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Introduction and Changes from First Edition 
 
 This manual accompanies Agresti’s Categorical Data Analysis (2002).  It provides assistance in 
doing the statistical methods illustrated there, using S-PLUS and the R language.  Although I have used 
the Windows versions of these two softwares, I suspect there are few changes in order to use the code in 
other ports. I have included examples of almost all of the major (and some minor) analyses introduced by 
Agresti.  The manual chapters parallel those from Agresti so that, for example, in Chapter 2 I discuss 
using the software to conduct analyses from Agresti’s Chapter 2.  In most cases I use the data provided 
in the text.  There are only one or two occasions where I use data from the problems sections in Agresti.  
Discussion of results of analyses is brief since the discussion appears in the text.  That said, one of the 
improvements in the current manual over the previous version of the manual (Thompson, 1999) is that it 
is more self-contained.  In addition, I include a summary of the corresponding chapter from Agresti at the 
beginning of each chapter in the manual.  However, it will still be helpful to refer to the text to understand 
completely the analyses in this manual. 

In the manual, I frequently employ functions that come from user-contributed libraries (packages) 
of S-PLUS (or R).  In the text, I note when a particular library or package is used.  These libraries are not 
automatically included with the software, but can be easily downloaded from the internet, especially for 
the newest version of R for Windows.  I mention in the next section how to get these libraries and how to 
install them for use.  Many times, the library or package has its own help manual or help section.  I will 
demonstrate how to access these from inside the software.  
 I used S-PLUS 6.1 through 7.0 for Windows and R versions 1.8 through 2.8.1 for Windows for the 
analyses.  However, S-PLUS for Windows versions as far back as 3.0 will do many of the analyses (but 
not all).  This is not so easily said for R, as user-contributed packages frequently apply to the newer 
versions of R (e.g., at least 1.3.0).  Many of the analyses can be applied to either S-PLUS or R.  Some 
need small changes in order to apply to both softwares; these changes I have provided where necessary.  
In general, when I refer to both of the softwares, I will use the “generic” name, S.  Also, if I do not indicate 
that I am using either S-PLUS or R for a particular command, that means it will work in both softwares.   
 To separate input to R or S-PLUS and output from other text in this manual, I have put normal 
text in Arial font and commands and output in courier font.  The input commands are in bold font, 
whereas the output is not.  Also, all assignments will use the “<-“ convention instead of “=” (or, “_”). 
 Finally, this manual assumes some familiarity in using the basic commands of S.  To keep the 
manual from being too long I do not discuss at great length functions that I use which are not directly 
related to categorical data analysis.  See Section H below for information on obtaining introductory 
documentation for R or S-PLUS. 
 
A. Obtaining the R Software for Windows  
 
 The language (and associated software interface) R can loosely be described as “open-source” 
S.  It is downloadable from the site http://cran.r-project.org.  Information on how to install R, as well as 
several PDF documents and user-contributed documents on the language and its features are included 
on the website. 
 
B. Libraries in S-PLUS and Packages in R 
 
 The S-PLUS libraries used in this manual that do not come with the software are 

MASS (B. Ripley) - (used throughout) 
Multiv (F. Murtagh) - (used for correspondence analysis) 
cond (A Brazzale) – (used for conditional logistic regression in chapter 6, NOTE: 

no longer supported) http://www.ladseb.pd.cnr.it/~brazzale/lib.html#ins 
Design (F. Harrell) - (used throughout) 
Hmisc (F. Harrell) - (support for Design library) 
nnet (B. Ripley) - for the function multinom (chapter 7, multinomial logit models) 
nolr (M. Mathieson) - (nonlinear ordinal models - supplement to chapter 9) 
rmtools (A. Azzalini & M. Chiogna) - (used for chapter 11) 
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yags2 (V. Carey) - (used for chapter 11) 
 
Most of these libraries can be obtained in .zip form from URL http://lib.stat.cmu.edu/DOS/S/Swin or 
http://lib.stat.cmu.edu/DOS/S. Currently, the URL http://www.stats.ox.ac.uk/pub/MASS4/Winlibs/ contains 
many ports to S-PLUS 6.0 for Windows.  To install a library, first download it to any folder on your 
computer.  Next, “unzip” the file using an “unzipping” program.  This will extract all the files into a new 
folder in the directory into which you downloaded the zip file.  Move the entire folder to the library 
directory under your S-PLUS directory (e.g., c:/program files/Insightful/splus61/library).   
 
To load a library, you can either pull down the File menu in S-PLUS and select Load Library or type one 
of the following in a script or command window 
 

library(“libraryname”,first=T) # loads libraryname into first database position 
library(libraryname) 

 
To use the library’s help manual from inside S-PLUS or R type in a script or command window 

help(library=“libraryname”) 
 

Many of the R packages used in this manual that do not come with the software are listed below 
(not a compete list) 
 

MASS – (VR bundle, Venables and Ripley) 
rmutil (J. Lindsey) – (used with gnlm) http://alpha.luc.ac.be/~lucp0753/rcode.html 
gnlm (J. Lindsey) –  http://alpha.luc.ac.be/~lucp0753/rcode.html 
repeated (J. Lindsey) –  http://alpha.luc.ac.be/~lucp0753/rcode.html 
SuppDists (B. Wheeler) – (used in chapter 1) 
combinant (V. Carey) – (used in chapters 1, 3) 
methods – (used in chapter 3) 
Bhat (E. Luebeck)– (used throughout) 
mgcv (S. Wood) – (used for fitting GAM models) 
modreg (B. Ripley) – (used for fitting GAM models) 
gee and geepack (J. Yan) – (used in chapter 11) 
yags (V. Carey) – (used in chapter 11) 
gllm – (used for generalized log linear models and latent class models) 
GlmmGibbs (Myles and Clayton) – (used for generalized linear mixed models, chap. 12) 
glmmML (G. Broström) – (used for generalized linear mixed models, chapter 12) 
CoCoAn (S. Dray) – (used for correspondence analysis) 
e1071 (A. Weingessel) – (used for latent class analysis) 
vcd (M. Friendly)– (used in chapters 2, 3, 5, 9 and 10) 
brlr (D. Firth)  –  (used in chapter 6) 
BradleyTerry (D. Firth) – (used in chapter 10) 
ordinal (P. Lindsey) – (used in chapter 7) http://popgen.unimaas.nl/~plindsey/rlibs.html  

  design (F. Harrell) – (used throughout) http://hesweb1.med.virginia.edu/biostat   
  Hmisc (F. Harrell) – (used throughout) 

