Estimated odds increase by 20%.
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Inference

CI

95% CI for β is

β̂ ± z0.025(SE) (Wald method)

1.815± 1.96(0.377), or (1.08, 2.55)

95% CI for eβ, multiplicative effect on odds of 1-unit in-
crease in x, is

(e1.08, e2.55) = (2.9, 12.8).

95% CI for e0.1β is

(e0.108, e0.255) = (1.11, 1.29).

(odds increases at least 11%, at most 29%).
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Note:

• For small n, safer to use likelihood-ratio CI than Wald
CI (can do with LRCI option in SAS GENMOD)

Ex. LR CI for eβ is

(e1.11, e2.60) = (3.0, 13.4)

• For binary observation (y = 0 or 1), SAS (PROC GEN-
MOD) can use model statement

model y = weight/dist = bin . . .

but SAS forms logit as log
[

P (Y=0)
P (Y=1)

]

instead of log
[

P (Y=1)
P (Y=0)

]

unless use “descending” option.

e.g., get logit(π̂) = 3.69− 1.82x instead of
logit(π̂) = −3.69 + 1.82x.

• Software can also construct CI for π(x)
(in SAS, PROC GENMOD or PROC LOGISTIC)

Ex. At x = 3.05 (value for 1st crab), π̂ = 0.863. 95%
CI for π is

(0.766, 0.924)
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Significance Test

H0 : β = 0 states that Y indep. of X (i.e., π(x) con-
stant)

H0 : β 6= 0

z =
β̂

SE
=

1.815

0.377
= 4.8

or Wald stat. z2 = 23.2, df = 1 (chi-squared)
P-value< 0.0001

Very strong evidence that weight has positive effect on
π.

Likelihood-ratio test

When β = 0, L0 = −112.88 (log-likelihood under null)

When β = β̂, L1 = −97.87

Test stat.
−2(L0 − L1) = 30.0

Under H0, has approx. χ
2 dist. df = 1 (P < 0.0001)

(can get using TYPE3 option in GENMOD)
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Note: Recall for a model M ,

deviance = −2(LM − Ls)

Ls means the log-likelihood under saturated (perfect fit)
model.

To compare model M0 with a more complex model M1,

LR stat . = −2(L0 − L1)

= −2(L0 − Ls)− [−2(L1 − Ls)]

= diff. of deviances

Ex. H0 : β = 0 in logit[π(x)] = α + βx (This is M1).

M0 : logit[π(x)] = α

Diff. of deviances = 225.76 − 195.74 = 30.0 = LR
statistic.
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Multiple Logistic Regression

Y binary, π = P (Y = 1)

x1, x2, . . . , xk can be quantitative, qualitative (using
dummy var’s), or both.

Model form is

logit [P (Y = 1)] = α + β1x1 + β2x2 · · · + βkxk

or, equivalently

π =
eα+β1x1+β2x2···+βkxk

1 + eα+β1x1+β2x2···+βkxk

βi = partial effect of xi, controlling for other var’s in
model.

eβi = conditional odds ratio between Y and xi (1-unit
change) keeping other predictors fixed.
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Ex. Horseshoe crab data

Sampled female has: Y = 1, at least 1 “satellite”,
Y = 0, no satellites.

Let x = weight, c = color (qualitative 4 cat’s).

c1 = 1 medium light
c1 = 0 otherwise
c2 = 1 medium
c2 = 0 otherwise
c3 = 1 medium dark
c3 = 0 otherwise

For dark crabs, c1 = c2 = c3 = 0.

CLASS COLOR statement in SAS asks SAS to set up
dummy variables (indicator) for COLOR (need 3 dum-
mies for 4 categories).
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Model:

logit [P (Y = 1)] = α + β1c1 + β2c2 + β3c3 + β4x4

has ML fit

logit (π̂) = −4.53 + 1.27c1 + 1.41c2 + 1.08c3 + 1.69x

e.g., for dark crabs, c1 = c2 = c3 = 0,

logit (π̂) = −4.53 + 1.69x

At x = x̄ = 2.44,

π̂ =
e−4.53+1.69(2.44)

1 + e−4.53+1.69(2.44)
= 0.40

For medium light crabs (c1 = 1, c2 = c3 = 0),

logit (π̂) = −4.53 + 1.27(1) + 1.69x = −3.26 + 1.69x

At x = x̄ = 2.44, π̂ = 0.70
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• At each weight, medium-light crabs are more likely
than dark crabs to have satellites.

β̂ = 1.27, e1.27 = 3.6

At a given weight, estimated odds a med-light crab has
satellite are 3.6 times estimated odds for dark crab.

e.g., at x = 2.44,

odds for med-light

odds for dark
=

0.70/0.30

0.40/0.60
= 3.6

How could you get an estimated odds radio comparing
ML to M or MD?

Compare ML (c1 = 1) to M (c2 = 1)

1.27− 1.41 = −0.14, e−0.14 = 0.9

At any given weight, estimated odds a ML crab has satel-
lite are 0.9 times estimated odds a M crab has satellite.
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Note

• Model assumes lack of interaction between color and
weight in effects on π. This implies coefficient of x =
weight is same for each color (β̂4 = 1.69).

i.e., shape of curve for effect of x on π is same for each
color.

Inference: Do we need color in model?

H0 : β1 = β2 = β3 = 0

Given weight, Y is indep. of color.
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Likelihood-ratio test statistic

−2(L0 − L1) = −2[(−97.9)− (−94.3)] = diff. of deviances

= 195.7− 188.5 = 7.2

df = 171− 168 = 3, P = 0.07

Some evidence (but not strong) of a color effect, given
weight (only 22 “dark” crabs).

Is strong evidence of weight effect (β̂ = 1.69 has SE=
0.39).

Given color, estimated odds of satellite at weight x+ 1
equal e1.69 = 5.4 times estimated odds at weight x.
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Note Other simple models also adequate.

Ex. for nominal model, color estimates

(1.27, 1.41, 1.08, 0)
↑ ↑ ↑ ↑
ML M MD D

suggest

logit [P (Y = 1)] = α + β1x1 + β2x2

where x2 = 0, dark , x2 = 1, other color.

For it, β̂2 = 1.295 (SE= 0.522)

Given weight, estimated odds of satellite for nondark
crabs = e1.295 = 3.65 times estimated odds for dark crabs.

Does model with 4 separate colors estimates fit better?

H0 : simple model (1 dummy)

Ha : more complex model (3 dummies)

Note; H0 is β1 = β2 = β3 = 0 in more complex model,

logit[P (Y = 1)] = α + β1c1 + β2c2 + β3c3 + β4x

LR stat. = diff. in deviance

= 189.17− 188.54 = 0.6 ( df = 2)
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Simple model is adequate.

How about model allowing interaction?

logit [P (Y = 1)] = α + β1c1 + β2c2 + β3c3 + β4x

+ β5c1x + β6c2x + β7c3x

Color Weight effect (coeff. of x)
dark β4 (c1 = c2 = c3 = 0)

med-light β4 + β5 (c1 = 1)
medium β4 + β6 (c2 = 1)
med-dark β4 + β7 (c3 = 1)

For H0: no interaction (β5 = β6 = β7 = 0)

LR stat.= −2(L0 − L1) = 6.88, df= 3, P-value= 0.08.

Weak evidence of interaction.
For easier interpretation, use simpler model.
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Ordinal factors

Models with dummy var’s treat color as qualitative
(nominal).

To treat as quantitative, assign scores such as (1, 2, 3, 4)
and model trend.

logit = α + β1x1 + β2x2

x1 : weight, x2 : color.

