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CATEGORICAL DATA ANALYSIS, 3rd edition

Solutions to Selected Exercises

Alan Agresti

Version August 3, 2012, ©Alan Agresti 2012

This file contains solutions and hints to solutions for some of the exercises in Categorical
Data Analysis, third edition, by Alan Agresti (John Wiley, & Sons, 2012). The solutions
given are partly those that are also available at the website www.stat.ufl.edu/~aa/

cda2/cda.html for many of the odd-numbered exercises in the second edition of the
book (some of which are now even-numbered). I intend to expand the document with
additional solutions, when I have time.

Please report errors in these solutions to the author (Department of Statistics, Univer-
sity of Florida, Gainesville, Florida 32611-8545, e-mail AA@STAT.UFL.EDU), so they
can be corrected in future revisions of this site. The author regrets that he cannot provide
students with more detailed solutions or with solutions of other exercises not in this file.

Chapter 1

1. a. nominal, b. ordinal, c. interval, d. nominal, e. ordinal, f. nominal,

3. π varies from batch to batch, so the counts come from a mixture of binomials rather
than a single bin(n, π). Var(Y ) = E[Var(Y | π)] + Var[E(Y | π)] > E[Var(Y | π)] =
E[nπ(1− π)].

7. a. ℓ(π) = π20, so it is not close to quadratic.

b. π̂ = 1.0. Wald statistic z = (1.0−.5)/
√
1.0(0)/20 = ∞. Wald CI is 1.0±1.96

√
1.0(0)/20 =

1.0± 0.0, or (1.0, 1.0). These are not sensible.

c. z = (1.0− .5)/
√
.5(.5)/20 = 4.47, P < 0.0001. Score CI is (0.839, 1.000).

d. Test statistic 2(20) log(20/10) = 27.7, df = 1. The CI is (exp(−1.962/40), 1) =
(0.908, 1.0).
e. P -value = 2(.5)20 = .00000191.

9. The chi-squared goodness-of-fit test of the null hypothesis that the binomial propor-
tions equal (0.75, 0.25) has expected frequencies (827.25, 275.75), and X2 = 3.46 based
on df = 1. The P -value is 0.063, giving moderate evidence against the null.

10. The sample mean is 0.61. Fitted probabilities for the truncated distribution are
0.543, 0.332, 0.102, 0.021, 0.003. The estimated expected frequencies are 108.5, 66.4,
20.3, 4.1, and 0.6, and the Pearson X2 = 0.7 with df = 3 (0.3 with df = 2 if we truncate
at 3 and above). The fit seems adequate.

11. With the binomial test the smallest possible P -value, from y = 0 or y = 5, is
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2(1/2)5 = 1/16. Since this exceeds 0.05, it is impossible to reject H0, and thus P(Type
I error) = 0. With the large-sample score test, y = 0 and y = 5 are the only outcomes

to give P ≤ 0.05 (e.g., with y = 5, z = (1.0 − 0.5)/
√
0.5(0.5)/5 = 2.24 and P = 0.025).

Thus, for that test, P(Type I error) = P (Y = 0) + P (Y = 5) = 1/16.
12. a. No outcome can give P ≤ .05, and hence one never rejects H0.
b. When T = 2, mid P -value = 0.04 and one rejects H0. Thus, P(Type I error) = P(T
= 2) = 0.08.
c. P -values of the two tests are 0.04 and 0.02; P(Type I error) = P(T = 2) = 0.04 with
both tests.
d. P(Type I error) = E[P(Type I error | T )] = (5/8)(0.08) = 0.05. Randomized tests are
not sensible for practical application.

16. Var(π̂) = π(1− π)/n decreases as π moves toward 0 or 1 from 0.5.

17. a. Var(Y ) = nπ(1− π), binomial.

b. Var(Y ) =
∑

Var(Yi)+2
∑

i<j Cov(Yi, Yj) = nπ(1−π)+2ρπ(1−π)

(
n
2

)
> nπ(1−π).

c. Var(Y ) = E[Var(Y |π)] + Var[E(Y |π)] = E[nπ(1 − π)] + Var(nπ) = nρ − nE(π2) +
[n2E(π2)−n2ρ2] = nρ+(n2−n)[E(π2)−ρ2]−nρ2 = nρ(1−ρ)+(n2−n)V ar(π) > nρ(1−ρ).

18. This is the binomial probability of y successes and k − 1 failures in y + k − 1 trials
times the probability of a failure at the next trial.

19. Using results shown in Sec. 16.1, Cov(nj, nk)/
√
Var(nj)Var(nk) = −nπjπk/

√
nπj(1− πj)nπk(1− πk).

When c = 2, π1 = 1− π2 and correlation simplifies to −1.

20. a. For binomial, m(t) = E(etY ) =
∑

y

(
n
y

)
(πet)y(1 − π)n−y = (1 − π + πet)n, so

m′(0) = nπ.

21. to = −2 log[(prob. under H0)/(prob. under Ha)], so (prob. under H0)/(prob. under
Ha) = exp(−to/2).

22. a. ℓ(µ) = exp(−nµ)µ
∑

yi , so L(µ) = −nµ + (
∑

yi) log(µ) and L′(µ) = −n +
(
∑

yi)/µ = 0 yields µ̂ = (
∑

yi)/n.

b. (i) zw = (ȳ − µ0)/
√
ȳ/n, (ii) zs = (ȳ − µ0)/

√
µ0/n, (iii) −2[−nµ0 + (

∑
yi) log(µ0) +

nȳ − (
∑

yi) log(ȳ)].

c. (i) ȳ± zα/2
√
ȳ/n, (ii) all µ0 such that |zs| ≤ zα/2, (iii) all µ0 such that the LR statistic

≤ χ2
1(α).

23. Conditional on n = y1 + y2, y1 has a bin(n, π) distribution with π = µ1/(µ1 + µ2),

which is 0.5 under H0. The large sample score test uses z = (y1/n − 0.5)/
√
0.5(0.5)/n.

If (ℓ, u) denotes a CI for π (e.g., the score CI), then the CI for π/(1 − π) = µ1/µ2 is
[ℓ/(1− ℓ), u/(1− u)].

25. g(π) = π(1− π)/n∗ is a concave function of π, so if π is random, g(Eπ) ≥ Eg(π) by
Jensen’s inequality. Now π̃ is the expected value of π for a distribution putting proba-
bility n/(n+ z2α/2) at π̂ and probability z2α/2/(n+ z2α/2) at 1/2.
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26. a. The likelihood-ratio (LR) CI is the set of π0 for testing H0: π = π0 such
that LR statistic = −2 log[(1 − π0)

n/(1 − π̂)n] ≤ z2α/2, with π̂ = 0.0. Solving for π0,

n log(1 − π0) ≥ −z2α/2/2, or (1 − π0) ≥ exp(−z2α/2/2n), or π0 ≤ 1 − exp(−z2α/2/2n). Us-

ing exp(x) = 1 + x + ... for small x, the upper bound is roughly 1 − (1 − z20.025/2n) =
z20.025/2n = 1.962/2n ≈ 22/2n = 2/n.

b. Solve for (0− π)/
√
π(1− π)/n = −zα/2.

27. If we form the P -value using the right tail, then mid P -value = πj/2 + πj+1 + · · ·.
Thus, E(mid P -value) =

∑
j πj(πj/2 + πj+1 + · · ·) = (

∑
j πj)

2/2 = 1/2.

28. The right-tail mid P -value equals P (T > to) + (1/2)p(to) = 1 − P (T ≤ to) +
(1/2)p(to) = 1− Fmid(to).

29. a. The kernel of the log likelihood is L(θ) = n1 log θ
2+n2 log[2θ(1−θ)]+n3 log(1−θ)2.

Take ∂L/∂θ = 2n1/θ + n2/θ − n2/(1− θ)− 2n3/(1− θ) = 0 and solve for θ.
b. Find the expectation using E(n1) = nθ2, etc. Then, the asymptotic variance is the

inverse information = θ(1− θ)/2n, and thus the estimated SE =
√
θ̂(1− θ̂)/2n.

c. The estimated expected counts are [nθ̂2, 2nθ̂(1− θ̂), n(1− θ̂)2]. Compare these to the
observed counts (n1, n2, n3) using X2 or G2, with df = (3−1)−1 = 1, since 1 parameter
is estimated.

30. Since ∂2L/∂π2 = −(2n11/π
2)− n12/π

2 − n12/(1− π)2 − n22/(1− π)2,
the information is its negative expected value, which is
2nπ2/π2 + nπ(1− π)/π2 + nπ(1− π)/(1− π)2 + n(1− π)/(1− π)2,
which simplifies to n(1 + π)/π(1− π). The asymptotic standard error is the square root

of the inverse information, or
√
π(1− π)/n(1 + π).

32. c. Let π̂ = n1/n, and (1 − π̂) = n2/n, and denote the null probabilities in the two
categories by π0 and (1−π0). Then, X

2 = (n1−nπ0)
2/nπ0+(n2−n(1−π2))

2/n(1−π0)
= n[(π̂ − π0)

2(1− π0) + ((1− π̂)− (1− π0))
2π0]/π0(1− π0),

which equals (π̂ − π0)
2/[π0(1− π0)/n] = z2S.

33. Let X be a random variable that equals πj0/π̂j with probability π̂j. By Jensen’s
inequality, since the negative log function is convex, E(− logX) ≥ − log(EX). Hence,
E(− logX) =

∑
π̂j log(π̂j/pj0) ≥ − log[

∑
π̂j(πj0/π̂j)] = − log(

∑
πj0) = − log(1) = 0.

Thus G2 = 2nE(− logX) ≥ 0.

35. If Y1 is χ2 with df = ν1 and if Y2 is independent χ2 with df = ν2, then the mgf of
Y1 + Y2 is the product of the mgfs, which is m(t) = (1− 2t)−(ν1+ν2)/2, which is the mgf of
a χ2 with df = ν1 + ν2.

40a. The Bayes estimator is (n1 + α)/(n + α + β), in which α > 0, β > 0. No proper
prior leads to the ML estimate, n1/n. The ML estimator is the limit of Bayes estimators
as α and β both converge to 0.
b. This happens with the improper prior, proportional to [π1(1 − π1)]

−1, which we get
from the beta density by taking the improper settings α = β = 0.
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Chapter 2

3. P (−|C) = 1/4. It is unclear from the wording, but presumably if “tested” means
“tested positive” then P (C̄|+) = 2/3. Sensitivity = P (+|C) = 1 − P (−|C) = 3/4.
Specificity = P (−|C̄) = 1− P (+|C̄) can’t be determined from information given.

5. a. Relative risk.
b. (i) π1 = 0.55π2, so π1/π2 = 0.55.
(ii) 1/0.55 = 1.82.