VGAM (T. Yee) – (used in chapters 7 and 9) 
http://www.stat.auckland.ac.nz/~yee/VGAM/download.shtml  
mph (J. Lang) – (used in chapters 7, 10) 
http://www.stat.uiowa.edu/~jblang/mph.fitting/mph.fit.documentation.htm#availability  
exactLoglinTest (B. Caffo) – (used in chapters 9, 10) 
http://www.biostat.jhsph.edu/~bcaffo/downloads.htm 
aod – used in chapter 13 
lca – used in chapter 13 
mmlcr – used in chapter 13 
flexmix – used in chapter 13 
npmlreg – used in chapter 13 
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Rcapture – used in chapter 13 
 
R packages can be installed from Windows using the install.packages function.  This function can be 
called from the console or from the pull-down “Packages” menu.  A package is loaded in the same way 
as for S-PLUS.  As well, the command help(package=pkg) can used to invoke the help menu for 
package pkg.   
 
To detach a library or package, named library.name or pkg, respectively, one can issue the following 
commands, among others. 
 

detach(“library.name”) # S-PLUS 
detach(“package:pkg”) # R 

 
 
C. Setting contrast types using Options() 
 
The options function can be used to set the type of contrasts used in estimating models.  The default 
for S-PLUS is Helmert contrasts for factors and polynomial contrasts for ordered factors.  The default for 
R is treatment contrasts for factors and polynomial contrasts for ordered factors.  I use treatment 
contrasts for factors for most of the analysis so that they match Agresti’s estimates.  However, there are 
times when I use sum-to-zero contrasts (contr.sum).  The type of contrasts I use is usually indicated by a 
call to options prior to fitting the model, if necessary.  If the call to options has been omitted, please 
assume I am using treatment contrasts for factors. 
 
One can find out exactly what the contrasts are in a glm-type fit by using the functions model.matrix 
and contrasts.  Issuing the comand contrasts(model.matrix(fit)) gives the contrasts. 
 
 

D. Credit for functions 
 
The author of a function is named if the function was not written by me.  Whenever I use functions that do 
not come with S, I will mention the S-PLUS library or R package that includes them.  I also give a URL, if 
applicable. 
 
E. Editing functions 
 
In several places in the text, I mention creating functions or editing existing functions that come with 
either S-PLUS or R.  There are many ways to edit or create a function.  Some of them are specific to your 
platform.  However, one procedure that works on all platforms from the command line is a call to fix.  For 
example, to edit the method function update.default, and call the new version update.crosstabs, type 
the following at the command line (R or S-PLUS) 
 
update.crosstabs<-fix(update.default) 
 
This will bring up the function code for update.default in a text editor from which you can make 
changes to the function, save them, and exit the editor.  The changes will be incorporated in 
update.crosstabs.  Note that the function edit works in mostly the same way here, but is actually a 
generic function that allows editing of not just function objects, but all other S objects as well. 
 
To create a function from scratch, put the name of the new function as the argument to fix.  For 
example,  
 
fix(my.new.function) 
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To create functions from a script file (e.g., S-PLUS) or another editing program, one general procedure is 
to source the script file using e.g., 
 
source(“c:/path/name.of.script.file”) 
 
 
F. A note about using S-PLUS Menus 
 
Many of the more common methods I will illustrate can be accomplished via the S-PLUS menus.  If you 
want to know what code corresponds to a particular menu command, issue the menu command and call 
up the History window (using the Window menu).  All commands you have issued from menus will be 
there in (gui) code form which can then be used in a command window or script. 
 
G. Notice of errors 
 
All code has been tested, but there are undoubtedly still errors.  Please notify me of any errors in the 
manual or of easier ways to perform tasks.  My email address is lthompson10@yahoo.com. 
 
H.  Introductions to the S Language   
 
This manual assumes some working knowledge of the S language.  There is not space to also describe 
it.  Fortunately, there are many tutorials available for learning S.  Some of them are listed in your User’s 
Guides that come with S-PLUS.  Others are listed on the CRAN website for R (see Section A above). 
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Chapter 1: Distributions and Inference for  
Categorical Data 

 
A.  Summary of Chapter 1, Agresti 
  

In Chapter 1, Agresti introduces categorical data, including its types, distributions and statistical 
inference.  Categorical variables measured on a nominal scale take values that do not have a natural 
ordering, whereas categorical variables measured on an ordinal scale take values that do have an 
ordering, but not necessarily a numerical ordering.  Categorical variables are sometimes called discrete 
variables because they only take on a discrete or countable number of values.  

Agresti discusses three main distributions for categorical variables: binomial, multinomial, and 
Poisson.  The binomial distribution describes the distribution of the sum of a fixed number of independent 
Bernoulli trials (i.e., binary outcomes), where the probability of success is fixed across trials.  The 
multinomial distribution extends the binomial distribution to handle trials with possibly more than two 
outcomes.  The Poisson distribution describes the distribution of the number of events occurring in a 
specified length of time or space, where the intervals of time or space are independent with respect to the 
occurrence of an event.  Formal assumptions related to the Poisson distribution (which derives from the 
homogeneous Poisson process) can be found in any text on stochastic processes (see, for example, 
Ross, 1997).  A nice explanation, however, can also be found in Ewens and Grant (2001). 

When observations modeled as coming from a binomial or Poisson distribution are much more 
variable than that predicted by the respective theoretical distributions, the use of these distributions can 
lead to poor predictions because the excess variability is not considered.  The prescence of this excess 
variability is called overdispersion.  There are options for dealing with overdispersion when it is suspected 
in a data set that otherwise could be reasonably modeled using a conventional distribution like the 
binomial or Poisson.  One option is to incorporate random effects into the model (see Agresti, Chapter 
12).  Another option is to use a distribution with a greater variance than that dictated by the binomial or 
Poisson (e.g., the beta-binomial distribution is a mixture of binomials with different probabilities of 
success). 
 Given a particular probability distribution to describe the data, the likelihood function is the 
probability of the data as a function of the parameters.  The maximum likelihood estimate (MLE) is the 
value of the parameter that maximizes this function.  Thus, the MLE is the value for the set of parameters 
that give the observed data the highest probability of occurrence.  Inference for categorical data deals 
with the MLE and tests derived from maximum likelihood.  Tests of the null hypothesis of zero-valued 
parameters can be carried out via the Wald Test, Likelihood Ratio Test, and the Score Test.  These tests 
are based on different aspects of the likelihood function, but are asymptotically equivalent.  However, in 
smaller samples they yield different answers and are not equally reliable. 
 Agresti also discusses confidence intervals derived from “inverting” the above three tests.  As 
mentioned on p. 13 of Agresti, “a 95% confidence interval for β  is the set of 0β  for which the test of H0: 

β = 0β  has a P-value exceeding 0.05.”  That is, it describes the set of 0β  values for which we would 
“keep” the null hypothesis (assuming a significance level of 0.05). 