ML fit:

logit (π̂) = −2.03 + 1.65x1 − 0.51x2

SE for β̂1 is 0.38, SE for β̂2 is 0.22.

π̂ ↓ as color ↑(more dark), controlling for weight.

e−0.51 = 0.60

which is estimated odds ratio for 1-category increase in
darkness.
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Does model treating color as nominal fit better?

H0 : simpler (ordinal) model holds

Ha : more complex (nominal) model holds

LR stat. = −2(L0 − L1)

= diff. in deviances

= 190.27− 188.54 = 1.7, df = 2

Do not reject H0.

Simpler model is adequate.

105



Qualitative predictors

Ex. FL death penalty revisited

Victims’ Defendant’s Death Penalty
race race Yes No n
B B 4 139 143

W 0 16 16
W B 11 37 48

W 53 414 467

π = P (Y = yes )

v = 1 victims black
0 victims white

d= 1 defendant black
0 defendant white

Model
logit (π) = α + β1d + β2v

has ML fit

logit (π̂) = −2.06 + 0.87d− 2.40v

e.g., controlling for victim’s race, estimated odds of
death penalty for black def’s equal e0.87 = 2.38 times
estimated odds for white def’s

95% CI is:

e0.87±1.96(0.367) = (1.16, 4.89)
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Note
• Lack of interaction term means estimated odds ratio
between Y and

d same at each level of v (e0.87 = 2.38)

v same at each level of d (e−2.40 = 0.09)

(e2.40 =
1

0.09
) = 11.1

i.e., cont. for d, est. odds of death pen. when v = white
were 11.1 times est. odds when v = black.

(homogeneous association) means same odds ratio at
each level of other var.

• H0 : β1 = 0 (Y conditional indep. of d given v)

Ha : β1 6= 0

z =
β̂1
SE

=
0.868

0.367
= 2.36

or Wald stat. z2 = 5.59, df = 1, P = 0.018.

Evidence that death penalty more likely for black def’s,
controlling for v.
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Likelihood-ratio test
Test of H0 : β1 = 0. Compares models

H0 : logit (π) = α + β2v

Ha : logit (π) = α + β1d + β2v

LR stat. = −2(L0 − L1)

= 2(211.99− 209.48) = 5.0

= diff. of deviances

= 5.39− 0.38 = 5.01, df = 1 (P = 0.025)

Exercise

• Conduct Wald, LR, test of H0 : β2 = 0

• Get point and interval estimate of odds ratio for effect
of victim’s race, controlling for d.

what if v = 1 is white, v = 0 is black?
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Note

• A common application for logistic regression having
multiple 2× 2 tables is multi-center clinical trials.

Center Treatment Response
S F

1 1
2

2 1
2

... ... ...
K 1

2

logit [P (Y = 1)] = α+β1c1+β2c2+· · ·+βK−1cK−1+βx

Assumes odds ratio = eβ in each table.
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A model like this with several dummy var’s for a factor
is often expressed as

logit [P (Y = 1)] = α + βc
i + βx

βc
i is effect for center i (relative to last center).

To testH0 : β = 0 about treatment effect for several 2×2
tables, could use

• likelihood-ratio test

• Wald test

• Cochran-Mantel-Haenszel test (p. 114)

• Small-sample generalization of Fisher’s exact test (pp.
158–159)

110



Ex. Exercise 4.19

Y = support current abortion laws(1 = yes, 0 = no).

logit [P (Y = 1)] = α + βG
h + βR

i + βP
j + βx,

where βG
h is for gender, βR

i is for religion, and βP
j is for

party affil.

For religion (Protestant, Catholic, Jewish)

β̂R
1 = −0.57, β̂R

2 = −0.66, β̂R
3 = 0.0

βR
i represents terms

β̂R
1 r1 + β̂R

2 r2 = −0.57r1 − 0.66r2,

where r1 = 1, Prot.; r1 = 0, other, and r2 = 1, Cath.;
r2 = 0, other.
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Chapter 5: Building Logistic Regression Models

• Model selection

• Model checking

• Be careful with “sparse” categorical data
(infinite estimates possible).

Model Selection with Many Predictors

Ex. Horseshoe crab study

Y = whether female crab has satellites
(1 = yes, 0 = no).

Explanatory variables

•Weight

•Width

• Color(ML, M, MD, D), dummy var’s c1, c2, c3.

• Spine condition (3 categories), dummy var’s s1, s2.
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Consider model for crabs:

logit[P (Y = 1)] = α + β1c1 + β2c2 + β3c3
+ β4s1 + β5s2 + β6(weight) + β7(width)

LR test of H0 : β1 = β2 = · · · = β7 = 0 has test stat.

−2(L0 − L1) = difference of deviances

= 225.8− 185.2 = 40.6

df = 7 (P < 0.0001)

Strong evidence at least one predictor has an effect.

But,. . . , look at Wald tests of individual effects!
(e.g., weight)

Multicollinearity (strong correlations among predictors)
also plays havoc with GLMs.

e.g. corr(weight, width)=0.89

Partial effect of either relevant? Sufficient to pick one
of these for a model.
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Ex. Using backward elimination

• Use W = width, C = color, S = spline as predictors.

• Start with complex model, including all interactions.

• Drop “least significant”(e.g., largest P-value) variable
among highest-order terms.

• Refit model

• Continue until all variables left are significant.

Note: If testing many interactions, simpler and perhaps
better to test at one time as a group of terms.
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Ex. H0 : Model C + S +W has 3 parameters for C, 2
parameters for S, 1 parameter for W .

Ha : Model

C ∗ S ∗W = C + S +W + C × S

+ C ×W + S ×W + C × S ×W

LR stat. = diff. in deviances

= 186.6− 170.4 = 16.2

df = 166− 152 = 14 (P = 0.30)

Simpler model C + S +W is adequate.

At next stage, S can be dropped from model C+S+W .

diff. in deviances = 187.5− 186.6 = 0.9, df = 2.
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Results in model fit (see text for details)

logit(π̂) = −12.7 + 1.3c1 + 1.4c2 + 1.1c3 + 0.47(width)

Setting β1 = β2 = β3 gives

logit(π̂) = −13.0 + 1.3c + 0.48(width)

where c = 1, ML, M, MD; c = 0, D.

Conclude
• Given width, estimated odds of satellite for nondark

crabs equal e1.3 = 3.7 times est. odds for dark crabs.

95% CI: e1.3±1.96(0.525) = (1.3, 10.3)
(wide CI reflects small number of dark crabs in sample)

• Given color, estimated odds of satellite multiplied by
e0.48±1.96(0.104) = (1.3, 2.0) for each 1 cm increase in width.
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Criteria for selecting a model

• Use theory, other research as guide.

• Parsimony (simplicity) is good.

• Can use some criterion to choose among set of models.
Most popular criterion is Akaike information criterion
(AIC) :
Chooses model with minimum

AIC = −2(L− no. model parameters)

where L = log likelihood.

• For exploratory purpose, can use automated proce-
dure such as backward elimination.

• Ideally should have ≥ 10 outcomes of each type per
predictor.

Ex. n = 1000, (Y = 1) 30 times, (Y = 0) 970 times.
Model should contain ≤ 3 predictors.

Ex. n = 173 horseshoe crabs. (Y = 1): 111 crabs;
(Y = 0): 62 crabs. Use ≤ 6 predictors.
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Note
• Some software (e.g. PROC LOGISTIC in SAS) has

options for stepwise selection procedures.

• Can further check fit with residuals for grouped data,
influence measures, cross validation.

•To summarize predictive power, can use correlation(Y, π̂).