11. a. (0.847/0.153)/(0.906/0.094) = 0.574.
b. This is interpretation for relative risk, not the odds ratio. The actual relative risk =
0.847/0.906 = 0.935; i.e., 60% should have been 93.5%.

12. a. Relative risk: Lung cancer, 14.00; Heart disease, 1.62. (Cigarette smoking seems
more highly associated with lung cancer)
Difference of proportions: Lung cancer, 0.00130; Heart disease, 0.00256. (Cigarette smok-
ing seems more highly associated with heart disease)
Odds ratio: Lung cancer, 14.02; Heart disease, 1.62. e.g., the odds of dying from lung
cancer for smokers are estimated to be 14.02 times those for nonsmokers. (Note similarity
to relative risks.)
b. Difference of proportions describes excess deaths due to smoking. That is, if N = no.
smokers in population, we predict there would be 0.00130N fewer deaths per year from
lung cancer if they had never smoked, and 0.00256N fewer deaths per year from heart
disease. Thus elimination of cigarette smoking would have biggest impact on deaths due
to heart disease.

15. Marginal odds ratio = 1.84, but most conditional odds ratios are close to 1.0 except
in Department A where odds ratio = 0.35. Note that males tend to apply in greater
numbers to Departments A and B, in which admissions rates are relatively high, and
females tend to aply in greater numbers to Departments C, D, E, F, in which admissions
rates are relatively low. This results in the marginal association whereby the odds of
admission for males are 84% higher than those for females.

17. a. 0.18 for males and 0.32 for females; e.g., for male children, the odds that a white
was a murder victim were 0.18 times the odds that a nonwhite was a murder victim.
b. 0.21.

18. The age distribution is relatively higher in Maine. Death rates are higher at older
ages, and Maine tends to have an older population than South Carolina.

19. Kentucky: Counts are (31, 360 / 7, 50) when victim was white and (0, 18 / 2, 106)
when victim was black. Conditional odds ratios are 0.62 and 0.0, whereas marginal odds
ratio is 1.42. Simpson’s paradox occurs. Whites tend to kill whites and blacks tend to
kill blacks, and killing a white is more likely to result in the death penalty.

21. Yes, this would be an occurrence of Simpson’s paradox. One could display the data
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as a 2 × 2 × K table, where rows = (Smith, Jones), columns = (hit, out) response for
each time at bat, layers = (year 1, . . . , year K). This could happen if Jones tends to
have relatively more observations (i.e., “at bats”) for years in which his average is high.

25. a. Let “pos” denote positive diagnosis, “dis” denote subject has disease.

P (dis|pos) = P (pos|dis)P (dis)

P (pos|dis)P (dis) + P (pos|no dis)P (no dis)

b. 0.95(0.005)/[0.95(0.005) + 0.05(0.995)] = 0.087.

Test

Reality
+ − Total

+ 0.00475 0.00025 0.005
− 0.04975 0.94525 0.995

Nearly all (99.5%) subjects are not HIV+. The 5% errors for them swamp (in frequency)
the 95% correct cases for subjects who truly are HIV+. The odds ratio = 361; i.e., the
odds of a positive test result are 361 times higher for those who are HIV+ than for those
not HIV+.

27. a. The numerator is the extra proportion that got the disease above and beyond
what the proportion would be if no one had been exposed (which is P (D | Ē)).
b. Use Bayes Theorem and result that RR = P (D | E)/P (D | Ē).

29. a. For instance, if first row becomes first column and second row becomes second
column, the table entries become

n11 n21

n12 n22

The odds ratio is the same as before. The difference of proportions and relative risk are
only invariant to multiplication of cell counts within rows by a constant.

30. Suppose π1 > π2. Then, 1−π1 < 1−π2, and θ = [π1/(1−π1)]/[π2/(1−π2)] > π1/π2 >
1. If π1 < π2, then 1− π1 > 1− π2, and θ = [π1/(1− π1)]/[π2/(1− π2)] < π1/π2 < 1.

31. This simply states that ordinary independence for a two-way table holds in each
partial table.

36. This condition is equivalent to the conditional distributions of Y in the first I − 1
rows being identical to the one in row I. Equality of the I conditional distributions is
equivalent to independence.

37. Use an argument similar to that in Sec. 1.2.5. Since Yi+ is sum of independent Pois-
sons, it is Poisson. In the denominator for the calculation of the conditional probability,
the distribution of {Yi+} is a product of Poissons with means {µi+}. The multinomial
distributions are obtained by identifying πj|i with µij/µi+.

40. If in each row the maximum probability falls in the same column, say column 1, then
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E[V (Y | X)] =
∑

i πi+(1−π1|i) = 1−π+1 = 1−max{π+j}, so λ = 0. Since the maximum
being the same in each row does not imply independence, λ = 0 can occur even when
the variables are not independent.

Chapter 3

14. b. Compare rows 1 and 2 (G2 = 0.76, df = 1, no evidence of difference), rows
3 and 4 (G2 = 0.02, df = 1, no evidence of difference), and the 3× 2 table consisting of
rows 1 and 2 combined, rows 3 and 4 combined, and row 5 (G2 = 95.74, df = 2, strong
evidences of differences).

16.a. X2 = 8.9, df = 6, P = 0.18; test treats variables as nominal and ignores the
information on the ordering.
b. Residuals suggest tendency for aspirations to be higher when family income is higher.
c. Ordinal test gives M2 = 4.75, df = 1, P = 0.03, and much stronger evidence of an
association.

18. a. It is plausible that control of cancer is independent of treatment used. (i) P -value
is hypergeometric probability P (n11 = 21 or 22 or 23) = 0.3808, (ii) P -value = 0.638
is sum of probabilities that are no greater than the probability (0.2755) of the observed
table.
b. 0.3808 - 0.5(0.2755) = 0.243. With this type of P -value, the actual error probability
tends to be closer to the nominal value, the sum of the two one-sided P-values is 1,
and the null expected value is 0.50; however, it does not guarantee that the actual error
probability is no greater than the nominal value.

25. For proportions π and 1−π in the two categories for a given sample, the contribution
to the asymptotic variance is [1/nπ + 1/n(1 − π)]. The derivative of this with respect
to π is 1/n(1 − π)2 − 1/nπ2, which is less than 0 for π < 0.50 and greater than 0 for
π > 0.50. Thus, the minimum is with proportions (0.5, 0.5) in the two categories.

29. Use formula (3.9), noting that the partial derivative of the measure with respect to
πi is just ηi/δ

2.

30. For any reasonable significance test, whenever H0 is false, the test statistic tends to
be larger and the P -value tends to be smaller as the sample size increases. Even if H0

is just slightly false, the P -value will be small if the sample size is large enough. Most
statisticians feel we learn more by estimating parameters using confidence intervals than
by conducting significance tests.

31. a. Note θ = π1+ = π+1.
b. The log likelihood has kernel

L = n11 log(θ
2) + (n12 + n21) log[θ(1− θ)] + n22 log(1− θ)2

∂L/∂θ = 2n11/θ + (n12 + n21)/θ − (n12 + n21)/(1 − θ) − 2n22/(1 − θ) = 0 gives θ̂ =
(2n11 + n12 + n21)/2(n11 + n12 + n21 + n22) = (n1+ + n+1)/2n = (p1+ + p+1)/2.
c,d. Calculate θ̂ = 0.81304 and (with n = 230) estimated expected frequencies (e.g.,
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µ̂11 = 230θ̂2), and obtain PearsonX2, which is 0.23. We estimated one parameter, so df =
(4-1)-1 = 2 (one higher than in testing independence without assuming identical marginal
distributions). The free throws are plausibly independent and identically distributed.

32. By expanding the square and simplifying, one can obtain the alternative formula for
X2,

X2 = n[
∑
i

∑
j

(n2
ij/ni+n+j)− 1].

Since nij ≤ ni+, the double sum term cannot exceed
∑

i

∑
j nij/n+j = J , and since

nij ≤ n+j, the double sum cannot exceed
∑

i

∑
j nij/ni+ = I. It follows that X2 cannot

exceed n[min(I, J)− 1] = n[min(I − 1, J − 1)].

35. Because G2 for full table = G2 for collapsed table + G2 for table consisting of the
two rows that are combined.

37.
∑

j p+j r̂j =
∑

j p+j[
∑

k<j p+k + p+j/2] =
∑

S p+jp+k +
∑

j p
2
+j/2, where S = {(j, k) :

k < j}. This equals

(1/2)[
∑

p2+j + 2
∑
S

p+jp+k] = (1/2)(
∑

p+j)
2 = (1/2)(1)2 = 0.50.

Also, ∑
pi+R̂i =

∑
pi+(

∑
j

r̂jpj|i) =
∑
i

∑
j

r̂jpij =
∑
j

r̂jp+j = 0.50.

43. The observed table has X2 = 6. The probability of this table is highest at π = 0.50.
For given π, P (X2 ≥ 6) =

∑
k P (X2 ≥ 6 and n+1 = k) =

∑
k P (X2 ≥ 6 | n+1 =

k)P (n+1 = k), and P (X2 ≥ 6 | n+1 = k) is the P -value for Fisher’s exact test.

Chapter 4

1. a. Roughly 3%.
b. Estimated proportion π̂ = −0.0003 + 0.0304(0.0774) = 0.0021. The actual value is
3.8 times the predicted value, which together with Fig. 4.7 suggests it is an outlier.
2. a. The estimated probability of malformation increases from 0.0011 at x = 0 to 0.0025
+ 0.0011(7.0) = 0.0102 at x = 7. The relative risk is 0.0102/0.0011 = 9.3.

3. The fit of the linear probability model is (a) 0.018 + 0.018(snoring), (b) 0.018 +
0.036(snoring), (c) -0.019 + 0.036(snoring). Slope depends on distance between scores;
doubling the distance halves the slope estimate. The fitted values and goodness-of-fit
statistics are identical for any linear transformation.

4. a. π̂ = -0.145 + 0.323(weight); at weight = 5.2, predicted probability = 1.53, much
higher than the upper bound of 1.0 for a probability.
c. logit(π̂) = -3.695 + 1.815(weight); at 5.2 kg, predicted logit = 5.74, and log(0.9968/0.0032)
= 5.74.
6. a. a. 0.5893± 1.96(0.0650) = (0.4619, 0.7167).



8

b. (0.5893/0.0650)2 = 82.15.
Need log likelihood value when β = 0.

c. Multiply standard errors by
√
535.896/171 = 1.77. There is still very strong evidence

of a positive weight effect.