The chapter concludes with illustration of statistical inference for binomial and multinomial 
parameters. 
 
B.  Discrete Probability Distributions in S-PLUS and R 
 
 S-PLUS and R come with support for many built-in probability distributions, and support for many 
specialized distributions can be downloaded from statlib or from the CRAN website (see Introduction 
Section).  Each distribution has functions for obtaining cumulative probabilities, density values, quantiles, 
and realizations of random variates.  For example, in both S-PLUS and R 
 

dbinom(x, size, prob) computes the density of the indicated binomial distribution at x  
pbinom(x, size, prob) computes the cumulative density of the indicated binomial distribution 
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at x  
qbinom(p, size, prob) computes the pth quantile of the indicated binomial distribution  
rbinom(n, size, prob) draws n random variates from the indicated binomial distribution 

Some of the other discrete distributions included with S-PLUS and R are the Poisson, negative binomial, 
geometric, hypergeometric, and discrete uniform.  rnegbin is included with the MASS library and can 
generate negative binomial variates from a distribution with nonintegral “size”.  The beta-binomial is 
included in R with packages rmutil and gnlm (for beta-binomial regression via gnlr) from Jim Lindsey, 
as well as the R package SuppDists from Bob Wheeler.  Both the rmutil package and SuppDists 
package contain functions for many other distributions as well (e.g., negative hypergeometric, 
generalized hypergeometric, beta-negative binomial, and beta-pascal or beta-geometric).  The library 
wle in R has a function for generating from a discrete uniform using runif.  The library combinat in R 
gives functions for the density of a multinomial random vector (dmnom) and for generating multinomial 
random vectors (rmultinomial).  The rmultinomial function is given below 
 

rmultinomial<-function (n, p, rows = max(c(length(n), nrow(p))))  
{ 
    rmultinomial.1 <- function(n, p) { 
        k <- length(p) 
        tabulate(sample(k, n, replace = TRUE, prob = p), nbins = k) 
    } 
    n <- rep(n, length = rows) 
    p <- p[rep(1:nrow(p), length = rows), , drop = FALSE] 
    t(apply(matrix(1:rows, ncol = 1), 1, function(i) rmultinomial.1(n[i], p[i, ]))) 
 # could be replaced by 
 # sapply(1:rows, function(i) rmultinomial.1(n[i],  p[i, ])) 
} 

 
Because of the difference in scoping rules between the two implementations of S (i.e., R uses lexical 
scooping and S-PLUS uses static scooping), the function rmultinomial in R cannot just be sourced 
into S-PLUS.  One alternative is to use the following S-PLUS implementation, which avoids defining the 
rmultinomial.1 function, the source of the scoping problem above. 
 

rmultinomial<-function (n, p, rows = max(c(length(n), nrow(p))))  
{ 
    n <- rep(n, length = rows) 
    p <- p[rep(1:nrow(p), length = rows), , drop = FALSE] 
 
    sapply(1:rows,function(i,n,p) { 
   k <- length(p[i,]) 
         tabulate(sample(k, n[i], replace = TRUE, prob = p[i,]), nbins = k) 
   },n=n,p=p) 
} 

 
See Gentleman and Ilhaka (2000) or the R-FAQ for more information on the differences in scoping rules 
between R and S-PLUS. 
Jim Lindsey’s gnlm package contains a function called fit.dist, which fits a probability distribution of 
choice to frequency data. One can also use the sample function to generate (with or without 
replacement) from multiple categories given a set of probabilities for those categories.   

More information on the use of these functions can be found in the S-PLUS or R online manuals or on 
pages 107-108 of Venables and Ripley (2002). 
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C.  Proportion of Vegetarians (Statistical Inference for Binomial Parameters) 
 
 An example of the use of the S-PLUS distribution functions comes from computing the asymptotic 
and exact confidence intervals on the proportion of vegetarians (p. 16).  In a questionnaire given to an 
introductory statistics class (n = 25), zero students said they were vegetarians.  Assuming that the 
number responding yes is distributed binomially with success probability π , what is a 95% confidence 
interval for π , given that a point estimate, π̂ , is 0?  Agresti cites three approximate methods and two 
exact methods.  The approximate methods are given first. 
 
1.  Approximate Confidence Intervals on π  
 
1) Inverting the Wald Test (AKA Normal Approximation) 

 

 / 2
ˆ ˆ(1 )ˆ z

nα
π ππ −±  (1.1) 

which is computed quite easily in S-PLUS “by hand”.   
 
 phat <- 0 
 n <- 25 
 phat + c(-1, 1) * qnorm(p = 0.975) * sqrt((phat * (1 - phat))/n) 
 [1] 0 0 
 
However, its value is available via the binconf function in the Hmisc library in both S-PLUS and R, using 
the option method=”asymptotic”.   
 
   library(Hmisc, T) 
 binconf(x=0, n=25, method="asymptotic") 

 
 PointEst Lower Upper  
           0     0     0 
 
 
 
2) The score confidence interval contains the 0π  values for which .025| |Sz z< , where 

0 0 0ˆ( ) (1 ) /Sz nπ π π π= − − .  The endpoints of the interval solve the equations  
 

 0 0 0 .025ˆ( ) (1 ) / n zπ π π π− − = ±  (1.2) 
 
Agresti gives the analytical expressions for these endpoints on his p. 16, which we could type into S-
PLUS or R to get the values.  However, even if there were no analytical expression, or we didn’t want to 
try to find them, we could use the function nlmin to solve the set of simultaneous equations in (1.2), 
yielding an approximate confidence interval. (See point 3) and Chapter 3 for examples). 
 