Predictors Correlation
color 0.28
width 0.40

color+width 0.452
color=dark+width 0.447

Another summary: Classification table

Predict Ŷ = 1 if π̂ > 0.50 and Ŷ = 0 if π̂ < 0.50

Prediction

Actual Ŷ = 1 Ŷ = 0
Y = 1 94 17 111
Y = 0 34 28 62

Sensitivity=P(Ŷ = 1|Y = 1) = 94
94+17

= 0.85

Specificity=P(Ŷ = 0|Y = 0) = 28
28+34

= 0.45
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SAS: Get with CTABLE option in PROC LOGISTIC,
for various “cutpoints”.

SPSS: Get with BINARY LOGISTIC choice on RE-
GRESSION menu.

Model checking

Is the chosen model adequate?

• Goodness of fit test
But, tests using deviance G2, X2 limited to “nonsparse”
contingency tables.

• Check whether fit improves by adding other predic-
tors, interactions between predictors.

LR stat. = change in deviance is useful for comparing
models even when G2 not valid as overall test of fit.
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EX. Florida death penalty data

Victim Defendant Death penalty (Y )
Race Race Yes No n
B B 4 139 143

W 0 16 16
W B 11 37 48

W 53 414 467

π = P (Y = yes)

Goodness of fit

For model fit with d = 1 (black def.) or 1 (white def.)
and v = 1 (black vic.) and v = 0 (white vic.),

logit (π̂) = −2.06 + 0.87d− 2.40v,

π̂ =
e−2.06+0.87d−2.40v

1 + e−2.06+0.87d−2.40v

e.g., for 467 cases with white def., victim, d = v = 0,

π̂ = e−2.06
1+e−2.06 = 0.113.

Fitted count “Yes”= 467(0.113) = 52.8
Fitted count “No”= 467(0.887) = 414.2
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Observed counts = 53 and 414

Summarizing fit over 8 cells,

X2 =
∑ ( obs − fit )2

fit
= 0.20

G2 = 2
∑

obs log
obs

fit
= 0.38

= deviance for model

df = 4− 3 = 1

4 = no. binomial observ’s, 3 = no. model parameters.

For G2 = 0.38, P= 0.54 for H0 : model holds
(no evidence of lack of fit).

Note

• Model assumes lack of interaction between d and v in
effects on Y , so goodness of fit test in this example is a
test of H0: no interaction.

• For continuous predictors or many predictors with
small µ̂i, X

2 and G2 are not approx. χ2. For better
approx., can group data before applying X2, G2.
Hosmer-Lemeshow test groups using ranges of π̂ values
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(available in PROC LOGISTIC ).

Or, can try to group predictor values (if only 1 or 2
predictors).

Residuals for Logistic Regression

At setting i of explanatory var’s, let

yi = no. successes

ni = no. trials (preferably “large”)

π̂ = estimated prob. of success,

based on ML model fit

For a binomial GLM, Pearson residuals are

ei =
yi − niπ̂i

√

niπ̂i(1− π̂i)

(X2 =
∑

i

e2i )

ei (called Reschi in SAS GENMOD) is approx. N(0, v),
when model holds, but v < 1.

Standardized Pearson residual (adjusted residual in some
books, SPSS)

ri =
yi − niπ̂i

SE
=

ei√
1− hi
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where hi is called “leverage” (ri labelled StReschi in SAS).

ri is approx. N(0, 1) when model holds.

|ri| > 2 or 3 (approx.) suggests lack of fit.

EX. Y = admitted into graduate school at Berkeley
(1=yes, 0=no). Data on p. 237 of text.

G =gender (g = 0 female, g = 1 male).

D = department (A, B, C, D, E, F).

d1 = 1, dept. A; d1 = 0, otherwise

· · · · · ·

d5 = 1, dept. E; d5 = 0, otherwise

For department F, d1 = d2 = · · · = d5 = 0.
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• Model

logit [P (Y = 1)] = α + β1d1 + · · · + β5d5 + β6g

seems to fit poorly (deviance G2 = 20.2, df=5, P=0.01)

• Simpler models fit poorly. e.g., model with β6 = 0
assumes Y indep. of G, controlling for D, has

G2 = 21.7, df = 6, P = 0.001

Apparently, there is a gender × dept. interaction.

Residual analysis indicates lack of fit only for dept. A
(Standardized Pearson residual= ±4.15 in model 2).

In other depts., model with no gender effect is adequate.

Note • In dept. A, θ̂ = 0.35 (odds of admission lower
for males)

• Alternative way to express model with qualitative fac-
tor is

logit = [P (Y = 1)] = α + βX
i + βZ

k ,

where βX
i is effect of classification in category i of X .

124



• In SPSS (version 16.0)

Analyze
↓

Generalized linear models
ւ ց

Statistics Save
↓ ↓

Can choose Can choose
• Likelihood-ratio χ2 stat. • Predicted value of mean
• Profile likelihood CI • CI for mean (π)

• Standardized Pearson residual

Analyze
↓

Generalized linear models
ւ ↓ ց

Type of model Predictors Response
• Binary logistic Predictors •Factors(qualitative dummy var.) • Dep. var Y

• Covariates(quantitative) • Binary, or
identify “trials variable” n
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Sparse data

Caution: Parameter estimates in logistic re-
gression can be infinite.

Ex.

S F
1 8 2
0 10 0

Model

log

[

P (S)

P (F )

]

= α + βx

eβ̂ = odds ratio = 8×0
2×10 = 0

β̂ = log odds ratio = −∞.

Ex. Text p.155 for multi-center clinical trial (5
centers, each with 2× 2 table)
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Ex. y = 0 for x < 50 and y = 1 for x > 50.

logit[P (Y = 1)] = α + βx

has β̂ =∞. Software may not realize this!

PROC GENMOD
β̂ = 3.84, SE= 15601054.

PROC LOGISTIC gives warning

SPSS
β̂ = 1.83, SE= 674.8.

Infinite estimates exists when can separate x-
values where y = 1 from x-values where y = 0
(perfect discrimination).
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Ch 6: Multicategory Logit Models

Y has J categories, J > 2.

Extensions of logistic regression for nominal and ordinal
Y assume a multinomial distribution for Y .

Model for Nominal Responses

Let πj = P (Y = j), j = 1, 2, . . . , J

Baseline-category logits are

log

(

πj
πJ

)

, j = 1, 2, . . . , J − 1.

Baseline-category logit model has form

log

(

πj
πJ

)

= αj + βjx, j = 1, 2, . . . , J − 1.

i.e., separate set of parameters (αj, βj) occurs for each
logit (for each predictor).
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Note:

• Which category we use as the baseline category (i.e.,
cat. J) is arbitrary (For nominal variables, the order of
the categories is arbitrary).

• exp(β̂j) is the multiplicative impact of a 1-unit increase
in x on the odds of making response j instead of response
J .

• Can use model with ordinal response variables also,
but then you ignore information about ordering.
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Ex. Income and job satisfaction (1991 GSS data)

INCOME JOB SATISFACTION
($ 1000) Very Little Moderate Very

dissatisfied dissatisfied satisfied satisfied
< 5 2 4 13 3
5-15 2 6 22 4
15-25 0 1 15 8
> 25 0 3 13 8

Using x =income scores (3, 10, 20, 30), we use SAS (PROC
LOGISTIC) to fit model

log

(

πj
π4

)

= αj + βjx, j = 1, 2, 3,

for J = 4 job satisfaction categories

SPSS: fit using MULTINOMIAL LOGISTIC suboption
under REGRESSION option in ANALYZE menu

Prediction equations

log

(

π̂1
π̂4

)

= 0.56− 0.20x

log

(

π̂2
π̂4

)

= 0.65− 0.07x

log

(

π̂3
π̂4

)

= 1.82− 0.05x
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Note

• For each logit, odds of being in less satisfied category
(instead of very satisfied) decrease as x = income ↑.