7. a. log(µ̂) = 1.6094 + 0.5878x. Since β = log(µB/µA), exp(β̂) = µ̂B/µ̂A = 1.80; i.e.,
the mean is predicted to be 80% higher for treatment B. (In fact, this estimate is simply
the ratio of sample means.)
b. Wald test gives z = 0.588/0.176 = 3.33, z2 = 11.1 (df = 1), P < 0.001. Likelihood-
ratio statistic equals 27.86 - 16.27 = 11.6 with df = 1, P < 0.001. There is strong
evidence against H0 and of a higher defect rate for treatment B.
c. Exponentiate 95% CI for β of 0.588± 1.96(0.176) to get Wald CI of exp(0.242, 0.934) =
(1.27, 2.54).

d. Normal approximation to binomial yields z = (50 − 70)/
√
140(0.5)(0.5) = −3.4 and

very strong evidence against H0.

9. Since exp(0.192) = 1.21, a 1 cm increase in width corresponds to an estimated in-
crease of 21% in the expected number of satellites. For estimated mean µ̂, the estimated
variance is µ̂ + 1.11µ̂2, considerably larger than Poisson variance unless µ̂ is very small.
The relatively small SE for k̂−1 gives strong evidence that this model fits better than
the Poisson model and that it is necessary to allow for overdispersion. The much larger
SE of β̂ in this model also reflects the overdispersion.

11.a. The ratio of the rate for smokers to nonsmokers decreases markedly as age increases.
b. G2 = 12.1, df = 4.
c. For age scores (1,2,3,4,5), G2 = 1.5, df = 3. The interaction term = -0.309, with std.
error = 0.097; the estimated ratio of rates is multiplied by exp(−0.309) = 0.73 for each
successive increase of one age category.

15. The link function determines the function of the mean that is predicted by the linear
predictor in a GLM. The identity link models the binomial probability directly as a linear
function of the predictors. It is not often used, because probabilities must fall between 0
and 1, whereas straight lines provide predictions that can be any real number. When the
probability is near 0 or 1 for some predictor values or when there are several predictors, it
is not unusual to get estimated probabilities below 0 or above 1. With the logit link, any
real number predicted value for the linear model corresponds to a probability between
0 and 1. Similarly, Poisson means must be nonnegative. If we use an identity link, we
could get negative predicted values. With the log link, a predicted negative log mean
still corresponds to a positive mean.

16. With single predictor, log[π(x)] = α + βx. Since log[π(x + 1)] − log[π(x)] = β, the
relative risk is π(x + 1)/π(x) = exp(β). A restriction of the model is that to ensure
0 < π(x) < 1, it is necessary that α + βx < 0.

17. a. ∂π(x)/∂x = βeα+βx/[1 + eα+βx]2, which is positive if β > 0. Note that the general
logistic cdf on p. 121 has mean µ and standard deviation τπ/

√
3. Writing α+ βx in the
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form (x−α/β)/(1/β), we identify µ with α/β and τ with 1/β, so the standard deviation
is π/β

√
3 when β > 0.

19. For j = 1, xij = 0 for group B, and for observations in group A, ∂µA/∂ηi is constant,
so likelihood equation sets

∑
A(yi − µA)/µA = 0, so µ̂A = ȳA. For j = 0, xij = 1 and the

likelihood equation gives

∑
A

(yi − µA)

µA

(
∂µA

∂ηi

)
+
∑
B

(yi − µB)

µB

(
∂µB

∂ηi

)
= 0.

The first sum is 0 from the first likelihood equation, and for observations in group B,
∂µB/∂ηi is constant, so second sum sets

∑
B(yi − µB)/µB = 0, so µ̂B = ȳB.

21. Letting ϕ = Φ′, wi = [ϕ(
∑

j βjxij)]
2/[Φ(

∑
j βjxij)(1− Φ(

∑
j βjxij))/ni]

22. a. Since ϕ is symmetric, Φ(0) = 0.5. Setting α + βx = 0 gives x = −α/β.
b. The derivative of Φ at x = −α/β is βϕ(α + β(−α/β)) = βϕ(0). The logistic pdf has
ϕ(x) = ex/(1 + ex)2 which equals 0.25 at x = 0; the standard normal pdf equals 1/

√
2π

at x = 0.
c. Φ(α + βx) = Φ(x−(−α/β)

1/β
).

23. a. Cauchy. You can see this by taking the derivative and noting it has the form of
a Cauchy density. The GLM with Bernoulli random component, systematic component
α+ βx, link function tan[pi(π(x)− 1/2)] (where pi = 3.14...), would work well when the
rate of convergence of π to 0 and 1 is slower than with the logit or probit link (Recall
that Cauchy density has thick tails compared to logistic and normal densities).

26. a. With identity link the GLM likelihood equations simplify to, for each i,
∑ni

j=1(yij−
µi)/µi = 0, from which µ̂i =

∑
j yij/ni.

b. Deviance = 2
∑

i

∑
j[yij log(yij/ȳi).

31. For log likelihood L(µ) = −nµ + (
∑

i yi) log(µ), the score is u = (
∑

i yi − nµ)/µ,
H = −(

∑
i yi)/µ

2, and the information is n/µ. It follows that the adjustment to µ(t) in
Fisher scoring is [µ(t)/n][(

∑
i yi−nµ(t))/µ(t)] = ȳ−µ(t), and hence µ(t+1) = ȳ. For Newton-

Raphson, the adjustment to µ(t) is µ(t)− (µ(t))2/ȳ, so that µ(t+1) = 2µ(t)− (µ(t))2/ȳ. Note
that if µ(t) = ȳ, then also µ(t+1) = ȳ.

Chapter 5

2. a. π̂ = e−3.7771+0.1449(8)/[1 + e−3.7771+0.1449(8)].
b. π̂ = 0.5 at −α̂/β̂ = 3.7771/0.1449 = 26.
c. At LI = 8, π̂ = 0.068, so rate of change is β̂π̂(1− π̂) = 0.1449(0.068)(0.932) = 0.009.

e. eβ̂ = e.1449 = 1.16.
f. The odds of remission at LI = x + 1 are estimated to fall between 1.029 and 1.298
times the odds of remission at LI = x.
g. Wald statistic = (0.1449/0.0593)2 = 5.96, df = 1, P -value = 0.0146 for Ha:β ̸= 0.
h. Likelihood-ratio statistic = 34.37 - 26.07 = 8.30, df = 1, P -value = 0.004.
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5. a. At 26.3, estimated odds = exp[−12.351 + 0.497(26.3)] = 2.06, and at 27.3 the
estimated odds = exp[−12.351 + 0.497(27.3)] = 3.38, and 3.38 = 1.64(2.06). For each
1-unit increase in x, the odds multiply by 1.64 (i.e., increase by 64%).
b. The approximate rate of change when π = 0.5 is βπ(1− π) = β/4. The 95% Wald CI
for β of (0.298, 0.697) translates to one for β/4 of (0.07, 0.17).

7. logit(π̂) = -3.866 + 0.397(snoring). Fitted probabilities are 0.021, 0.044, 0.093, 0.132.
Multiplicative effect on odds equals exp(0.397) = 1.49 for one-unit change in snoring, and
2.21 for two-unit change. Goodness-of-fit statistic G2 = 2.8, df = 2 shows no evidence of
lack of fit.

9. The Cochran–Armitage test uses the ordering of rows and has df = 1, and tends to
give smaller P -values when there truly is a linear trend.

11. Estimated odds of contraceptive use for those with at least 1 year of college were
e0.501 = 1.65 times the estimated odds for those with less than 1 year of college. The 95%
Wald CI for the true odds ratio is exp[0.501± 1.96(0.077)] = (e0.350, e0.652) = (1.42, 1.92).

14. The original variables c and x relate to the standardized variables zc and zx by zc =
(c− 2.44)/0.80 and zx = (x− 26.3)/2.11, so that c = 0.80zc+2.44 and x = 2.11zx+26.3.
Thus, the prediction equation is
logit(π̂) = −10.071− 0.509[0.80zc + 2.44] + 0.458[2.11zx + 26.3],
The coefficients of the standardized variables are -0.509(0.80) = -0.41 and 0.458(2.11) =
0.97. Adjusting for the other variable, a one standard deviation change in x has more
than double the effect of a one standard deviation change in c. At x̄ = 26.3, the esti-
mated logits at c = 1 and at c = 4 are 1.465 and -0.062, which correspond to estimated
probabilities of 0.81 and 0.48.

15. a. Black defendants with white victims had estimated probability e−3.5961+2.4044/[1+
e−3.5961+2.4044] = 0.23.
b. For a given defendant’s race, the odds of the death penalty when the victim was white
are estimated to be between e1.3068 = 3.7 and e3.7175 = 41.2 times the odds when the
victim was black.
c. Wald statistic (−0.8678/0.3671)2 = 5.6, LR statistic = 5.0, each with df = 1. P -value
= 0.025 for LR statistic.
d. G2 = 0.38, X2 = 0.20, df = 1, so model fits well.

19. R = 1: logit(π̂) = −6.7 + 0.1A+ 1.4S. R = 0: logit(π̂) = −7.0 + 0.1A+ 1.2S.
The YS conditional odds ratio is exp(1.4) = 4.1 for blacks and exp(1.2) = 3.3 for whites.
Note that 0.2, the coeff. of the cross-product term, is the difference between the log odds
ratios 1.4 and 1.2. The coeff. of S of 1.2 is the log odds ratio between Y and S when R
= 0 (whites), in which case the RS interaction does not enter the equation. The P -value
of P < 0.01 for smoking represents the result of the test that the log odds ratio between
Y and S for whites is 0.

22. Logit model gives fit, logit(π̂) = -3.556 + 0.053(income).

25. The derivative equals β exp(α + βx)/[1 + exp(α + βx)]2 = βπ(x)(1− π(x)).
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26. The odds ratio eβ is approximately equal to the relative risk when the probability is
near 0 and the complement is near 1, since
eβ = [π(x+ 1)/(1− π(x+ 1))]/[π(x)/(1− π(x))] ≈ π(x+ 1)/π(x).

27. ∂π(x)/∂x = βπ(x)[1 − π(x)], and π(1 − π) ≤ 0.25 with equality at π = 0.5. For
multiple explanatory variable case, the rate of change as xi changes with other variables
held constant is greatest when π = 0.5.

28. The square of the denominator is the variance of logit(π̂) = α̂+ β̂x. For large n, the
ratio of (α̂ + β̂x - logit(π0) to its standard deviation is approximately standard normal,
and (for fixed π0) all x for which the absolute ratio is no larger than zα/2 are not contra-
dictory.

29. a. Since log[π/(1− π)] = α+ log(dβ), exponentiating yields π/(1− π) = eαelog(d
β) =

eαdβ. Letting d = 1, eα equals the odds for the first draft pick.
b. As a function of d, the odds decreases more quickly for pro basketball.