Built-in functions that compute the score confidence interval include the prop.test function (S-PLUS 
and R) 
 
 res<-prop.test(x=0,n=25,conf.level=0.95,correct=F) 
 res$conf.int 
 
 [1] 0.0000000 0.1331923 
 attr(, "conf.level"): 
 [1] 0.95 
 
and the binconf function from Hmisc via its method=”wilson” option: 
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   library(Hmisc, T) 
 binconf(x=0, n=25, alpha=.05, method="wilson") 
 
  PointEst         Lower     Upper  
         0 1.202937e-017 0.1331923 

 
3)   A 95% likelihood-ratio (LR) confidence interval is the set of 0π  for which the likelihood ratio test has a 
p-value exceeding the significance level, α .  The expression for the LR statistic is simple enough so that 
we can find the upper confidence bound analytically.  However, we could have obtained it using uniroot 
(both R and S-PLUS) or using nlmin (S-PLUS only).  These functions can be used to solve an equation, 
i.e., find its zeroes. uniroot is only for univariate functions.  nlmin can also be used to solve a system 
of equations.  A function doing the same in R would be function nlm or function nls (for nonlinear least 
squares) in library nls. 
 
Using uniroot we set up the LR statistic as a function, giving as first argument the parameter for which 
we want the confidence interval. The remaining arguments are the observed successes, the total, and the 
significance level.  uniroot takes an argument called interval that specifies where we want to search 
for the root.  There cannot be a singularity at either of these values.  Thus, we cannot use 0 and 1. 
 
LR <- function(pi.0, y, n, alpha) { 
   -2*(y*log(pi.0) + (n-y)*log(1-pi.0)) - qchisq(1-alpha,df=1) 
  } 
 
uniroot(f=LR, interval=c(0.000001,.999999), n=25, y=0, alpha=.05)  
 
$root: 
[1] 0.07395187 
 
$f.root: 
[1] -5.615436e-006 
 
The function nlmin can be used to solve the nonlinear equation 
 

 2
0 150 log(1 ) (0.05)π χ− − =  

for 0π .  We can take advantage of the function solveNonlinear listed in the help page for nlmin in S-
PLUS.  This function minimizes the squared difference between the LR statistic and the chi-squared 
quantile at α . 
 
solveNonlinear <- function(f, y0, x, ...){ 
  # solve f(x) = y0 
  # x is vector of initial guesses, same length as y0 
  # ... are additional arguments to nlmin (not to f) 
  g <- function(x, y0, f) sum((f(x) - y0)^2) 
  g$y0 <- y0   # set g's default value for y0 
  g$f <- f     # set g's default value for f 
  nlmin(g, x, ...) 
} 
 
LR <- function(x) -50*log(1-x)  # define the LR function 
 
solveNonlinear(f=LR, y0= qchisq(.95, df=1), x=.5)   # start finding the solution at 
0.5 
 
$x: 
[1] 0.07395197 
 
$converged: 
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[1] T 
 
$conv.type: 
[1] "x convergence" 
 
 

2.  Exact Confidence Intervals on π  
 
There are several functions available for computing exact confidence intervals in R and S-PLUS.   In R, 
the function binom.test computes a Clopper-Pearson interval.  But, the same function in S-PLUS 
doesn’t give confidence intervals, at least not automatically. 
 
binom.test(x=0, n=25, conf.level=.95) # R 
 
        Exact binomial test 
 
data:  0 and 25  
number of successes = 0, number of trials = 25, p-value = 5.96e-08 
alternative hypothesis: true probability of success is not equal to 0.5  
95 percent confidence interval: 
 0.0000000 0.1371852  
sample estimates: 
probability of success  
                     0 
 
The function binconf in the Hmisc library also gives Clopper-Pearson intervals via the use of the 
“exact” method. 
 
library(Hmisc, T) 
binconf(x = 0, n = 25, alpha = .05, method = "exact") # SPLUS 
 
 PointEst Lower     Upper  
        0     0 0.1371852 
 
In addition, several individuals have written their own functions for computing Clopper-Pearson as well as 
other types of approximate intervals besides the normal approximation interval.  A search of “exact 
binomial confidence interval” on the “S-news” search page (http://lib.stat.cmu.edu/cgi-bin/iform?SNEWS) 
gave several user-made functions. 
 
The improved confidence interval described in Blaker (2000, cited in Agresti) can be computed in S-PLUS 
using the following function, which is a slight modification of the function appearing in the Appendix of the 
original reference. 
 
acceptbin<-function(x, n, p){ 
 # computes the acceptability of p when x is observed and X is Bin(n, p) 
 # adapted from Blaker (2000) 
 p1<-1-pbinom(x-1, n, p) 
 p2<-pbinom(x, n, p) 
 a1<-p1 + pbinom(qbinom(p1, n, p) - 1, n, p) 
 a2<-p2 + 1 - pbinom(qbinom(1-p2, n, p), n, p) 
 min(a1, a2) 
} 
 
 
acceptinterval<-function(x, n, level, tolerance=1e-04){ 
 # computes acceptability interval for p at 1 - alpha equal to level 
 # (in (0,1)) when x is an observed value of X which is Bin(n, p) 
 # adapted from Blaker (2000) 
  
 lower<-0; upper<-1 
  
 if(x) { 



 

 

11

  lower<-qbeta((1-level)/2, x, n-x+1) 
  while(acceptbin(x, n, lower) < (1-level)) lower<-lower+tolerance 
 } 
 if(x!=n) { 
  upper<-qbeta(1-(1-level)/2, x + 1, n - x) 
  while(acceptbin(x, n, upper) < (1-level)) upper<-upper-tolerance 
 } 
 c(lower=lower, upper=upper) 
} 
 
acceptinterval(x=0, n=25, level=.95) 

 
lower     upper  
     0 0.1275852 
 
 
D.  The Mid-P-Value 
 
A confidence interval can be based on the mid-p-value discussed in Section 1.4.5 of Agresti.  For the 
Vegetarian example above, we can obtain a 100(1 )%α−  Clopper-Pearson confidence interval on π  
using the mid-p-value by finding all values of 0π  for which  

 1
0 02 ( | ) ( | ) / 2P y k P y kπ π α= + < >  

and 
 1

0 02 ( | ) ( | ) / 2P y n k P y n kπ π α= − + > − >  
 
where 0( | )P y k π= is the binomial probability mass function, y = 0, and n = 25.  For the example, this 
set of inequalities reduces to the inequality 

 1/ 1/ 25
0 1 1 .05 0.113nπ α< − = − =  

 
because the lower limit is 0 when y = 0 (p. 18, Agresti). 
 