• The estimated odds of being “very dissatisfied” instead
of “very satisfied” multiplies by e−0.20 = 0.82 for each 1
thousand dollar increase in income.

For a 10 thousand dollar increase in income, (e.g., from
row 2 to row 3 or from row 3 to row 4 of table), the esti-
mated odds multiply by

e10(−0.20) = e−2.0 = 0.14.

e.g, at at x = 30, the estimated odds of being “very
dissatisfied” instead of “very satisfied” are just 0.14 times
the corresponding odds at x = 20.

• Model treats income as quantitative, Y = job satisfac-
tion as qualitative (nominal), but Y is ordinal. (We later
consider a model that treats job satisfaction as ordinal.)
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Estimating response probabilities

Equivalent form of model is

πj =
eαj+βjx

1 + eα1+β1x + · · · + eαJ−1+βJ−1x
, j = 1, 2, . . . , J−1

πJ =
1

1 + eα1+β1x + · · · + eαJ−1+βJ−1x

Then,
πj
πJ

= eαj+βjx

log

(

πj
πJ

)

= αj + βjx

Note
∑

πj = 1.
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Ex. Job satisfaction data

π̂1 =
e0.56−0.20x

1 + e0.56−0.20x + e0.65−0.07x + e1.82−0.05x

π̂2 =
e0.65−0.07x

1 + e0.56−0.20x + e0.65−0.07x + e1.82−0.05x

π̂3 =
e1.82−0.05x

1 + e0.56−0.20x + e0.65−0.07x + e1.82−0.05x

π̂4 =
1

1 + e0.56−0.2x + e0.65−0.07x + e1.82−0.05x

e.g. at x = 30, estimated prob. of “very satisfied” is

π̂4 =
1

1 + e0.56−0.20x + e0.65−0.07x + e1.82−0.05x
= 0.365.

Likewise, π̂1 = 0.002, π̂2 = 0.084, π̂3 = 0.550

π̂1 + π̂2 + π̂3 + π̂4 = 1.0
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• ML estimates determine effects for all pairs of cate-
gories, e.g.

log

(

π̂1
π̂2

)

= log

(

π̂1
π̂4

)

− log

(

π̂2
π̂4

)

= (0.564− 0.199x)− (0.645− 0.070x)

= −0.081− 0.129x

• Contingency table data, so can test goodness of fit

The deviance is the LR test statistic for testing that all
parameters not in model = 0.

Deviance = G2 = 4.18, df = 6, P -value = 0.65 for H0 :
Model holds with linear trends for income

(Also, Pearson X2 = 3.6, df = 6, P = 0.73 for same
hypothesis)

Model has 12 logits (3 at each of 4 income levels), 6 pa-
rameters, so df = 12− 6 = 6 for testing fit.
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Note: Inference uses usual methods

• Wald CI for βj is β̂j ± z(SE)

• Wald test of H0 : βj = 0 uses z = (β̂j/SE) or
z2 ∼ χ2

1

• For small n, better to use LR test, LR CI

Ex. Overall “global” test of income effect

H0 : β1 = β2 = β3 = 0

SAS reports Wald statistic = 7.03, df = 3, P= 0.07

Weak evidence, but ignores ordering of satisfaction cate-
gories.

(With many parameters, Wald stat. = quadratic form

β̂′[Cov(β̂)]−1β̂)

Can get LR statistic by comparing deviance with simpler
“independence model”

LR stat. = 9.29, df = 3, P = 0.03.
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Model for Ordinal Responses

The cumulative probabilities are

P (Y ≤ j) = π1 + . . . + πj, j = 1, 2, . . . , J.

Cumulative logits are

logit [P (Y ≤ j)] = log

[

P (Y ≤ j)

1− P (Y ≤ j)

]

= log

[

P (Y ≤ j)

P (Y > j)

]

= log

[

π1 + . . . + πj
πj+1 + . . . + πJ

]

for
j = 1, 2, . . . , J − 1

Cumulative logit model has form

logit [P (Y ≤ j)] = αj + βx

• separate intercept αj for each cumulative logit

• same slope β for each cumulative logit
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Note

• eβ = multiplicative effect of 1-unit change in x on
odds that (Y ≤ j) (instead of (Y > j))

•
odds of (Y ≤ j) at x2
odds of (Y ≤ j) at x1

= eβ(x2−x1)

= eβ when x2 = x1 + 1

Also called proportional odds model.

Software notes

• SAS: ML fit with PROC LOGISTIC,
PROC GENMOD (dist=mult, link=clogit)

PROC LOGISTIC default for dummy variable is 1 in
category, -1 if in last category, 0 otherwise.

To use usual form of 1 in category, 0 otherwise, use
param = ref option, e.g.,

CLASS race gender / param = ref ;
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• SPSS:

ANALYZE−→ REGRESSION −→ ORDINAL to get
cumulative logit model but estimates β̂ have opposite sign
as in SAS (as in modeling log[P (Y > j)/P (Y ≤ j)])

Ex. Job satisfaction and income

logit [P̂ (Y ≤ j)] = α̂j+ β̂x = α̂j− 0.056x, j = 1, 2, 3

Odds of response at low end of job satisfaction scale ↓ as
x = income ↑

eβ̂ = e−0.056 = 0.95

Estimated odds of satisfaction below any given level (in-
stead of above it) multiplies by 0.95 for 1-unit increase in
x (but, x = 3, 10, 20, 30 )

For $10, 000 increase in income, estimated odds multiply
by

e10β̂ = e10(−0.056) = 0.57

e.g., estimated odds of satisfaction being below (instead
of above) some level at $30, 000 income equal 0.57 times
the odds at $20, 000.
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Note

• If reverse order, β̂ changes sign but has same SE.

Ex. Category 1 = Very satisfied, 2 =Moderately satisfied,
3 = little dissatisfied, 4 = Very dissatisfied

β̂ = 0.056, eβ̂ = 1.06 = 1/0.95

(Response more likely at “very satisfied” end of scale as
x ↑)

• H0 : β = 0 (job satisfaction indep. of income) has

Wald stat. =

(

β̂ − 0

SE

)2

=

(−0.056
0.021

)2

= 7.17

(df = 1, P = 0.007)

LR statistic = 7.51 (df = 1, P = 0.006)
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These tests give stronger evidence of association than if
treat:

• Y as nominal (BCL model),

log

(

πj
π4

)

= αj + βjx

(Recall P = 0.07 for Wald test of H0 : β1 = β2 = β3 = 0)

• X, Y as nominal

Pearson test of indep. has X2 = 11.5, df = 9, P = 0.24
(analogous to testing all βj = 0 in BCL model with
dummy predictors).

With BCL or cumulative logit models, can have quanti-
tative and qualitative predictors, interaction terms, etc.
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Ex. Y = political ideology (GSS data)
(1= very liberal, . . . , 5 = very conservative)

x1 = gender (1 = F, 0 = M)

x2 = political party (1 = Democrat, 0 = Republican)

ML fit

logit [P̂ (Y ≤ j)] = α̂j + 0.117x1 + 0.964x2

For β̂1 = 0.117, SE = 0.127
For β̂2 = 0.964, SE = 0.130

For each gender, estimated odds a Democrat’s response is
in liberal rather than conservative direction (i.e., Y ≤ j
rather than Y > j ) are e0.964 = 2.62 times estimated
odds for Republican’s response.