30. a. Let ρ = P(Y=1). By Bayes Theorem,

P (Y = 1|x) = ρ exp[−(x−µ1)
2/2σ2]/{ρ exp[−(x−µ1)

2/2σ2+(1−ρ) exp[−(x−µ0)
2/2σ2]}

= 1/{1 + [(1− ρ)/ρ] exp{−[µ2
0 − µ2

1 + 2x(µ1 − µ0)]/2σ
2}

= 1/{1 + exp[−(α + βx)]} = exp(α + βx)/[1 + exp(α + βx)],

where β = (µ1 − µ0)/σ
2 and α = − log[(1− ρ)/ρ] + [µ2

0 − µ2
1]/2σ

2.

32. a. Given {πi}, we can find parameters so model holds exactly. With constraint
βI = 0, log[πI/(1− πI)] = α determines α. Since log[πi/(1− πi)] = α+ βi, it follows that

βi = log[πi/(1− πi)])− log[πI/(1− πI)].

That is, βi is the log odds ratio for rows i and I of the table. When all βi are equal, then
the logit is the same for each row, so πi is the same in each row, so there is independence.

35. d. When yi is a 0 or 1, the log likelihood is
∑

i[yi log πi + (1− yi) log(1− πi)].
For the saturated model, π̂i = yi, and the log likelihood equals 0. So, in terms of the ML
fit and the ML estimates {π̂i} for this linear trend model, the deviance equals

D = −2
∑

i[yi log π̂i + (1− yi) log(1− π̂i)] = −2
∑

i[yi log
(

π̂i

1−π̂i

)
+ log(1− π̂i)]

= −2
∑

i[yi(α̂ + β̂xi) + log(1− π̂i)].
For this model, the likelihood equations are

∑
i yi =

∑
i π̂i and

∑
i xiyi =

∑
i xiπ̂i.

So, the deviance simplifies to
D = −2[α̂

∑
i π̂i + β̂

∑
i xiπ̂i +

∑
i log(1− π̂i)]

= −2[
∑

i π̂i(α̂ + β̂xi) +
∑

i log(1− π̂i)]

= −2
∑

i π̂i log
(

π̂i

1−π̂i

)
− 2

∑
i log(1− π̂i).

40. a. Expand log[p/(1− p)] in a Taylor series for a neighborhood of points around p =
π, and take just the term with the first derivative.
b. Let pi = yi/ni. The ith sample logit is

log[pi/(1− pi)] ≈ log[π
(t)
i /(1− π

(t)
i )] + (pi − π

(t)
i )/π

(t)
i (1− π

(t)
i )
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= log[π
(t)
i /(1− π

(t)
i )] + [yi − niπ

(t)
i ]/niπ

(t)
i (1− π

(t)
i )

Chapter 6

1. logit(π̂) = -9.35 + 0.834(weight) + 0.307(width).
a. Like. ratio stat. = 32.9 (df = 2), P < 0.0001. There is extremely strong evidence
that at least one variable affects the response.
b. Wald statistics are (0.834/0.671)2 = 1.55 and (0.307/0.182)2 = 2.85. These each
have df = 1, and the P -values are 0.21 and 0.09. These predictors are highly correlated
(Pearson corr. = 0.887), so this is the problem of multicollinearity.

12. The estimated odds of admission were 1.84 times higher for men than women. How-
ever, θ̂AG(D) = 0.90, so given department, the estimated odds of admission were 0.90
times as high for men as for women. Simpson’s paradox strikes again! Men applied
relatively more often to Departments A and B, whereas women applied relatively more
often to Departments C, D, E, F. At the same time, admissions rates were relatively high
for Departments A and B and relatively low for C, D, E, F. These two effects combine to
give a relative advantage to men for admissions when we study the marginal association.
The values of G2 are 2.68 for the model with no G effect and 2.56 for the model with
G and D main effects. For the latter model, CI for conditional AG odds ratio is (0.87,
1.22).

17. The CMH statistic simplifies to the McNemar statistic of Sec. 11.1, which in chi-
squared form equals (14−6)2/(14+6) = 3.2 (df = 1). There is slight evidence of a better
response with treatment B (P = 0.074 for the two-sided alternative).

27. logit(π̂) = −12.351 + 0.497x. Prob. at x = 26.3 is 0.674; prob. at x = 28.4 (i.e., one
std. dev. above mean) is 0.854. The odds ratio is [(0.854/0.146)/(0.674/0.326)] = 2.83,
so λ = 1.04, δ = 5.1. Then n = 75.

31. We consider the contribution to theX2 statistic of its two components (corresponding
to the two levels of the response) at level i of the explanatory variable. For simplicity,
we use the notation of (4.21) but suppress the subscripts. Then, that contribution is
(y − nπ)2/nπ + [(n − y) − n(1 − π)]2/n(1 − π), where the first component is (observed
- fitted)2/fitted for the “success” category and the second component is (observed -
fitted)2/fitted for the “failure” category. Combining terms gives (y − nπ)2/nπ(1 − π),
which is the square of the residual. Adding these chi-squared components therefore gives
the sum of the squared residuals.

35. The noncentrality is the same for models (X +Z) and (Z), so the difference statistic
has noncentrality 0. The conditional XY independence model has noncentrality propor-
tional to n, so the power goes to 1 as n increases.

41. a. E(Y ) = α + β1X + β2Z. The slope β1 of the line for the partial relationship
between E(Y ) and X is the same at all fixed levels of Z.
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b. With dummy (indicator) variables for Z, one has parallelism of lines. That is, the
slope of the line relating E(Y ) and X is the same for each category of Z.
c. Use dummy variables for X and Z, but no interaction terms. The difference between
E(Y ) at two categories of X is the same at each fixed category of Z.
d. For logistic models, the odds ratio relating Y and X is the same at each category of Z.

Chapter 7

21. Log likelihood for the probit model is

log


N∏
i=1

[
Φ
(∑

j

βjxij

)]yi[
1− Φ

(∑
j

βjxij

)]1−yi


=
∑
i

yi log
[
Φ
(∑

j

βjxij

)]
+
∑
i

(1− yi) log
[
1− Φ

(∑
j

βjxij

)]

=
∑
i

yi log

 Φ
(∑

j βjxij

)
1− Φ

(∑
j βjxij

)
+∑

i

log
[
1− Φ

(∑
j

βjxij

)]
For the probit model,

∂L

∂βj

=
∑
i

yi

1− Φ
(∑

j βjxij

)
Φ
(∑

j βjxij

)

[
ϕ
(∑

j βjxij

)
xij

(
1− Φ

(∑
j βjxij

))
+ xijϕ

(∑
j βjxij

)
Φ
(∑

j βjxij

)]
[
1− Φ

(∑
j βjxij

)]2

−
∑
i

xijϕ
(∑

j βjxij

)
1− Φ

(∑
j βjxij

) = 0

=⇒
∑
i

yixijϕ
(∑

j β̂jxij

)
[
1− Φ

(∑
j β̂jxij

)]
Φ
(∑

j β̂jxij

) −
∑
i

xijϕ
(∑

j β̂jxij

)
1− Φ

(∑
j β̂jxij

) = 0

=⇒
∑
i

yixijϕ
(∑

β̂jxij

)
π̂i(1− π̂i)

−
∑
i

xijϕ
(∑

j β̂jxij

)
π̂i

π̂i(1− π̂i)
= 0

=⇒
∑
i

(
yi − π̂i

)
xijzi = 0, where zi = ϕ(Σjβ̂jxij)/π̂i(1− π̂i).

For logistic regression, from (4.28) with {ni = 1}, ∑i

(
yi − π̂i

)
xij = 0.

25. (log π(x2))/(log π(x1)) = exp[β(x2 − x1)], so π(x2) = π(x1)
exp[β(x2−x1)]. For x2 − x1 =

1, π(x2) equals π(x1) raised to the power exp(β).

Chapter 8
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3. Both gender and race have significant effects. The logistic model with additive effects
and no interaction fits well, with G2 = 0.2 based on df = 2. The estimated odds of
preferring Democrat instead of Republican are higher for females and for blacks, with
estimated conditional odds ratios of 1.8 between gender and party ID and 9.8 between
race and party ID.

7. For any collapsing of the response, for Democrats the estimated odds of response in
the liberal direction are exp(0.975) = 2.65 times the estimated odds for Republicans. The
estimated probability of a very liberal response equals exp(−2.469)/[1 + exp(−2.469)] =
0.078 for Republicans and exp(−2.469 + 0.975)/[1 + exp(−2.469 + 0.975)] = 0.183 for
Democrats.

8. a. Four intercepts are needed for five response categories. For males in urban areas
wearing seat belts, all dummy variables equal 0 and the estimated cumulative probabil-
ities are exp(3.3074)/[1 + exp(3.3074)] = 0.965, exp(3.4818)/[1 + exp(3.4818)] = 0.970,
exp(5.3494)/[1 + exp(5.3494)] = 0.995, exp(7.2563)/[1 + exp(7.2563)] = 0.9993, and 1.0.
The corresponding response probabilities are 0.965, 0.005, 0.025, 0.004, and 0.0007.
b. Wald CI is exp[−0.5463±1.96(0.0272)] = (exp(−0.600), exp(−0.493)) = (0.549, 0.611).
Give seat belt use and location, the estimated odds of injury below any fixed level for a
female are between 0.549 and 0.611 times the estimated odds for a male.
c. Estimated odds ratio equals exp(−0.7602 − 0.1244) = 0.41 in rural locations and
exp(−0.7602) = 0.47 in urban locations. The interaction effect -0.1244 is the difference
between the two log odds ratios.

10. a. Setting up indicator variables (1,0) for (male, female) and (1,0) for (sequential,
alternating), we get treatment effect = -0.581 (SE = 0.212) and gender effect = -0.541
(SE = 0.295). The estimated odds ratios are 0.56 and 0.58. The sequential therapy
leads to a better response than the alternating therapy; the estimated odds of response
with sequential therapy below any fixed level are 0.56 times the estimated odds with
alternating therapy.
b. The main effects model fits well (G2 = 5.6, df = 7), and adding an interaction term
does not give an improved fit (The interaction model has G2 = 4.5, df = 6).

15. The estimated odds a Democrat is classified in the more liberal instead of the
more conservative of two adjacent categories are exp(0.435) = 1.54 times the estimated
odds for a Republican. For the two extreme categories, the estimated odds ratio equals
exp[4(0.435)] = 5.7.

17.a. Using scores 3.2, 3.75, 4.5, 5.2, the proportional odds model has a treatment ef-
fect of 0.805 with SE = 0.206; for the treatment group, the estimated odds that ending
cholesterol is below any fixed level are exp(0.805) = 2.24 times the odds for the control
group. The psyllium treatment seems to have had a strong, beneficial effect.