 
E.  Pearson’s Chi-Squared Statistic 
 
In both S-PLUS and R, one can find functions that will compute Pearson’s Chi-Squared statistic.  
However, they appear in different places across the two implementations.  In R, the ctest library 
contains the function chisq.test, which takes as arguments a set of frequencies, x, and its 
corresponding null probabilities, p.  On Mendel’s results (p. 22, Agresti) we get 
 
library(ctest) 
chisq.test(x=c(6022,2001),p=c(.75,.25)) 
 
        Chi-squared test for given probabilities 
 
data:  c(6022, 2001)  
X-squared = 0.015, df = 1, p-value = 0.9025 
 
In S-PLUS, there does exist a built-in function called chisq.test, but its arguments are different, and 
the above code will not work.  However, it calls a function .pearson.X2 (as does the function 
chisq.gof) which allows one to input observed and expected frequencies. 
 
res<-.pearson.x2(observed=c(6022,2001),expected=c(8023*.75,8023*.25)) 
1-pchisq(res$X2,df=1) 
 
[1] 0.902528 
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The S-PLUS function chisq.test is used for situations where one has a 2x2 cross-tabulation 
(preferably computed using the function table) or two factor vectors, and wants to test for independence 
of the row and column variables. 
 
 
F.  Likelihood Ratio Chi-Squared Statistic 
 
The likelihood ratio chi-squared statistic is easily computed “by hand” for multinomial frequencies.  Using 
vectorized calculations, G2 is for Mendel’s data 
 
obs <- c(6022, 2001) 
expected <- 8023 * c(0.75, 0.25) 
1-pchisq(2 * sum(obs * log(obs/expected)), df=1) 
 
[1] 0.9025024 
 
These methods can also be used on the dairy calves example on p. 25. 
 
 
G.  Maximum Likelihood Estimation 
 
S-PLUS and R come with several functions for general optimization.  We already saw examples of the 
use of uniroot for finding a zero of a univariate function and nlmin for minimizing a sum of squares. 
Here we look at some simple examples of using general optimization functions for maximum likelihood 
estimation with categorical data.  Venables and Ripley (2002, Chapter 16) discuss these methods in more 
detail and give a few guidelines about parameterizing the objective function. 
 
Lloyd (1999) gives data on the number of serious (fatal/nonfatal) accidents in the state of Victoria in 
Australia in 1985, separated by age group (over and under 21 years).  Thus, we have a 2 x 2 contingency 
table with variables age and seriousness of accident.  Lloyd initially treats the four accident counts as 
independent Poisson random variables with means 1λ , 2λ , 3λ , and 4λ , then considers several sub-
models.  One of the sub-models uses the (fictitious) information that 23.3% of serious accidents are 
expected to be fatal.  This information gives the restriction 1 1 2( )φ φ φ+ = 0.233, where 1 1 3φ λ λ= + , the 

mean number of fatalities and 2 2 4φ λ λ= + , the mean number of nonfatalities.  The expected counts can 

be given by 1 1e λ= , 2 2e λ= , 3 1 1e φ λ= − , and 4 1 23.292e φ λ= − .  Thus, this submodel has three 
parameters to estimate.  The likelihood is (equation 1.10 in Lloyd) 
 

1 2 1 1 1 1 2 2 3 1 1 4 1 2( , , ) 4.292 log log log( ) log(3.292 )y y y yλ λ φ φ λ λ φ λ φ λ= − + + + − + −  (1.3) 
 
The observed values of the counts are 1 11y = , 2 62y = , 3 4y = , and 4 7y = .  The function nlminb in 
S-PLUS finds a local minimum of a twice-differentiable function possibly subject to boundary constraints 
on the parameters.  A gradient function and Hessian function can be supplied as arguments.  The 
algorithm used is a quasi-Newton method if a Hessian is not supplied and Newton’s method if it is.  If no 
gradient is supplied, a finite difference approximation is used.  Lloyd gives the first derivatives on p. 11, 
but first we will try the estimation without analytically supplied derivatives.  Of course, we must remember 
to use the negation of (1.3) as the objective function to minimize (a VERY common mistake by me). 
 
Here I set the objective function (with first argument the vector of parameters) and then send it into 
nlminb, along with starting values and upper and lower bounds on each parameter.  The starting values 
were chosen as (0)

i iyλ =  (i = 1, 2) and (0)
1 1 32( )y yφ = +  to ensure that the logs are positive at the 

initial values. To help prevent warnings about NAs generated in log(x), I have scaled the step-length of 
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the 1φ  parameter using the scale argument so that when p[1] is subtracted from p[3], we should always 

get a positive value.  I have also started 1φ  at a value much larger than 1λ . 
 
 
obj.function<-function(p, y){ 
 -(-4.292*p[3] + y[1]*log(p[1]) + y[2]*log(p[2]) + y[3]*log(p[3]-p[1]) + 

y[4]*log(3.292*p[3]-p[2])) 
} 
 
nlminb(start=c(11, 62, 2*(11+4)), obj.function, lower=c(0,0,0), upper=c(Inf, Inf, 

Inf), scale=c(1,1,10), y=c(11, 62, 4, 7)) 
 
$parameters: 
[1] 14.35228 57.89246 19.57129 
 
$objective: 
[1] -216.6862 
 
$message: 
[1] "RELATIVE FUNCTION CONVERGENCE" 
 
$grad.norm: 
[1] 0.00001071819 
 
$iterations: 
[1] 22 
 
…snip 
 
We get convergence (relative function convergence) in 22 iterations.  The parameter estimates are 
almost identical to those given by Lloyd. 
 