• 95% CI for true odds ratio is

e0.964±1.96(0.130) = (2.0, 3.4)

• LR test of H0 : β2 = 0 (no party effect, given gender)
has test stat. = 56.8, df = 1 (P < 0.0001)

Very strong evidence that Democrats tend to be more
liberal that Republicans (for each gender)
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Not much evidence of gender effect (for each party)

But, is there interaction?

ML fit of model permitting interaction is

logit [P̂ (Y ≤ j)] = α̂j + 0.366x1 + 1.265x2− 0.509x1x2

For H0 : β3 = 0, LR stat. = 3.99, df = 1 (P = 0.046)

Estimated odds ratio for party effect (x2) is

e1.265 = 3.5 when x1 = 0 (M)

e1.265−0.509 = 2.2 when x1 = 1 (F)

Estimated odds ratio for gender effect (x1) is

e0.366 = 1.4 when x2 = 0 (Republican)

e0.366−0.509 = 0.9 when x2 = 1 (Democrat)

i.e., for Republicans, females (x1 = 1) tend to be more
liberal that males.
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Find P̂ (Y = 1) (very liberal) for male Republicans, fe-
male Republicans.

P̂ (Y ≤ j) =
eα̂j+0.366x1+1.265x2−0.509x1x2

1 + eα̂j+0.366x1+1.265x2−0.509x1x2

For j = 1, α̂1 = −2.674

Male Republicans (x1 = 0, x2 = 0)

P̂ (Y = 1) =
e−2.674

1 + e−2.674
= 0.064

Female Republicans (x1 = 1, x2 = 0)

P̂ (Y = 1) =
e−2.674+0.366

1 + e−2.674+0.366
= 0.090

(weak gender effect for Republicans, likewise for Democrats
but in opposite direction)

Similarly, P̂ (Y = 2) = P̂ (Y ≤ 2)− P̂ (Y ≤ 1), etc.

Note P (Y = 5) = P (Y ≤ 5)− P (Y ≤ 4) =
1− P (Y ≤ 4) (use α̂4 = 0.879)
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Note

• If reverse order of response categories

(very lib., slight lib., moderate, slight cons., very cons.)−→

(very cons., slight cons., moderate, slight lib., very liberal)

estimates change sign, odds ratio −→ 1/(odds ratio)

• For ordinal response, other orders not sensible.

Ex. categories (liberal, moderate, conservative)

Enter into SAS as 1, 2, 3

or PROC GENMOD ORDER=DATA;

or else SAS will alphabetize as
(conservative, liberal, moderate)
and treat that as ordering for the cumulative logits
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Ch 8: Models for Matched Pairs

Ex. Crossover study to compare drug with placebo.

86 subjects randomly assigned to receive drug then placebo
or else placebo then drug.
Binary response (S, F) for each

Treatment S F Total
Drug 61 25 86

Placebo 22 64 86

Methods so far (e.g., X2, G2 test of indep., CI for θ, lo-
gistic regression) assume independent samples, they are
inappropriate for dependent samples (e.g., same subjects
in each sample, which yield matched pairs).

To reflect dependence, display data as 86 observations
rather than 2× 86 observations.

Placebo
S F

S 12 49 61
Drug

F 10 15 25
22 64 86
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Population probabilities

S F
S π11 π12 π1+
F π21 π22 π2+

π+1 π+2 1.0

Compare dependent samples by making inference about
π1+ − π+1.

There is marginal homogeneity if π1+ = π+1.

Note:

π1+ − π+1 = (π11 + π12)− (π11 − π21)

= π12 − π21

So, π1+ = π+1⇐⇒ π12 = π21 (symmetry)

Under H0 : marginal homogeneity,

π12
π12 + π21

=
1

2

Each of n∗ = n12 + n21 observations has probability
1
2
of

contributing to n12,
1
2 of contributing to n21.

n12 ∼ bin(n∗, 1
2
), mean = n∗

2
, std. dev. =

√

n∗(1
2
)(1

2
).

146



By normal approximation to binomial, for large n∗

z =
n12 − n∗/2
√

n∗(1
2
)(1

2
)
∼ N(0, 1)

=
n12 − n21√
n12 + n21

Or,

z2 =
(n12 − n21)

2

n12 + n21
∼ χ2

1

called McNemar’s test

Ex.

Placebo
S F

S 12 49 61 (71%)
Drug

F 10 15
22 86
(26%)

z =
n12 − n21√
n12 + n21

=
49− 10√
49 + 10

= 5.1

P < 0.0001 for H0 : π1+ = π+1 vs Ha : π1+ 6= π+1

Extremely strong evidence that probability of success is
higher for drug than placebo.
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CI for π1+ − π+1

Estimate π1+ − π+1 by p1+ − p+1, difference of sample
proportions.

V ar(p1+−p+1) = V ar(p1+)+V ar(p+1)−2Cov(p1+, p+1)

SE =

√

V̂ ar(p1+ − p+1)

n11 n12

n21 n22

n

12 49
10 15

86

p1+ − p+1 =
n11 + n12

n
− n11 + n21

n

=
n12 − n21

n
=

49− 10

86
= 0.453
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The standard error of p1+ − p+1 is

1

n

√

(n12 + n21)−
(n12 − n21)2

n

For the example, this is

1

86

√

(49 + 10)− (49− 10)2

86
= 0.075

95% CI is 0.453± 1.96(0.075) = (0.31, 0.60).

Conclude we’re 95% confident that probability of success
is between 0.31 and 0.60 higher for drug than for placebo.
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Measuring agreement (Section 8.5.5)

Ex. Movie reviews by Siskel and Ebert

Ebert
Con Mixed Pro

Con 24 8 13 45
Siskel Mixed 8 13 11 32

Pro 10 9 64 83
42 30 88 160

How strong is their agreement?

Let πij = P (S = i, E = j)

P (agreement) = π11 + π22 + π33 =
∑

πii

= 1 if perfect agreement

If ratings are independent, πii = πi+π+i

P ( agreement ) =
∑

πii =
∑

πi+π+i

Kappa κ =

∑

πii −
∑

πi+π+i

1−∑πi+π+i

=
P (agree)− P (agree|independent)

1− P (agree|independent)
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Note

•κ = 0 if agreement only equals that expected under
independence.

•κ = 1 if perfect agreement.

•Denominator = maximum difference for numerator, if
perfect agreement.

Ex.

∑

π̂ii =
24 + 13 + 64

160
= 0.63

∑

π̂i+π̂+i =

(

45

160

)(

42

160

)

+· · ·+
(

83

160

)(

88

160

)

= 0.40

κ̂ =
0.63− 0.40

1− 0.40
= 0.389

The strength of agreement is only moderate.
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•95% CI for κ: 0.389± 1.96(0.06) = (0.27, 0.51).

•For H0 : κ = 0,

z =
κ̂

SE
=

0.389

0.06
= 6.5

There is extremely strong evidence that agreement is bet-
ter than “chance”.

•In SPSS,

Analyze → Descriptive statistics → Crosstabs

Click statistics, check Kappa
(McNemar also is an option).

If enter data as contingency table (e.g. one column called
“count”)
Data → Weight cases by count
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Ch 9: Models for Correlated, Clustered Re-
sponses

Usual models apply (e.g., logistic regr. for binary var.,
cumulative logit for ordinal) but model fitting must ac-
count for dependence (e.g., from repeated measures on
subjects).

Generalized Estimating Equation (GEE) approach to repeated measures

•Specify model in usual way.

•Select a “working correlation” matrix for best guess
about correlation pattern between pairs of observations.