18. CMH statistic for correlation alternative, using equally-spaced scores, equals 6.3
(df = 1) and has P -value = 0.012. When there is roughly a linear trend, this tends to be
more powerful and give smaller P -values, since it focuses on a single degree of freedom.
LR statistic for cumulative logit model with linear effect of operation = 6.7, df = 1, P =
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0.01; strong evidence that operation has an effect on dumping, gives similar results as in
(a). LR statistic comparing this model to model with four separate operation parameters
equals 2.8 (df = 3), so simpler model is adequate.

29. The multinomial mass function factors as the multinomial coefficient times
πn
J exp[

∑J−1
i=1 ni log(πi/πJ)], which has the form a function of the data times a function of

the parameters (namely (1− π1 − ...− πJ−1)
n) times an exponential function of a sum of

the observations times the canonical parameters, which are the baseline-category logits.

32. ∂π3(x)/∂x = −[β1 exp(α1+β1x)+β2 exp(α2+β2x)]
[1+exp(α1+β1x)+exp(α2+β2x)]2

.
a. The denominator is positive, and the numerator is negative when β1 > 0 and β2 > 0.

36. The baseline-category logit model refers to individual categrories rather than cumu-
lative probabilities. There is not linear structure for baseline-category logits that implies
identical effects for each cumulative logit.

37. a. For j < k, logit[P (Y ≤ j | X = xi)] - logit[P (Y ≤ k | X = xi)] =
(αj − αk) + (βj − βk)x. This difference of cumulative probabilities cannot be positive
since P (Y ≤ j) ≤ P (Y ≤ k); however, if βj > βk then the difference is positive for large
x, and if βj > βk then the difference is positive for small x.

39. a. df = I(J − 1)− [(J − 1) + (I − 1)] = (I − 1)(J − 2).
c. The full model has an extra I − 1 parameters.
d. The cumulative probabilities in row a are all smaller or all greater than those in row
b depending on whether µa > µb or µa < µb.

43. For a given subject, the model has the form

πj =
αj + βjx+ γuj∑
h αh + βhx+ γuh

.

For a given cost, the odds a female selects a over b are exp(βa − βb) times the odds for
males. For a given gender, the log odds of selecting a over b depend on ua − ub.

Chapter 9

1. G2 values are 2.38 (df = 2) for (GI,HI), and 0.30 (df = 1) for (GI,HI,GH).
b. Estimated log odds ratios is -0.252 (SE = 0.175) for GH association, so CI for odds
ratio is exp[−0.252 ± 1.96(0.175)]. Similarly, estimated log odds ratio is 0.464 (SE =
0.241) for GI association, leading to CI of exp[0.464 ± 1.96(0.241)]. Since the intervals
contain values rather far from 1.0, it is safest to use model (GH,GI,HI), even though
simpler models fit adequately.

4. For either approach, from (8.14), the estimated conditional log odds ratio equals

λ̂AC
11 + λ̂AC

22 − λ̂AC
12 − λ̂AC

21

5. a. G2 = 31.7, df = 48. The data are sparse, but the model seems to fit well. It is
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plausible that the association between any two items is the same at each combination of
levels of the other two items.
b. log(µ11clµ33cl/µ13clµ31cl) = log(µ11cl) + log(µ33cl)− log(µ13cl)− log(µ31cl).
Substitute model formula, and simplify. The estimated odds ratio equals exp(2.142) =
8.5. There is a strong positive association. Given responses on C and L, the estimated
odds of judging spending on E to be too much instead of too little are 8.5 times as high
for those who judge spending on H to be too much than for those who judge spending
on H to be too low. The 95% CI is exp[2.142 ± 1.96(0.523)], or (3.1, 24.4.). Though it
is very wide, it is clear that the true association is strong.

7. a. Let S = safety equipment, E =whether ejected, I = injury. Then, G2(SE, SI, EI) =
2.85, df = 1. Any simpler model has G2 > 1000, so it seems there is an association for
each pair of variables, and that association can be regarded as the same at each level
of the third variable. The estimated conditional odds ratios are 0.091 for S and E (i.e.,
wearers of seat belts are much less likely to be ejected), 5.57 for S and I, and 0.061 for
E and I.
b. Loglinear models containing SE are equivalent to logit models with I as response
variable and S and E as explanatory variables. The loglinear model (SE, SI, EI) is
equivalent to a logit model in which S and E have additive effects on I. The estimated
odds of a fatal injury are exp(2.798) = 16.4 times higher for those ejected (controlling
for S), and exp(1.717) = 5.57 times higher for those not wearing seat belts (controlling
for E).

8. Injury has estimated conditional odds ratios 0.58 with gender, 2.13 with location, and
0.44 with seat-belt use. “No” is category 1 of I, and “female” is category 1 of G, so the
odds of no injury for females are estimated to be 0.58 times the odds of no injury for
males (controlling for L and S); that is, females are more likely to be injured. Similarly,
the odds of no injury for urban location are estimated to be 2.13 times the odds for rural
location, so injury is more likely at a rural location, and the odds of no injury for no
seat belt use are estimated to be 0.44 times the odds for seat belt use, so injury is more
likely for no seat belt use, other things being fixed. Since there is no interaction for this
model, overall the most likely case for injury is therefore females not wearing seat belts
in rural locations.

9. a. (DV F, Y D, Y V, Y F ).
b. Model with Y as response and additive factor effects for D and V , logit(π) =
α + βD

i + βV
j .

c. (i) (DV F, Y ), logit(π) = α, (ii) (DV F, Y F ), logit(π) = α + βF
i ,

(iii) (DV F, Y DV, Y F ), add term of form βDV
ij to logit model.

13. Homogeneous association model (BP,BR,BS, PR, PS,RS) fits well (G2 = 7.0,
df = 9). Model deleting PR association also fits well (G2 = 10.7, df = 11), but we use
the full model.
For homogeneous association model, estimated conditional BS odds ratio equals exp(1.147)
= 3.15. For those who agree with birth control availability, the estimated odds of view-
ing premarital sex as wrong only sometimes or not wrong at all are about triple the
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estimated odds for those who disagree with birth control availability; there is a positive
association between support for birth control availability and premarital sex. The 95%
CI is exp(1.147± 1.645(0.153)) = (2.45, 4.05).
Model (BPR,BS, PS,RS) has G2 = 5.8, df = 7, and also a good fit.

17. b. log θ11(k) = log µ11k + log µ22k − log θ12k − log θ21k = λXY
11 + λXY

22 − λXY
12 − λXY

21 ; for
zero-sum constraints, as in problem 16c this simplifies to 4λXY

11 .
e. Use equations such as

λ = log(µ111), λX
i = log

(
µi11

µ111

)
, λXY

ij = log

(
µij1µ111

µi11µ1j1

)

λXY Z
ijk = log

(
[µijkµ11k/µi1kµ1jk]

[µij1µ111/µi11µ1j1]

)

19. a. When Y is jointly independent of X and Z, πijk = π+j+πi+k. Dividing πijk by
π++k, we find that P (X = i, Y = j|Z = k) = P (X = i|Z = k)P (Y = j). But when
πijk = π+j+πi+k, P (Y = j|Z = k) = π+jk/π++k = π+j+π++k/π++k = π+j+ = P (Y = j).
Hence, P (X = i, Y = j|Z = k) = P (X = i|Z = k)P (Y = j) = P (X = i|Z = k)P (Y =
j|Z = k) and there is XY conditional independence.
b. For mutual independence, πijk = πi++π+j+π++k. Summing both sides over k, πij+ =
πi++π+j+, which is marginal independence in the XY marginal table.
c. For instance, model (Y,XZ) satisfies this, but X and Z are dependent (the conditional
association being the same as the marginal association in each case, for this model).
21. Use the definitions of the models, in terms of cell probabilities as functions of marginal
probabilities. When one specifies sufficient marginal probabilities that have the required
one-way marginal probabilities of 1/2 each, these specified marginal distributions then
determine the joint distribution. Model (XY, XZ, YZ) is not defined in the same way;
for it, one needs to determine cell probabilities for which each set of partial odds ratios
do not equal 1.0 but are the same at each level of the third variable.
a.

Y Y
0.125 0.125 0.125 0.125

X 0.125 0.125 0.125 0.125

Z = 1 Z = 2

This is actually a special case of (X,Y,Z) called the equiprobability model.
b.

0.15 0.10 0.15 0.10
0.10 0.15 0.10 0.15

c.

1/4 1/24 1/12 1/8
1/8 1/12 1/24 1/4
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d.

2/16 1/16 4/16 1/16
1/16 4/16 1/16 2/16

e. Any 2× 2× 2 table

23. Number of terms = 1 +

(
T
1

)
+

(
T
2

)
+ ...+

(
T
T

)
=
∑

i

(
T
i

)
1i1T−i = (1+1)T ,

by the Binomial theorem.

25. a. The λXY term does not appear in the model, so X and Y are conditionally
independent. All terms in the saturated model that are not in model (WXZ,WY Z)
involve X and Y , so permit an XY conditional association.
b. (WX,WZ,WY,XZ, Y Z)

27. For independent Poisson sampling,

L =
∑
i

∑
j

nij log µij −
∑
i

∑
j

µij = nλ+
∑
i

ni+λ
X
i +

∑
j

n+jλ
Y
j −

∑
i

∑
j

exp(log µij)

It follows that {ni+}, {n+j} are minimal sufficient statistics, and the likelihood equa-
tions are µ̂i+ = ni+, µ̂+j = n+j for all i and j. Since the model is µij = µi+µ+j/n,
the fitted values are µ̂ij = µ̂i+µ̂+j/n = ni+n+j/n. The residual degrees of freedom are
IJ − [1 + (I − 1) + (J − 1)] = (I − 1)(J − 1).

28. For this model, in a given row the J cell probabilities are equal. The likelihood equa-
tions are µ̂i+ = ni+ for all i. The fitted values that satisfy the model and the likelihood
equations are µ̂ij = ni+/J .

31. a. The formula reported in the table satisfies the likelihood equations µ̂h+++ =
nh+++, µ̂+i++ = n+i++, µ̂++j+ = n++j+, µ̂+++k = n+++k, and they satisfy the model,
which has probabilistic form πhijk = πh+++π+i++π++j+π+++k, so by Birch’s results they
are ML estimates.
b. Model (WX,Y Z) says that the composite variable (having marginal frequencies
{nhi++}) is independent of the Y Z composite variable (having marginal frequencies
{n++jk}). Thus, df = [no. categories of (XY )-1][no. categories of (Y Z)-1] = (HI −
1)(JK − 1). Model (WXY,Z) says that Z is independent of the WXY composite vari-
able, so the usual results apply to the two-way table having Z in one dimension, HIJ
levels of WXY composite variable in the other; e.g., df = (HIJ − 1)(K − 1).