Now, if we wanted to supply first derivatives, we can get them using the deriv function, which returns 
the function along with an attribute that is a functional representation of the gradient.  Or, we could supply 
the gradient as a separate function that returns three values when evaluated (for the three elements of 
the gradient).  In this case the objective function is simple enough for deriv to handle.  We make some 
modifications first, however. 
 
obj.res<-deriv(~-(-4.292*pi1 + y1*log(la1) + y2*log(la2) + y3*log(pi1-la1) + 

y4*log(3.292*pi1-la2)), 
 c("la1","la2","pi1"), 
 function(la1, la2, pi1, y1, y2, y3, y4) NULL) 
 
obj.gr<-function(p, y){ 
 la1<-p[1]; la2<-p[2]; pi1<-p[3]; y1<-y[1]; y2<-y[2]; y3<-y[3]; y4<-y[4] 
 attr(obj.res(la1, la2, pi1, y1, y2, y3, y4), "gradient") 
} 
 
nlminb(start=c(11, 62, 2*(11+4)), objective=obj.function, gradient=obj.gr, 

lower=c(0,0,0), upper=c(Inf, Inf, Inf), scale=c(1,1,10), y=c(11, 62, 4, 7)) 
 
 
$parameters: 
[1] 14.35228 57.89246 19.57129 
 
$objective: 
[1] -216.6862 
 
$message: 
[1] "RELATIVE FUNCTION CONVERGENCE" 
 
$grad.norm: 
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[1] 5.191676e-007 
 
$iterations: 
[1] 22 
 
We get the same result.  One could supply the Hessian using the function deriv3.  The Mass library 
supplies a function called vcov.nlminb to extract the inverse of observed information (or a finite 
difference approximation if the Hessian is not supplied) from an nlminb object. 
 
In R, we can use the function nlm, which is similar in that it minimizes an objective function of several 
variables, allows boundary constraints, and uses a quasi-Newton optimizer.  However, it does not allow 
box constraints on the parameters.   
 
obj.res<-deriv(~-(-4.292*pi1 + y1*log(la1) + y2*log(la2) + y3*log(pi1-la1) + 
     y4*log(3.292*pi1-la2)), 
    c("la1","la2","pi1"), 
    function(la1, la2, pi1, y1, y2, y3, y4) NULL) 
 
obj.function<-function(p, y){ 
    value<--(-4.292*p[3] + y[1]*log(p[1]) + y[2]*log(p[2]) + y[3]*log(p[3]-p[1]) +  

y[4]*log(3.292*p[3]-p[2])) 
    la1<-p[1]; la2<-p[2]; pi1<-p[3]; y1<-y[1]; y2<-y[2]; y3<-y[3]; y4<-y[4] 
    attr(value, "gradient")<-attr(obj.res(la1, la2, pi1, y1, y2, y3, y4),  

"gradient") 
    value 
} 
 
nlm(f=obj.function, p=c(11, 62, 2*(11+4)), y=c(11, 62, 4, 7), typsize=c(1,1,.10)) 
 
$minimum 
[1] -216.6862 
 
$estimate 
[1] 14.35229 57.89247 19.57130 
 
$gradient 
[1]  1.276756e-06 -1.085920e-07 -4.459707e-09 
 
$code 
[1] 1 
 
$iterations 
[1] 18 
 
Again, we use the argument typsize to control warnings about NAs in log(x). 
 
The function optim includes several other algorithms besides Newton-type methods (including simulated 
annealing) and allows box constraints.   
 
obj.function<-function(p, y){ 

-(-4.292*p[3] + y[1]*log(p[1]) + y[2]*log(p[2]) + y[3]*log(p[3]-p[1]) + 
y[4]*log(3.292*p[3]-p[2])) 

} 
 
obj.res<-deriv(~-(-4.292*pi1 + y1*log(la1) + y2*log(la2) + y3*log(pi1-la1) + 

 y4*log(3.292*pi1-la2)), 
c("la1","la2","pi1"), 
function(la1, la2, pi1, y1, y2, y3, y4) NULL) 

 
 
obj.gr<-function(p, y){ 
    la1<-p[1]; la2<-p[2]; pi1<-p[3]; y1<-y[1]; y2<-y[2]; y3<-y[3]; y4<-y[4] 
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    attr(obj.res(la1, la2, pi1, y1, y2, y3, y4), "gradient") 
} 
 
optim(par=c(11, 62, 2*(11+4)), fn=obj.function, gr=obj.gr, lower=c(0,0,0),  

method="L-BFGS-B", control=list(parscale=c(1,1,10)), y=c(11, 62, 4, 7)) 

 
$par 
[1] 14.35235 57.89246 19.57130 
 
$value 
[1] -216.6862 
 
$counts 
function gradient  
      25       25  
 
$convergence 
[1] 0 
 
$message 
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" 
 
 
The Mass library for S-PLUS and R also includes a version of optim.  And, it contains a function called 
fitdistr for univariate maximum likelihood estimation. 
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Chapter 2: Describing Contingency Tables 
 
A.  Summary of Chapter 2, Agresti 
 

Chapter two in Agresti introduces two-way I J× contingency tables.  If both the row and column 
of a table denote random variables, then the probabilities { }ijπ  define the joint distribution of the two 

variables.  The marginal distributions are denoted by { }iπ +  for the row variable and { }jπ +  for the column 
variable.  For a fixed value i of the row variable, the column variable has the conditional distribution 

1| |{ ,..., }i J iπ π .  The conditional distribution is especially important if the row variable is fixed by design 
and not free to vary for each observation. 

With diagnostic tests for a disease, the sensitivity of the test is the conditional probability that the 
diagnostic test is positive given that subject has the disease.  The specificity of the test is the conditional 
probability that the test is negative given that the subject does not have the disease.  In a 2x2 table with 
rows indicating disease status (yes, no) and columns indicating test result (positive, negative), the 
sensitivity is 1|1π , and the specificity is 2|2π . 

Row and column variables are independent if the conditional distribution of the column variable 
given the row variable is the same as the marginal distribution of the column variable (and vice versa).  
That is, |j i jπ π +=  for i = 1,…, I, and |i j iπ π +=  j = 1,…, J.  Equivalently, if all joint probabilities equal the 

product of their marginal probabilities: ij i jπ π π+ += , for all i and j.  Thus, when the two variables are 
independent, knowledge of the value of the row variable does not change the distribution of the column 
variable, and vice versa.   

When the row variable is an explanatory variable and the column is a response variable, then 
there is no joint distribution, and independence is referred to as homogeneity of the conditional 
distributions of the column variable given a value for the row variable.   