Ex. For T repeated responses, exchangeable correlation
is

Time
1 2 · · · T

1 1 ρ · · · ρ
Time 2 ρ 1 · · · ρ

...
T ρ ρ · · · 1

•Fitting method gives estimates that are good even if
misspecify correlation structure.
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•Fitting method uses empirical dependence to adjust
standard errors to reflect actual observed dependence.

•Available in SAS (PROCGENMOD) using REPEATED
statement, identifying by

SUBJECT = var

the variable name identifying sampling units on which re-
peated measurements occur.

•In SPSS, Analyze→ generalized linear models→ gen-
eralized estimating equations
Menu to identify subject variable, working correlation
matrix

Ex. Crossover study

Placebo
S F

S 12 49 61
Drug

F 10 15 25
22 64 86

Model

logit[P (Yt = 1)] = α+βt, t = 1, drug , t = 0, placebo

GEE fit

logit[P̂ (Yt = 1)] = −1.07 + 1.96t
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Estimated odds of S with drug equal e1.96 = 7.1 times
estimated odds with placebo. 95% CI for odds ratio (for
marginal probabilities) is

e1.96±1.96(0.377) = (3.4, 14.9)

Note

•Sample marginal odds ratio

=
61× 64

25× 22
= 7.1 (log θ̂ = 1.96)

(model is saturated)

S F
D 61 25
P 22 64

•With GEE approach, can have also “between-subject”
explanatory var’s, such as gender, order of treatments,
etc.

•With identity link,

P̂ (Yt = 1) = 0.26 + 0.45t

i.e., 0.26 = 22
86

= estimated prob. of success for placebo.
0.26 + 0.45 = 0.71 = 61

86 = est. prob. of success for drug.

β̂ = 0.45 = 0.71 − 0.26 = estimated difference of pro-
portions.
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95% CI: 0.45±1.96(0.075) = (0.307, 0.600) for true diff.

Note
GEE is a “quasi-likelihood” method

•Assumes dist. (e.g. binomial) for Y1, for Y2, · · · , for
YT , (marginal dist.’s)

•No dist. assumed for joint dist. of (Y1, Y2, · · · , YT ).

•No likelihood function

No LR inference (LR test, LR CI)

•For responses (Y1, Y2, · · · , YT ) at T times, we con-
sider marginal model that describes each Yt in terms of
explanatory var’s.

•Alternative conditional model puts terms in model for
subjects, effects apply conditional on subject. e.g.

logit[P (Yit = 1) = αi + βt]

{αi} (effect for subject i) commonly treated as “random
effects” having a normal dist. (Ch 10)
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Ex y = response on mental depression (1= normal, 0=
abnormal)
three times (1,2,4 weeks)
two drug treatments (standard, new)
two severity of initial diagnosis groups (mild, severe)

Is the rate of improvement better with the new drug?

The data are a 2 × 2 × 2 = 23 table for profile of re-
ponses on (Y1, Y2, Y3) at each of 4 combinations of drug
and diagnosis severity.

Response at Three Times
Diag Drug nnn nna nan naa ann ana aan aaa
Mild Stan 16 13 9 3 14 4 15 6
Mild New 31 0 6 0 22 2 9 0
Sev Stan 2 2 8 9 9 15 27 28
Sev New 7 2 5 2 31 5 32 6

Sample Proportion Normal
Diagnosis Drug Week 1 Week 2 Week 4
Mild Standard 0.51 0.59 0.68

New 0.53 0.79 0.97

Severe Standard 0.21 0.28 0.46
New 0.18 0.50 0.83

e.g., 0.51 = (16+13+9+3)/(16+13+9+3+14+4+15+6)
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Let Yt = response of randomly selected subject at time t,
(1 = normal, 0 = abnormal)

s = severity of initial diagnosis (1 = severe, 0 = mild)

d = drug treatment (1 = new, 0 = standard)

t = time (0, 1, 2), which is log2( week number ).

Model

log

[

P (Yt = 1)

P (Yt = 0)

]

= α + β1s + β2d + β3t

assumes same rate of change β3 over time for each (s, d)
combination.

Unrealistic?
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More realistic model

log

[

P (Yt = 1)

P (Yt = 0)

]

= α + β1s + β2d + β3t + β4(d× t)

permits time effect to differ by drug

d = 0 (standard), time effect = β3 for standard drug,

d = 1 (new) time effect =β3 + β4 for new drug.

GEE estimates

β̂1 = -1.31 s

β̂2 = -0.06 d

β̂3 = 0.48 t

β̂4 = 1.02 d× t

Test of H0 : no interaction (β4 = 0) has

z =
β̂4
SE

=
1.02

0.188
= 5.4

Wald stat. z2 = 29.0 (P<0.0001)

Very strong evidence of faster improvement for new drug.

Could also add s× d, s× t interactions, but they are not
significant.
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•When diagnosis= severe, estimated odds of normal re-
sponse are e−1.31 = 0.27 times estimated odds when di-
agnosis = mild, at each d× t combination.

•β̂2 = −0.06 is drug effect only at t = 0, e−0.06 =
0.94 ≈ 1.0, so essentially no drug effect at t = 0 (after 1
week). Drug effect at end of study (t = 2) estimated to

be eβ̂2+2(β̂4) = 7.2.

•Estimated time effects are

β̂3 = 0.48, standard treatment (d = 0)

β̂3 + β̂3 = 1.50, new treatment (d = 1)
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Cumulative Logit Modeling of Repeated Or-
dinal Responses

For multicategory responses, recall popular logit models
use logits of cumulative probabilities (ordinal response)

log[P (Y ≤ j)/P (Y > j)] cumulative logits

or logits comparing each probability to a baseline (nomi-
nal response)

log[P (Y = j)/P (Y = I)] baseline-category logits

GEE for cumulative logit models presented by Lipsitz et
al. (1994)

SAS (PROC GENMOD) provides with independence
working correlations
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Ex. Data from randomized, double-blind clinical trial
comparing hypnotic drug with placebo in patients with
insomnia problems

Time to Falling Asleep
Initial Follow-up

Treatment <20 20–30 30–60 >60
Active <20 7 4 1 0

20–30 11 5 2 2
30–60 13 23 3 1
>60 9 17 13 8

Placebo <20 7 4 2 1
20–30 14 5 1 0
30–60 6 9 18 2
>60 4 11 14 22

Sample marginal distributions

Response
Treatment occasion <20 20–30 30–60 >60
Active Initial 0.1 0.17 0.34 0.39

Follow-up 0.34 0.41 0.16 0.09

Placebo Initial 0.12 0.17 0.29 0.42
Follow-up 0.26 0.24 0.29 0.21
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Ex.

0.10 =
7 + 4 + 1 + 0

7 + 4 + 1 + 0 + · · · + 9 + 17 + 13 + 8

0.34 =
7 + 11 + 13 + 9

7 + 4 + 1 + 0 + · · · + 9 + 17 + 13 + 8
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data francom;

input case treat occasion outcome;

datalines;

1 1 0 1

1 1 1 1

2 1 0 1

2 1 1 1

3 1 0 1

3 1 1 1

4 1 0 1

4 1 1 1

5 1 0 1

5 1 1 1

6 1 0 1

6 1 1 1

7 1 0 1

7 1 1 1

8 1 0 1

8 1 1 2

9 1 0 1

9 1 1 2

10 1 0 1

10 1 1 2

239 0 0 4

239 0 1 4

;

proc genmod data=insomnia;

class case;

model outcome = treat occasion treat*occasion /

dist=multinomial link=cumlogit ;

repeated subject=case / type=indep corrw;

run;

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence

Parameter Estimate Error Limits Z Pr > |Z|

Intercept1 -2.2671 0.2188 -2.6959 -1.8383 -10.36 <.0001

Intercept2 -0.9515 0.1809 -1.3061 -0.5969 -5.26 <.0001

Intercept3 0.3517 0.1784 0.0020 0.7014 1.97 0.0487

treat 0.0336 0.2384 -0.4337 0.5009 0.14 0.8879

occasion 1.0381 0.1676 0.7096 1.3665 6.19 <.0001

treat*occasion 0.7078 0.2435 0.2305 1.1850 2.91 0.0037
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Yt = time to fall asleep
x = treatment (0 = placebo, 1 = active)
t = occasion (0 = initial, 1 = follow-up after 2 weeks)

Model

logit[P (Yt ≤ j)] = αj+β1t+β2x+β3(t×x), j = 1, 2, 3

GEE estimates:
β̂1 = 1.04 (SE = 0.17), placebo occasion effect

β̂2 = 0.03 (SE = 0.24), treatment effect initially

β̂3 = 0.71 (SE = 0.24), interaction

Considerable evidence that distribution of time to fall
asleep decreased more for treatment than placebo group.