Chapter 10

2. a. For any pair of variables, the marginal odds ratio is the same as the conditional
odds ratio (and hence 1.0), since the remaining variable is conditionally independent of
each of those two.
b. (i) For each pair of variables, at least one of them is conditionally independent of
the remaining variable, so the marginal odds ratio equals the conditional odds ratio. (ii)
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these are the likelihood equations implied by the λAC term in the model.
c. (i) Both A and C are conditionally dependent with M , so the association may change
when one controls for M . (ii) For the AM odds ratio, since A and C are conditionally
independent (given M), the odds ratio is the same when one collapses over C. (iii) These
are likelihood equations implied by the λAM and λCM terms in the model.
d. (i) no pairs of variables are conditionally independent, so collapsibility conditions are
not satisfied for any pair of variables. (ii) These are likelihood equations implied by the
three association terms in the model.

7. Model (AC,AM,CM) fits well. It has df = 1, and the likelihood equations imply
fitted values equal observed in each two-way marginal table, which implies the difference
between an observed and fitted count in one cell is the negative of that in an adjacent
cell; their SE values are thus identical, as are the standardized Pearson residuals. The
other models fit poorly; e.g. for model (AM,CM), in the cell with each variable equal
to yes, the difference between the observed and fitted counts is 3.7 standard errors.

19. W and Z are separated using X alone or Y alone or X and Y together. W and Y are
conditionally independent given X and Z (as the model symbol implies) or conditional
on X alone since X separates W and Y . X and Z are conditionally independent given
W and Y or given only Y alone.

20. a. Yes – let U be a composite variable consisting of combinations of levels of Y and
Z; then, collapsibility conditions are satisfied as W is conditionally independent of U ,
given X.
b. No.

21. b. Using the Haberman result, it follows that∑
µ̂1i log(µ̂0i) =

∑
µ̂0i log(µ̂0i)∑

ni log(µ̂ai) =
∑

µ̂ai log(µ̂ai), a = 0, 1.

The first equation is obtained by letting {µ̂i} be the fitted values for M0. The second
pair of equations is obtained by letting M1 be the saturated model. Using these, one can
obtain the result.

25. From the definition, it follows that a joint distribution of two discrete variables is
positively likelihood-ratio dependent if all odds ratios of form µijµhk/µikµhj ≥ 1, when
i < h and j < k.
a. For L×L model, this odds ratio equals exp[β(uh−ui)(vk−vj)]. Monotonicity of scores
implies ui < uh and vj < vk, so these odds ratios all are at least equal to 1.0 when β ≥ 0.
Thus, when β > 0, as X increases, the conditional distributions on Y are stochastically
increasing; also, as Y increases, the conditional distributions on X are stochastically in-
creasing. When β < 0, the variables are negatively likelihood-ratio dependent, and the
conditional distributions on Y (X) are stochastically decreasing as X (Y ) increases.
b. For row effects model with j < k, µhjµik/µhkµij = exp[(µi − µh)(vk − vj)]. When
µi − µh > 0, all such odds ratios are positive, since scores on Y are monotone increasing.
Thus, there is likelihood-ratio dependence for the 2× J table consisting of rows i and h,
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and Y is stochastically higher in row i.

27. a. Note the derivative of the log likelihood with respect to β is
∑

i

∑
j uivj(nij −µij),

which under indep. estimates is n
∑

i

∑
j uivj(pij − pi+p+j).

b. Use formula (3.9). In this context, ζ =
∑∑

uivj(πij − πi+π+j) and ϕij = uivj −
ui(
∑

b vbπ+b) − vj(
∑

a uaπa+) Under H0, πij = πi+π+j, and
∑∑

πijϕij simplifies to
−(
∑

uiπi+)(
∑

vjπ+j). Also under H0,∑
i

∑
j

πijϕ
2
ij =

∑
i

∑
j

u2
i v

2
jπi+π+j + (

∑
j

vjπ+j)
2(
∑
i

u2
iπi+) + (

∑
i

uiπi+)
2(
∑
j

v2jπ+j)

+2(
∑
i

∑
j

uivjπi+π+j)(
∑
i

uiπi+)(
∑
j

vjπ+j)−2(
∑
i

u2
iπi+)(

∑
j

vjπ+j)
2−2(

∑
j

v2jπ+j)(
∑
i

uiπi+)
2.

Then σ2 in (3.9) simplifies to

[
∑
i

u2
iπi+ − (

∑
i

uiπi+)
2][
∑
j

v2jπ+j − (
∑
j

vjπ+j)
2].

The asymptotic standard error is σ/
√
n, the estimate of which is the same formula with

πij replaced by pij.

28. For Poisson sampling, log likelihood is

L = nλ+
∑
i

ni+λ
X
i +

∑
j

n+jλ
Y
j +

∑
i

µi[
∑
j

nijvj]−
∑
i

∑
j

exp(λ+ ...)

Thus, the minimal sufficient statistics are {ni+}, {n+j}, and {∑j nijvj}. Differentiating
with respect to the parameters and setting results equal to zero gives the likelihood
equations. For instance, ∂L/∂µi =

∑
j vjnij −

∑
j vjµij, i = 1, ..., I, from which follows

the I equations in the third set of likelihood equations.

30. a. These equations are obtained successively by differentiating with respect to
λXZ , λY Z , and β. Note these equations imply that the correlation between the scores
for X and the scores for Y is the same for the fitted and observed data. This model uses
the ordinality of X and Y , and is a parsimonious special case of model (XY,XZ, Y Z).
b. The third equation is replaced by the K equations,∑

i

∑
j

uivjµ̂ijk =
∑
i

∑
j

uivjnijk, k = 1, ..., K.

This model corresponds to fitting L × L model separately at each level of Z. The G2

value is the sum of G2 for separate fits, and df is the sum of IJ − I − J values from
separate fits (i.e., df = K(IJ − I − J)).

31. Deleting the XY superscript to simplify notation,

log θij(k) = (λij + λi+1,j+1 − λi,j+1 − λi+1,j) + β(ui+1 − ui)(vj+1 − vj)wk.

This has form αij + βijwk, a linear function of the scores for the levels of Z. Thus, the
conditional association between X and Y changes linearly across the levels of Z.



21

36. Suppose ML estimates did exist, and let c = µ̂111. Then c > 0, since we must be able
to evaluate the logarithm for all fitted values. But then µ̂112 = n112 − c, since likelihood
equations for the model imply that µ̂111 + µ̂112 = n111 + n112 (i.e., µ̂11+ = n11+). Using
similar arguments for other two-way margins implies that µ̂122 = n122+c, µ̂212 = n212+c,
and µ̂222 = n222 − c. But since n222 = 0, µ̂222 = −c < 0, which is impossible. Thus we
have a contradiction, and it follows that ML estimates cannot exist for this model.

37. That value for the sufficient statistic becomes more likely as the model parameter
moves toward infinity.

Chapter 11

6. a. Ignoring order, (A=1,B=0) occurred 45 times and (A=0,B=1)) occurred 22 times.
The McNemar z = 2.81, which has a two-tail P -value of 0.005 and provides strong evi-
dence that the response rate of successes is higher for drug A.
b. Pearson statistic = 7.8, df = 1

7. b. z2 = (3− 1)2/(3 + 1) = 1.0 = CMH statistic.
e. The P -value equals the binomial probability of 3 or more successes out of 4 trials when
the success probability equals 0.5, which equals 5/16.

9. a. Symmetry has G2 = 22.5, X2 = 20.4, with df = 10. The lack of fit results
primarily from the discrepancy between n13 and n31, for which the adjusted residual is
(44− 17)/

√
44 + 17 = 3.5.

b. Compared to quasi symmetry, G2(S | QS) = 22.5− 10.0 = 12.5, df = 4, for a P -value
of .014. The McNemar statistic for the 2×2 table with row and column categories (High
Point, Others) is z = (78− 42)/

√
78 + 42 = 3.3. The 95% CI comparing the proportion

choosing High Point at the two times is 0.067 ± 0.039.
c. Quasi independence fits much better than independence, which has G2 = 346.4
(df = 16). Given a change in brands, the new choice of coffee brand is plausibly in-
dependent of the original choice.

12. a. Symmetry model has X2 = 0.59, based on df = 3 (P = 0.90). Independence has
X2 = 45.4 (df = 4), and quasi independence has X2 = 0.01 (df = 1) and is identical to
quasi symmetry. The symmetry and quasi independence models fit well.
b. G2(S | QS) = 0.591 − 0.006 = 0.585, df = 3 − 1 = 2. Marginal homogeneity is
plausible.
c. Kappa = 0.389 (SE = 0.060), weighted kappa equals 0.427 (SE = 0.0635).

15. Under independence, on the main diagonal, fitted = 5 = observed. Thus, kappa =
0, yet there is clearly strong association in the table.

16. a. Good fit, with G2 = 0.3, df = 1. The parameter estimates for Coke, Pepsi, and
Classic Coke are 0.580 (SE = 0.240), 0.296 (SE = 0.240), and 0. Coke is preferred to
Classic Coke.
b. model estimate = 0.57, sample proportion = 29/49 = 0.59.

17. G2 = 4.29, X2 = 4.65, df = 3; With JRSS-B parameter = 0, other estimates are



22

-0.269 for Biometrika, -0.748 for JASA, -3.218 for Communications, so prestige ranking
is: 1. JRSS-B, 2. Biometrika, 3. JASA, 4. Commun. Stat.

26. The matched-pairs t test compares means for dependent samples, and McNemar‘s
test compares proportions for dependent samples. The t test is valid for interval-scale
data (with normally-distributed differences, for small samples) whereas McNemar’s test
is valid for binary data.

28. a. This is a conditional odds ratio, conditional on the subject, but the other model
is a marginal model so its odds ratio is not conditional on the subject.
d. This is simply the mean of the expected values of the individual binary observations.
e. In the three-way representation, note that each partial table has one observation in
each row. If each response in a partial table is identical, then each cross-product that
contributes to the M-H estimator equals 0, so that table makes no contribution to the
statistic. Otherwise, there is a contribution of 1 to the numerator or the denominator,
depending on whether the first observation is a success and the second a failure, or the
reverse. The overall estimator then is the ratio of the numbers of such pairs, or in terms
of the original 2×2 table, this is n12/n21.

30. When {αi} are identical, the individual trials for the conditional model are identical
as well as independent, so averaging over them to get the marginal Y1 and Y2 gives bino-
mials with the same parameters.