The distributions of the cell counts { }ijY  differ depending on how sampling was done.  If 

observations are to be collected over a certain period of time and cross-classified into one of the I J×  
categories, then a Poisson sampling model might be used where cell counts are treated as independent 
Poisson random variables with parameters { }ijμ .  If the total sample size of observations is fixed in 
advance (e.g., in a cross-sectional study), then a multinomial sampling model might be used where cell 
counts are treated as multinomial random variables with index n and probabilities { }ijπ .  If the row totals 
are fixed in advance, perhaps as fixed-size random samples drawn from specific populations that are to 
be compared, as in prospective studies, then a product multinomial sampling model may apply where for 
each i, the counts |{ }j iY  have a multinomial distribution with index in  and probabilities |j iπ  j = 1,…, J .  If 
both row and column totals are fixed by design, then a hypergeometric sampling distribution applies for 
the cell counts. 

However, there are times when certain sampling models are assumed, but sampling was actually 
done differently.  For example, when the row variable is an explanatory variable, product multinomial 
sampling model may be used even though the row totals were not actually fixed in advance.  Also, the 
Poisson model is used even when the total sample size is fixed in advance (see Chapter 8 of Agresti). 

Section 2.2 discusses comparing two proportions from two samples, including the difference of 
proportions, relative risk, and odds ratio.  The relative risk compares the proportions of the two groups in 
a ratio.  If the rows of a 2x2 table represent groups and the columns represent a binary response, then 
the relative risk of a positive response is the ratio 1|1 1|2π π .  A relative risk of 1.0 corresponds to 

independence.  A relative risk of C means that 1|1 1|2Cπ π= .  The odds ratio is the ratio of odds of a 
positive response by group 
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 1|1 1|1 11 22

1|2 1|2 12 21

(1 )
(1 )

π π π πθ π π π π
−

= =
−

     (2.1) 

When 1θ = , the row and column variables are independent.  Values of θ  farther from 1.0 in a given 
direction represent stronger association.  For example, as on p. 45 of Agresti, when 0.25θ = , the odds 
of “success” in group 1 (row 1) are 0.25 times the odds in group 2 (row 2), or equivalently, the odds of 
success in group 2 are 4 times the odds in group 1.  The odds ratio can be used with a joint distribution of 
the row and column variables too.  Indeed, it can be used with prospective (rows totals fixed), 
retrospective (column totals fixed), and cross-sectional designs.  Finally, if the rows and columns are 
interchanged, the value of the odds ratio does not change.  The sample odds ratio uses the observed 
sample counts, ijn .   

Odds ratios can be computed for retrospective sampling designs (case-control studies).  Relative 
risk cannot be computed because the outcome variable is fixed by design.  However, if the probability of 
the outcome is close to zero for both groups, then the odds ratio can be used to approximate relative risk 
using the formula on p. 47 of Agresti. 

In observational studies, confounding variables can be controlled with stratification or 
conditioning.  The association between two variables X and Y given that another measured variable Z 
takes the value z is called a conditional association.  The 2 x 2 table resulting from cross-classifying all 
observations with Z = z by their X and Y values is called a partial table.  If Z is ignored, the X-Y table is 
called a marginal table.  Simpson’s Paradox is the result that a marginal association can have a different 
direction than a conditional association.  For example, in the death penalty example on p. 49-51, ignoring 
victim’s race, the death penalty (Y) is more likely for whites than for blacks (X).  However, conditioning on 
victim’s race (either black or white), the death penalty is more likely for blacks than for whites.  The 
paradox in this case can be explained by the strong association between victim’s race (ignored in the 
marginal association) and defendant’s race and that between victim’s race and the death penalty.  The 
death penalty was more likely when the victims were white (regardless of defendant race).  Also, whites 
were more likely to kill whites than any other victim/defendant race combination in the sample.  So, there 
are a lot of whites receiving the death penalty in the sample.  On the other hand, blacks were more likely 
to kill blacks.  Thus, there are fewer blacks receiving the death penalty in the sample.  But, if we look at 
only white victims, there are relatively more blacks receiving the death penalty than whites.  The same is 
true for black victims.  An unmodeled association between victim’s and defendant’s race hides this 
conclusion. 

Does Simpson’s Paradox imply that we should distrust all contingency table analyses?  After all, 
there are undoubtedly unmeasured variables that could be potential conditioning variables in all 
contingency tables.  Could these variables change the direction of marginal associations?  Page 51 in 
Agresti paraphrases J. Cornfield’s result “that with a very strong XY association [marginal association], a 
very strong association must exist between the confounding variable Z and both X and Y in order for the 
effect to disappear or change …”. 

For I x J x K tables (where X has I levels, Y has J levels, and Z has K levels), if X and Y are 
independent in partial table k, then X and Y are conditionally independent given that Z takes on value k. If 
X and Y are independent at all levels of Z, then X and Y are conditionally independent given Z.  Or, X and 
Y only depend on each other through Z.  Once variability in Z is removed, by fixing it, X and Y are no 
longer related statistically.  Conditional independence does not imply marginal independence.  For 2 x 2 x 
K tables, X and Y are conditionally independent given Z if the odds ratio between X and Y equals 1 at 
each category of Z.  For the general case of I x J x K tables, independence is equivalent to all 
( 1)( 1)I J− − local odds ratios equaling 1.0. 

An analogy to no three-way interaction in ANOVA is homogeneous association.  A 2 x 2 x K table 
has homogeneous XY association if the conditional odds ratios comparing two categories of X to two 
categories of Y are the same at each level of Z.  When interaction exists, the conditional odds ratio for 
any pair of variables (say X and Y) changes across categories of the third (say Z), wherein the third 
variable is called an effect modifier because the effect of X on Y (the response) changes depending on 
the level of Z.  For the general case of I x J x K tables, homogeneous XY association means that any 
conditional odds ratio formed using two categories of X and two categories of Y is the same at each 
category of Z. 
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The chapter concludes with discussion of summary measures of association for nominal and 
ordinal data.  The measures described include Kendall and Stuart’s measure of proportional reduction in 
variance from the marginal distribution of the response to the conditional distributions given the value of 
an explanatory vector, Theil’s uncertainty coefficient, the proportional reduction in entropy (or uncertainty) 
in response given explanatory variables, and measures for ordinal association such as concordance and 
Gamma. 
 