H0 : β3 = 0 has z = β̂3
SE = 0.71

0.24 = 2.9, P = 0.004

The treatment effect is β̂2 = 0.03 at t = 0

β̂2 + β̂3 = 0.03 + 0.71 = 0.74 at t = 1

For the active group, the odds of response≤ j (e.g. falling
asleep in ≤ 60 minutes) are estimated to be

• e0.03 = 1.03 times the odds for placebo, at initial time
(t = 0)
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• e0.74 = 2.1 times the odds for placebo, at follow-up
time (t = 1)
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Handling repeated measurement and other forms of clustered data

Observations (Y1, Y2, · · · , YT ) (e.g., T times)

1. Marginal models (Ch. 9)

Simultaneously model each E(Yt) t = 1, · · · , T
get standard errors that account for the actual depen-
dence using method such as GEE (generalized estimating
equations)
e.g. REPEATED statement in PROC GENMOD (SAS)

Ex. binary data Yt = 0 or 1, t = 1, 2 (matched pair)

E(Yt) = P (Yt = 1)

Model logit[P (Yt = 1)] = α + βxt, xt is the value of ex-
plan. var. for observ. t

depression data (matched triplets)→ (some explan. var’s
constant across t, others vary)

Note: In practice, missing data is a common problem
in longitudinal studies. (no problem for software, but are
observations “missing at random”?)
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2. Random effects models (Ch. 10)

Account for having multiple responses per subject (or“cluster”)
by putting a subject term in model

Ex. binary data Yt = 0 or 1

Now let Yit = response by subject i at time t

Model
logit[P (Yit = 1)] = αi + βxt

intercept αi varies by subject

Large positive αi

large P (Yit = 1) each t

Large negative αi

small P (Yit = 1) each t

These will induce dependence, averaging over subjects.

Heterogeneous popul. ⇒ highly variable {αi}

but number of parameters > number of subjects

Solution • Treat {αi} as random rather than param-
eters (fixed)
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• Assume dist. for {αi}. e.g. {αi} ∼ N(α, σ) (2
para.) or αi = α + ui where is α a parameter

random effects → {ui} ∼ N(0, σ)

Model

logit[P (Yit = 1)] = ui + α + βxt

{ui} are random effects. Parameters such as β are fixed
effects.

A generalized linear mixed model (GLMM) is a GLM
with both fixed and random effects.

SAS: PROC NLMIXED (ML), PROC GLIMMIX (not
ML)

Software must “integrate out” the random effects to get
the likelihood fn., ML est. β̂ and std. error.

Also estimate σ and can predict {ui}.

Ex. depression study
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Response at Three Times
Diag Drug nnn nna nan naa ann ana aan aaa
Mild Stan 16 13 9 3 14 4 15 6
Mild New 31 0 6 0 22 2 9 0
Sev Stan 2 2 8 9 9 15 27 28
Sev New 7 2 5 2 31 5 32 6

Sample Proportion Normal
Diagnosis Drug Week 1 Week 2 Week 4
Mild Standard 0.51 0.59 0.68

New 0.53 0.79 0.97

Severe Standard 0.21 0.28 0.46
New 0.18 0.50 0.83

We used GEE to fit “marginal model”

logit[P (Yt = 1)] = α + β1s + β2d + β3t + β4(d× t)

Yt = 1 (normal), s : severity (=1 severe), d : drug (=1
new), t : time (= 0,1,2).

Now we use ML to fit “random effects” model

logit[P (Yit = 1)] = ui + α+ β1s+ β2d+ β3t+ β4(d× t)

assume {ui} has N(0, σ) (need to estimate σ).

β̂1 = −1.32 severity effect

β̂2 = −0.06 drug effect at t = 0
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β̂3 = 0.48 time effect for standard drug (d = 0)

β̂4 = 1.02 add to β̂3 to get time effect for new drug (d = 1)

σ̂ = 0.07 est. std. dev. of random effects

Note

• Similar conclusions as with marginal model (e.g.,
significant interaction)

• When σ̂ = 0, estimates and std. errors same as
treating repeated observ’s as independent

• Details: Ch.10 of textbook

• When σ̂ is large, estimates from random effects logit
model tend to be larger than estimates from marginal
logit model.

Graph here
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Ch 7: Loglinear Models

• Logistic regression distinguishes between response vari-
able Y and explanatory variables x1, x2, . . ..

• Loglinear models treat all variables as response vari-
ables (like correlation analysis)

Ex. (text) Survey of high school students

Y1: used marijuana? (yes, no)

Y2: alcohol? (yes, no)

Y3: cigarettes? (yes, no)

Any variables independent?
Strength of association?
Interaction?
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Loglinear models treat cell counts as Poisson
and use the log link function

Motivation: In I × J table, X and Y are independent
if

P (X = i, Y = j) = P (X = i)P (Y = j) for all i, j.

πij = πi+ π+j

For expected frequencies

µij = nπij

µij = nπi+ π+j

log(µij) = λ + λX
i + λY

j

λX
i : effect of X falling in row i

λY
j : effect of Y falling in column j

This is loglinear model of independence

Treats X and Y symmetrically
(differs from logistic regression, which distinguishes be-
tween Y =response and X =explanatory)

173



Ex. Income and job satisfaction

Income Job Satisfaction (Y )
($1000) Very Little Moderately Very

dissat. dissat. satis. satisfied
< 5 2 4 13 3

5− 15 2 6 22 4
15− 25 0 1 15 8
> 25 0 3 13 8

Using x =income scores (3, 10, 20, 30),
we used SAS (PROC LOGISTIC) to fit model

log
(πi
π4

)

= αj + βj x, j = 1, 2, 3
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EX. Income (I) and job satisfaction (S)

(We analyzed this using multinomial logit models in Ch.
6)

Model
log(µij) = λ + λI

i + λS
j

can be expressed as

log(µij) = λ+λI
1z1+λI

2z2+λI
3z3+λS

1w1+λS
2w2+λS

3w3

where

z1 =1, income cat. 1

0, otherwise

. . . . . .

z3 =1, income cat. 3

0, otherwise

w1 =1, sat. cat. 1

0, otherwise

. . . . . .

w3 =1, sat. cat. 3

0, otherwise
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Parameter No. nonredundant
λ 1
λX
i I − 1 (can set λX

I = 0 )
λY
j J − 1 (can set λY

J = 0 )
λXY
ij (I − 1)(J − 1) (no. of products of dummy var’s)

Note.
For a Poisson loglinear model

df = no. Poisson counts− no. parameters

(no. Poisson counts = no. cells)

Ex. Independence model, I × J table

logµij = λ + λX
i + λY

j

df = IJ − [1 + (I − 1) + (J − 1)] = (I − 1)(J − 1)

Test of indep. using Pearson X2 or like-ratio G2 is a
goodness-of-fit test of the indep. loglinear model.