31. Since βM = log[π+1(1 − π1+)/(1 − π+1)π1+], ∂βM/∂π+1 = 1/π+1 + 1/(1 − π+1) =
1/π+1(1− π+1) and ∂βM/∂π1+ = −1/(1− π1+)− 1/π1+ = −1/π1+(1− π1+). The covari-
ance matrix of

√
n(p+1, p1+) has variances π+1(1−π+1) and π1+(1−π1+) and covariance

(π11π22−π12π21). By the delta method, the asymptotic variance of
√
n[log(p+1p2+/p+2p1+)−

log(π+1π2+/π+2π1+)] is

[1/π+1(1− π+1),−1/π1+(1− π1+)]Cov[
√
n(p+1, p1+)][1/π+1(1− π+1),−1/π1+(1− π1+)]

′

which simplifies to the expression given in the problem. Under independence, the last
term in the variance expression drops out (since an odds ratio of 1.0 implies π11π22 =
π12π21) and the variance simplifies to (π1+π2+)

−1 + (π+1π+2)
−1. Similarly, with the delta

method the asymptotic variance of
√
n(β̂C) is π

−1
12 +π−1

21 (which leads to the SE in (11.10)
for β̂C)); under independence, this is (π1+π+2)

−1+(π+1π2+)
−1. For each variance, combin-

ing the two parts to get a common denominator, then expressing marginal probabilities
in each numerator in terms of cell probabilities and comparing the two numerators gives
the result.

34. Consider the 3×3 table with cell probabilities, by row, (0.20, 0.10, 0, / 0, 0.30, 0.10,
/ 0.10, 0, 0.20).

41. a. Since πab = πba, it satisfies symmetry, which then implies marginal homogeneity
and quasi symmetry as special cases. For a ̸= b, πab has form αaβb, identifying βb with
αb(1− β), so it also satisfies quasi independence.
c. β = κ = 0 is equivalent to independence for this model, and β = κ = 1 is equivalent
to perfect agreement.
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43. a. log(Πac/Πca) = βa − βc = (βa − βb) + (βb − βc) = log(Πab/Πba) + log(Πbc/Πcb).
b. No, this is not possible, since if a is preferred to b then βa > βb, and if b is preferred
to c then βb > βc; then, it follows that βa > βc, so a is preferred to c.

45. The kernel of the log likelihood simplifies to
∑

a<b nab(βa − βb), which further simpli-
fies to

∑
a βana+ −∑

βa(
∑

Nab), so the minimal sufficient statistics are {na+}.

Chapter 12

2. The sample proportions of yes responses are 0.86 for alcohol, 0.66 for cigarettes, and
0.42 for marijuana. To test marginal homogeneity, the likelihood-ratio statistic equals
1322.3 and the general CMH statistic equals 1354.0 with df = 2, extremely strong evi-
dence of differences among the marginal distributions.

3. a. Since r = g = s1 = s2 = 0, estimated logit is −0.57 and estimated odds =
exp(−0.57).
b. Race does not interact with gender or substance type, so the estimated odds for white
subjects are exp(0.38) = 1.46 times the estimated odds for black subjects.
c. For alcohol, estimated odds ratio = exp(−0.20+0.37) = 1.19; for cigarettes, exp(−0.20+
0.22) = 1.02; for marijuana, exp(−0.20) = 0.82.
7. a. Subjects can select any number of the sources, from 0 to 5, so a given subject could
have anywhere from 0 to 5 observations in this table. The multinomial distribution does
not apply to these 40 cells.
b. The estimated correlation is weak, so results will not be much different from treating
the 5 responses by a subject as if they came from 5 independent subjects. For source
A the estimated size effect is 1.08 and highly significant (Wald statistic = 6.46, df = 1,
P < 0.0001). For sources C, D, and E the size effect estimates are all roughly -0.2.
c. One can then use such a parsimonious model that sets certain parameters to be equal,
and thus results in a smaller SE for the estimate of that effect (0.063 compared to values
around 0.11 for the model with separate effects).

9. a. The general CMH statistic equals 14.2 (df = 3), showing strong evidence against
marginal homogeneity (P = .003). Likewise, Bhapkar W = 12.8 (P = 0.005)
b. With a linear effect for age using scores 9, 10, 11, 12, the GEE estimate of the age
effect is 0.086 (SE = 0.025), based on the exchangeable working correlation. The P -value
(0.0006) is even smaller than in (a), as the test is focused on df = 1.

11. GEE estimate of cumulative log odds ratio is 2.52 (SE = 0.12), similar to ML.

13. b. λ̂ = 1.08 (SE = 0.29) gives strong evidence that the active drug group tended to
fall asleep more quickly, for those at the two highest levels of initial time to fall asleep.

15. First-order Markov model has G2 = 40.0 (df = 8), a poor fit. If we add association
terms for the other pairs of ages, we get G2 = 0.81 and X2 = 0.84 (df = 5) and a good
fit.

22. Since v(µi) = µi for the Poisson and since µi = β, the model-based asymptotic
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variance is

V =
[∑

i

(
∂µi

∂β

)′
[v(µi)]

−1
(
∂µi

∂β

)]−1

= [
∑
i

(1/µi)]
−1 = β/n.

Thus, the model-based asymptotic variance estimate is ȳ/n. The actual asymptotic
variance that allows for variance misspecification is

V
[∑

i

(
∂µi

∂β

)′
[v(µi)]

−1Var(Yi)[v(µi)]
−1
(
∂µi

∂β

)]
V

= (β/n)[
∑
i

(1/µi)Var(Yi)(1/µi)](β/n) = (
∑
i

Var(Yi))/n
2,

which is estimated by [
∑

i(Yi − ȳ)2]/n2. The model-based estimate tends to be better
when the model holds, and the robust estimate tends to be better when there is severe
overdispersion so that the model-based estimate tends to underestimate the SE.

23. Since ∂µi/∂β = 1, u(β) =
∑

i

(
∂µi

∂β

)′
v(µi)

−1(yi − µi) = (1/σ2)
∑

i(yi − µi) =

(1/σ2)
∑

i(yi − β). Setting this equal to 0, β̂ = (
∑

i yi)/n = ȳ. Also,

V =
[∑

i

(
∂µi

∂β

)′
[v(µi)]

−1
(
∂µi

∂β

)]−1

= [
∑
i

(1/σ2)]−1 = σ2/n.

Also, the actual asymptotic variance that allows for variance misspecification is

V
[∑

i

(
∂µi

∂β

)′
[v(µi)]

−1Var(Yi)[v(µi)]
−1
(
∂µi

∂β

)]
V = (σ2/n)[

∑
i

(1/σ2)µi(1/σ
2)](σ2/n) = (

∑
µi)/n

2.

Replacing the true variance µi in this expression by (yi− ȳ)2, the last expression simplifies
(using µi = β) to

∑
i(yi − ȳ)2/n2.

26. a. GEE does not assume a parametric distribution, but only a variance function and
a correlation structure.
b. An advantage is being able to extend ordinary GLMs to allow for overdispersion, for
instance by permitting the variance to be some constant multiple of the variance for the
usual GLM. A disadvantage is not having a likelihood function and related likelihood-
ratio tests and confidence intervals.
c. They are consistent if the model for the mean is correct, even if one misspecifies the
variance function and correlation structure. They are not consistent if one misspecifies
the model for the mean.

31. b. For 0 < i < I, πi+1|i(t) = π, πi−1|i(t) = 1 − π, and πj|i = 0 otherwise. For the
absorbing states, π0|0 = 1 and πI|I = 1.

Chapter 13
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3. For a given subject, the odds of having used cigarettes are estimated to equal
exp[1.6209 − (−0.7751) = 11.0 times the odds of having used marijuana. The large
value of σ̂ = 3.5 reflects strong associations among the three responses.

6. a. β̂B = 1.99 (SE = 0.35), β̂C = 2.51 (SE = 0.37), with σ̂ = 0. e.g., for a given
subject for any sequence, the estimated odds of relief for A are exp(−1.99) = 0.13 times
the estimated odds for B (and odds ratio = 0.08 comparing A to C and 0.59 comparing
B and C). Taking into account SE values, B and C are better than A.

b. Comparing the simpler model with the model in which treatment effects vary by
sequence, double the change in maximized log likelihood is 13.6 on df = 10; P = 0.19 for
comparing models. The simpler model is adequate. Adding period effects to the simpler
model, the likelihood-ratio statistic = 0.5, df = 2, so the evidence of a period effect is
weak.

7. a. For a given department, the estimated odds of admission for a female are exp(0.173) =
1.19 times the estimated odds of admission for a male. For the random effects model, for
a given department, the estimated odds of admission for a female are exp(0.163) = 1.18
times the estimated odds of admission for a male.
b. The estimated mean log odds ratio between gender and admissions, given department,
is 0.176, corresponding to an odds ratio of 1.19. Because of the extra variance compo-
nent, permitting heterogeneity among departments, the estimate of β is not as precise.
(Note that the marginal odds ratio of exp(−0.07) = 0.93 is in a different direction, cor-
responding to an odds of being admitted that is lower for females than for males. This
is Simpson’s paradox, and by results in Chapter 9 on collapsibility is possible when De-
partment is associated both with gender and with admissions.)
c. The random effects model assumes the true log odds ratios come from a normal dis-
tribution. It smooths the sample values, shrinking them toward a common mean.

11. When σ̂ is large, subject-specific estimates of random effects models tend to be much
larger than population-averaged estimates from marginal models. See Sec. 13.2.3.

13. β̂2M−β̂1M = 0.39 (SE = 0.09), β̂2A−β̂1A = 0.07 (SE = 0.06), with σ̂1 = 4.1, σ̂2 = 1.8,
and estimated correlation 0.33 between random effects.

15. b. When σ̂ is large, the log likelihood is flat and many N values are consistent with
the sample. A narrower interval is not necessarily more reliable. If the model is incorrect,
the actual coverage probability may be much less than the nominal probability.

23. When σ̂ = 0, the model is equivalent to the marginal one deleting the random effect.
Then, probability = odds/(1 + odds) = exp[logit(qi) + α]/[1 + exp[logit(qi) + α]]. Also,
exp[logit(qi)] = exp[log(qi)−log(1−qi)] = qi/(1−qi). The estimated probability is mono-
tone increasing in α̂. Thus, as the Democratic vote in the previous election increases, so
does the estimated Democratic vote in this election.

25. a. P (Yit = 1|ui) = Φ(x
′
itβ + z

′
itui), so

P (Yit = 1) =
∫

P (Z ≤ x
′

itβ + z
′

itui)f(u;Σ)dui,
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where Z is a standard normal variate that is independent of ui. Since Z − z
′
itui has a

N(0, 1+z
′
itΣzit) distribution, t he probability in the integrand is Φ(x

′
itβ[1+z

′
itΣzit]

−1/2),
which does not depend on ui, so the integral is the same.
b. The parameters in the marginal model equal those in the GLMM divided by [1 +
z
′
itΣzit]

1/2, which in the univariate case is
√
1 + σ2.

27. b. Two terms drop out because µ̂11 = n11 and µ̂22 = n22.
c. Setting β0 = 0, the fit is that of the symmetry model, for which log(µ̂21/µ̂12) = 0.

Chapter 14

3. With exchangeable association, the same parameter β applies for each association
term. One can express each association term as that parameter times a product of
dummy variables for the capture outcome for each time. The predicted missing count is
22.5, and the predicted population size is 90.5.