The model allowing association

log µij = λ + λX
i + λY

j + λXY
ij

has df= 0 (saturated), giving a perfect fit.
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Ex. Recall 4× 4 table

Independence model

log(µij) = λ + λI
i + λS

j

has X2 = 11.5, G2 = 13.5, df= 9.

Saturated model: X2 = G2 = 0, df= 0. (All µ̂ij = nij)

177



Estimated odds ratio using highest and lowest cate-
gories is

µ̂11µ̂44

µ̂14µ̂41
= exp

[

λ̂IS
11 + λ̂IS

44 − λ̂IS
14 − λ̂IS

41

]

= exp(24.288) = 35, 294, 747, 720 (GENMOD)

=
n11n44

n14n41
=

2× 8

3× 0
=∞

since model is saturated
(software doesn’t quite get right answer whenML est.=∞)
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Loglinear Models for Three-way Tables
Two-factor terms represent conditional log odds ratios, at
fixed level of third var.

Ex. 2× 2× 2 table

Let µijk denotes expected freq.; λXZ
ik and λY Z

jk denote
assoc. para.’s.

log µijk = λ + λX
i + λY

j + λZ
k + λXZ

ik + λY Z
jk

satisfies

• log θXY (Z) = 0 (X and Y cond. indep., given Z)

•
log θX(j)Z = λXZ

11 + λXZ
22 − λXZ

12 − λXZ
21

= 0 if {λXZ
ij = 0}

i.e. the XZ odds ratio is same at all levels of Y
Denote by (XZ, Y Z),

called model of XY conditional independence.

Ex.

logµijk = λ + λX
i + λY

j + λZ
k + λXY

ij + λXZ
ik + λY Z

jk

called model of homogeneous association
Each pair of var’s has association that is identical at all

levels of third var.
Denote by (XY,XZ, Y Z).
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Ex. Berkeley admissions data (2× 2× 6)
Gender(M,F)×Admitted(Y, N)×Department(1,2,3,4,5,6)

Recall marginal 2× 2 AG table has θ̂ = 1.84

• Model (AD, DG)

A and G cond. indep., given D.
e.g. for Dept. 1,

θ̂AG(1) =
531.4× 38.4

293.6× 69.6
= 1.0

= θ̂AG(2) = . . . = θ̂AG(6)

But model fits poorly: G2 = 21.7, X2 = 19.9, df = 6
(P < .0001) for H0 : model (AD, DG) holds.

Conclude A and G not cond. indep given D.
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• Model (AG, AD, DG)

Also permits AG assoc., with same odds ratio for each
dept.
e.g. for Dept. 1,

θ̂AG(1) =
529.3× 36.3

295.7× 71.7
= 0.90

= θ̂AG(2) = . . . = θ̂AG(6)

= exp( ˆλAG
11 + ˆλAG

22 − ˆλAG
12 − ˆλAG

21 )

= exp(−.0999) = .90

Control for dept., estimated odds of admission for males
equal .90 times est. odds for females.

θ̂ = 1.84 ignores dept. (Simpson’s paradox)

But this model also fits poorly: G2 = 20.2, X2 = 18.8,
df = 5 (P < .0001) for H0 : model (AG, AD, DG) holds.

i.e. true AG odds ratio not identical for each dept.

• Adding 3-factor interaction term λGAD
ijk gives satu-

rated model (1× 1× 5 cross products of dummies)
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Residual analysis

For model (AD, DG) or (AD, AG, DG), only Dept.1
has large adjusted residuals. (≈ 4 in abs. value)

Dept. 1 has

• fewer males accepted than expected by model

• more females accepted than expected by model

If re-fit model (AD, DG) to 2× 2× 5 table for Depts 2-6,
G2 = 2.7, df = 5, good fit.

Inference about Conditional Associations

EX. Model (AD, AG, DG)

logµijk = λ + λG
i + λA

j + λD
k + λGA

ij + λGD
ik + λAD

jk

H0 : λ
GA
ij = 0 (A cond. indep of G, given D)

Likelihood-ratio stat. −2(L0 − L1)
= deviance for (AD, DG) -deviance for (AD, AG, DG)
=21.7-20.3=1.5, with df=6-5=1 (P =.21)

H0 plausible, but test “shaky” because model (AD, AG,
DG) fits poorly.
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Recall θ̂AG(D) = exp
(

λ̂AG
11

)

= exp(−.0999) = .90

95%CI for θAG(D) is

exp[−.0999± 1.96(.0808)] = (.77, 1.06)

Plausible that θAG(D) = 1.

There are equivalences between loglinear models and
corresponding logit models that treat one of the variables
as a response var., others as explanatory. (Sec. 6.5)

Note.

• Loglinear models extend to any no. of dimensions

• Loglinear models treat all variables symmetrically;
Logistic regr. models treat Y as response and other
var’s as explanatory.
Logistic regr. is the more natural approach when one
has a single response var. (e.g. grad admissions) See
output for logit analysis of data
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Ex Text Sec. 6.4, 6.5

Auto accidents

G = gender (F, M)

L = location (urban, rural)

S = seat belt use (no, yes)

I = injury (no, yes)

I is natural response var.

Loglinear model (GLS, IG, IL, IS) fits quite well (G2 =
7.5, df = 4)

Simpler to consider logit model with I as response.

logit [P̂ (I = yes )] = −3.34 + 0.54G + 0.76L + 0.82S

Controlling for other variables, estimated odds of injury
are:

e0.54 = 1.72 times higher for females than males (CI:
(1.63, 1.82))
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e0.76 = 2.13 times higher in rural than urban locations
(CI: (2.02, 2.25))

e0.82 = 2.26 times higher when not wearing seat belt
(CI: (2.14, 2.39))

Why ever use loglinear model for contingency table?

Info. about all associations, not merely effects of ex-
planatory var’s on response.

Ex. Auto accident data

Loglinear model (GI, GL, GS, IL, IS, LS) (G2 = 23.4, df =
5)fits almost as well as (GLS, GI, IL, IS) (G2 = 7.5, df =
4) in practical terms but n is huge(68,694)

Variables λ̂ Odds ratio (θ̂) 1/θ̂
GL -0.21 0.81 (fem. rur.) 1.23
GS -0.46 0.63 (fem. no) 1.58
GI -0.54 0.58 (fem. no) 1.72
LS -0.08 0.92 (rur. no) 1.09
LI -0.75 0.47 (rur. no) 2.13
SI -0.81 0.44 (no no) 2.26

e.g., for those

not wearing seat belts, the estimated odds of being in-
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jured are 2.26 times the estimated odds of injury for those
wearing seat belts, cont. for gender and location. (or. in-
terchanges S and I in interp.)

Dissimilarity index

D =
∑

|pi − π̂i|/2
• 0 ≤ D ≤ 1, with smaller values for better fit.

• D = proportion of sample cases that must move to
different cells for model to fit perfectly.

Ex. Loglinear model (GLS, IG, IL, IS) has D = 0.003.

Simpler model (GL, GS, LS, IG, IL, IS) has G2 = 23.4
(df=5) for testing fit (P<0.001), but D = 0.008. (Good
fit for practical purposes, and simpler to interpret GS,LS
associations.)

For large n, effects can be “statistically significant”
without being “practically significant.”

Model can fail goodness-of-fit test but still be adequate
for practical purposes.
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Can be useful to describe closeness of sample cell pro-
portions {pi} in a contingency table to the model fitted
proportions {π̂i}.
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