6.a. Including litter size as a predictor, its estimate is -0.102 with SE = 0.070. There
is not strong evidence of a litter size effect. b. The ρ̂ estimates for the four groups are
0.32, 0.02, -0.03, and 0.02. Only the placebo group shows evidence of overdispersion.

7.a. Estimate should be minus infinity.
b. Using the QL approach with beta-binomial form of variance, the ρ̂ = 0.12.

10. a. No, because the Poisson distribution has variance equal to the mean and has mode
equal to the integer part of the mean.
b. A difference of 0.308 in fitted log means corresponds to a fitted ratio of exp(0.308) =
1.36. The Wald CI is exp[0.308± 1.96(0.038)] = exp(0.2335, 0.3825) = (1.26, 1.47).
c. exp[0.308±1.96(0.127)] = (1.06, 1.75). The CI is much wider for the negative binomial
model, since the Poisson model exhibits considerable overdispersion and fits much worse.

13. a. log µ̂ = −4.05 + 0.19x.
b. log µ̂ = −5.78 + 0.24x, with estimated standard deviation 1.0 for the random effect.

17. In the multinomial log likelihood,

∑
ny1,...,yT log πy1,...,yT ,

one substitutes

πy1,...,yT =
q∑

z=1

[
T∏
t=1

P (Yt = yt | Z = z)]P (Z = z).

18. The null model falls on the boundary of the parameter space in which the weights
given the two components are (1, 0). For ordinary chi-squared distributions to apply, the
parameter in the null must fall in the interior of the parameter space.

20. E(Yit) = πi = E(Y 2
it ), so Var(Yit) = πi−π2

i . Also, Cov(YitYis) = Corr(YitYis)
√
[Var(Yit)][Var(Yis)] =
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ρπi(1− πi). Then,

Var(
∑
i

Yit) =
∑
i

Var(Yit+2
∑
i<j

Cov(Yit, Yis) = niπi(1−πi)+ni(ni−1)ρπi(1−πi) = niπi(1−πi)[1+(ni−1)ρ].

21.a.hen θ = 0, the beta distribution is degenerate at µ and formula (13.9) simplifies to(
n
y

)
µy(1− µ)n−y.

b . A binary response must have variance equal to µi(1− µi), which implies ϕ = 1 when
ni = 1.

26. The likelihood is proportional to

(
k

µ+ k

)nk( µ

µ+ k

)∑
i
yi

The log likelihood depends on µ through

−nk log(µ+ k) +
∑
i

yi[log µ− log(µ+ k)]

Differentiate with respect to µ, set equal to 0, and solve for µ yields µ̂ = ȳ.

27. For the beta binomial, Var(Y ) = E[nπ(1− π)] + Var(nπ) =
nE(π)− nE(π2) + n[(Eπ)2 − (Eπ)2] + n2Var(π)
= nE(π)[1− E(π)] + n(n− 1)Var(π) = mµ(1− µ) + n(n− 1)µ(1− µ)θ/(1 + θ)
= nµ(1− µ)[1 + (n− 1)θ/(1 + θ)].
For the negative binomial,

Var(Y ) = E(λ) + Var(λ) = µ+ µ2/k.

29. Using the variance decomposition of Exercise 14.27,

Var(Y ) = E(λ) + Var(λ) = µ+ µ/k.

34. With a normally distributed random effect, with positive probability the Poisson
mean (conditional on the random effect) is negative.

Chapter 15

2.a. Predict disenrollment for those of age > 70 and ≤ 83 if they have dementia or
Parkinson’s.
b. Predict disenrollment for no one.

4.a. Predict at least one satellite for the 88 crabs of width ≥ 25.85 cm and color in the
three lowest categories, and for the 33 crabs of width < 25.85 cm and color in the two
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lowest categories. Predict no satellites for the other cases.
b. Those with the greater width (between 25.55 and 25.85) are predicted not to have
satellites, whereas the logistic model predicts that width has a positive effect on the like-
lihood of a satellite (given the color).
10.b. For the Jaccard dissimilarity, the first step combines states with Jaccard dissim-
ilarity 0, which is only California and Florida, and the other states stay as separate
clusters. At the second step, New York and Texas are combined, having Jaccard dis-
similarity 0.333. (At subsequent steps, Illinois is joined with Massachusetts, then Michi-
gan is joined with the California/Florida cluster, thenthe New York/Texas cluster is
joined with the Illinois/Massachusetts cluster, then Washington is joined with the Cali-
fornia/Florida/Michigan cluster, and then finally the two clusters left are joined to give
a single cluster.
15. For such an application, the ratio d/p is very close to 1 (since for any given product,
there is a high probability that neither person buys it). So, the dissimilarity (b + c)/p
would typically be very close to 0, even if there is no agreement between the people in
what they buy.

Chapter 16

1. a. P -value is 0.22 for Pearson test and 0.208 for the one-sided Fisher’s exact test
P -value, and 0.245 for the two-sided Fisher’s exact test P -value based on summing all
probabilities no greater than observed.
b. Large-sample CI for odds ratio is (0.51, 15.37), and exact based on Cornfield approach
is (0.39, 31.04).

3. a. The margins all equal 1.0. Every table with these margins has each estimated
expected frequency equal to 1/I, has I cell entries equal to 1 and (I2 - I) entries equal
to 0, and has the same probability (namely, 1/I!, from formula 3.26). Thus the sum of
probabilities of tables no more likely to occur than the observed table equals 1.0. This
is the P -value for the test that orders the tables by their probabilities under H0. (Also,
each table has the same X2 value. Thus the probability of observing X2 at least as large
as the given one is P = 1.0.)
b. There are I! different tables with the given margins, each equally likely. The largest
possible value of C −D occurs for the observed table, so the null P [C −D ≥ observed]
= (1/I!). Thus using the information on ordering can result in a much different P -value
than ignoring it.

9. Using the delta method, the asymptotic variance is (1− 2π)2/4n. This vanishes when
π= 1/2, and the convergence of the estimated standard deviation to the true value is
then faster than the usual rate.

11.a. By the delta method with the square root function,
√
n[
√
Tn/n−

√
µ] is asymptot-

ically normal with mean 0 and variance (1/2
√
µ)2(µ), or in other words

√
Tn − √

nµ is
asymptotically N(0, 1/4).

b. If g(p) = arcsin(
√
p), then g′(p) = (1/

√
1− p)(1/2

√
p) = 1/2

√
p(1− p), and the result
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follows using the delta method. Ordinary least squares assumes constant variance.

16.a. By the delta method with the square root function,
√
n[
√
Tn/n−

√
µ] is asymptot-

ically normal with mean 0 and variance (1/2
√
µ)2(µ), or in other words

√
Tn − √

nµ is
asymptotically N(0, 1/4).

b. If g(p) = arcsin(
√
p), then g′(p) = (1/

√
1− p)(1/2

√
p) = 1/2

√
p(1− p), and the result

follows using the delta method. Ordinary least squares assumes constant variance.

17. The vector of partial derivatives, evaluated at the parameter value, is zero. Hence
the asymptotic normal distribution is degenerate, having a variance of zero. Using the
second-order terms in the Taylor expansion yields an asymptotic chi-squared distribu-
tion.

19.a. The vector ∂π/∂θ equals (2θ, 1−2θ, 1−2θ,−2(1−θ))′. Multiplying this by the diag-
onal matrix with elements [1/θ, [θ(1−θ)]−1/2, [θ(1−θ)]−1/2, 1/(1−θ)] on the main diagonal
shows that A is the 4×1 vector A = [2, (1−2θ)/[θ(1−θ)]1/2, (1−2θ)/[θ(1−θ)]1/2,−2]′.
Recall that θ̂ = (p1+ + p+1)/2. Since A′A = 8 + (1 − 2θ)2/θ(1 − θ), the asymptotic
variance of θ̂ is (A′A)−1/n = 1/n[8+(1−2θ)2/θ(1− θ)], which simplifies to θ(1− θ)/2n.
This is maximized when θ = .5, in which case the asymptotic variance is 1/8n. When
θ = 0, then p1+ = p+1 = 0 with probability 1, so θ̂ = 0 with probability 1, and the
asymptotic variance is 0. When θ = 1, θ̂ = 1 with probability 1, and the asymptotic
variance is also 0. In summary, the asymptotic normality of θ̂ applies for 0 < θ < 1, that
is when θ is not on the boundary of the parameter space. This is one of the regularity
conditions that is assumed in deriving results about asymptotic distributions.
b. The asymptotic covariance matrix is (∂π/∂θ)(A′A)−1(∂π/∂θ)′ = [θ(1− θ)/2][2θ, 1−
2θ, 1− 2θ,−2(1− θ)]′[2θ, 1− 2θ, 1− 2θ,−2(1− θ)].

23. X2 and G2 necessarily take very similar values when (1) the model holds, (2) the
sample size n is large, and (3) the number of cells N is small compared to the sample
size n, so that the expected frequencies in the cells are relatively large.

29. P (|P̂ − Po| ≤ B) = P (|P̂ − Po|/
√
Po(1− Po)/M ≤ B/

√
Po(1− Po)/M . By the

approximate normality of P̂ , this is approximately 1 − α if B/
√
Po(1− Po)/M = zα/2.

Solving for M gives the result.

31. For every possible outcome the Clopper-Pearson CI contains 0.5. e.g., when y = 5, the
CI is (0.478, 1.0), since for π0 = 0.478 the binomial probability of y = 5 is 0.4785 = 0.025.

33.

L(θ) = log


(

n1+

n11

)(
n− n1+

n+1 − n11

)
θn11

∑m+
u=m−

(
n1+

u

)(
n− n1+

n+1 − u

)
θu

 , m− ≤ n11 ≤ m+

= n11 log(θ)− log

[∑(
n1+

u

)(
n− n1+

n+1 − u

)
θu
]
+ · · · .
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∂L

∂θ
=

n11

θ
−

∑
u

(
n1+

u

)(
n− n1+

n+1 − u

)
θu−1

∑(
n1+

u

)(
n− n1+

n+1 − u

)
θu

,

so θ̂ satisfies

n11 = n1+

∑(
n1+ − 1
u− 1

)(
n− n1+

n+1 − u

)
θ̂u

∑(
n1+

u

)(
n− n1+

n+1 − u

)
θ̂u

.

Now,

E(n11) =

∑
u

(
n1+

u

)(
n− n1+

n+1 − u

)
θu

∑(
n1+

u

)(
n− n1+

n+1 − u

)
θu

= n1+

∑(
n1+ − 1
u− 1

)(
n− n1+

n+1 − u

)
θu

∑(
n1+

u

)(
n− n1+

n+1 − u

)
θu

Thus ML estimate satisfies E(n11) = n11.