 
B. Comparing two proportions  
 
The Aspirin and Heart Attacks example is used to illustrate several ways to compare proportions between 
two groups.  The two groups are aspirin-takers and placebo-takers.  Fatal and non-fatal heart attacks are 
not distinguished.  The data are in Table 2.1 on p. 37 of Agresti.  Setting up the data is easy: 
 
 x<-c(104,189) # aspirin, placebo 
 n<-c(11037,11034) 

 
Then, to test H0:p1=p2 (equal probabilities of heart attack per group), one can use the prop.test 
function.  The output given here is from S-PLUS. 
 
prop.test(x, n) 
 
 2-sample test for equality of proportions with continuity correction 
 
data:  x out of n  
 
X-square = 24.4291, df = 1, p-value = 0  
 
alternative hypothesis: two.sided  
 
95 percent confidence interval: 
 -0.010814914 -0.004597134  
 
sample estimates: 
 prop'n in Group 1 prop'n in Group 2  
        0.00942285        0.01712887 
 
The output from R is almost identical except that the p-value is stated as: p-value = < 2.2e-16.  X-
square is the value of the chi-squared statistic.  One can choose not to use the continuity correction with 
correct=F. 
 
We can obtain the p-value by extracting it from prop.test.  Both S-PLUS and R give essentially 0 as 
the value here. 
 
prop.test(x,n)$p.value 
[1] 7.709708e-007 
 
 
A one-sided test of the hypotheses, H0:p1=p2 v. H1:p1<p2, can be obtained using the alternative 
option: 
 
prop.test(x,n,alt="less")$p.value 
[1] 3.854854e-007 
 
The proportions themselves can be extracted from the estimate component, which is a numeric vector 
of length two here.  So, the sample difference of proportions is computed as: 
 
temp<-prop.test(x,n)   
names(temp$estimate)<-NULL  # optional 
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temp$estimate[1]-temp$estimate[2] 
[1] -0.007706024 
 
Other useful quantities are easily computed.  Here, I calculate the relative risk and odds ratio using the 
object temp above, as well as the original data vectors: 
 
Relative risk: 
 
temp$estimate[2]/temp$estimate[1] 
[1] 1.817802 
 
Odds ratio (simple enough not to need temp): 
 
x[2]*(n[1]-x[1])/(x[1]*(n[2]-x[2])) 
[1] 1.832054 
 

 
C. Partial Association in Stratified 2 x 2 Tables 
 
The Death Penalty example is given on p. 48 of Agresti to illustrate partial tables and conditional odds 
ratios.  The effect of the defendant’s race (X) on the death penalty verdict (Y) is studied, treating the 
victim’s race (Z) as a control variate.  The 2 x 2 x 2 table can be created using the function crosstabs in 
S-PLUS (xtabs in R).  The function print.crosstabs can also be called directly with output from 
crosstabs to control what is actually printed after the call. 
 
vic.race<-c("white","black") 
def.race<-vic.race 
death.penalty<-c("yes", "no") 
datalabel<-list(defendant=def.race,death=death.penalty,victim=vic.race) 
table.2.6<-fac.design(c(2,2,2),factor.names=datalabel)  # sets up the combinations of 

the levels as a factorial design, using labels datalabel 
data<-c(53, 11, 414, 37, 0, 4, 16, 139) 
table.2.6<-cbind(table.2.6,count=data) 
crosstabs(count~defendant+death+victim ,data=table.2.6) 

 
crosstabs(formula = count ~ defendant + death + victim, data = table.2.6) 
674 cases in table 
+----------+ 
|N         | 
|N/RowTotal| 
|N/ColTotal| 
|N/Total   | 
+----------+ 
victim=white  
defendant|death 
       |yes    |no     |RowTotl| 
-------+-------+-------+-------+ 
white  | 53    |414    |467    | 
       |0.11   |0.89   |0.91   | 
       |0.83   |0.92   |       | 
       |0.079  |0.61   |       | 
-------+-------+-------+-------+ 
black  | 11    | 37    |48     | 
       |0.23   |0.77   |0.093  | 
       |0.17   |0.082  |       | 
       |0.016  |0.055  |       | 
-------+-------+-------+-------+ 
ColTotl|64     |451    |515    | 
       |0.12   |0.88   |       | 
-------+-------+-------+-------+ 
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victim=black  
defendant|death 
       |yes    |no     |RowTotl| 
-------+-------+-------+-------+ 
white  |  0    | 16    |16     | 
       |0      |1      |0.1    | 
       |0      |0.1    |       | 
       |0      |0.024  |       | 
-------+-------+-------+-------+ 
black  |  4    |139    |143    | 
       |0.028  |0.97   |0.9    | 
       |1      |0.9    |       | 
       |0.0059 |0.21   |       | 
-------+-------+-------+-------+ 
ColTotl|4      |155    |159    | 
       |0.025  |0.97   |       | 
-------+-------+-------+-------+ 
Test for independence of all factors 
 Chi^2 = 419.5589 d.f.= 4 (p=0) 
 Yates' correction not used 
 Some expected values are less than 5, don't trust stated p-value 
 
The differences in R are enough so that the above is worth repeating in R.  Below is the same result 
(including set up) from R’s xtabs.  Note that the fac.design has been replaced by expand.grid.  
The output is also much more terse by default. 
 
vic.race<-c("white","black") 
def.race<-vic.race 
death.penalty<-c("yes", "no") 
datalabel<-list(defendant=def.race,death=death.penalty,victim=vic.race) 
table.2.6<- expand.grid(defendant=def.race,death=death.penalty,victim=vic.race)  
data<-c(53, 11, 414, 37, 0, 4, 16, 139) 
table.2.6<-cbind(table.2.6,count=data) 
xtabs(count~defendant+death+victim ,data=table.2.6) 
 
, , victim = white 
 
         death 
defendant yes  no 
    white  53 414 
    black  11  37 
 
, , victim = black 
 
         death 
defendant yes  no 
    white   0  16 
    black   4 139 
 
The function crosstabs returns many results.  One can extract the cell proportions via the marginals 
attribute.   
 
temp<-crosstabs(count~defendant+death+victim ,data=table.2.6) 
attr(temp,"marginals")$"N/RowTotal" # return the cell proportions (Figure 2.1) 

 
, , white 
            yes        no  
white 0.1134904 0.8865096 
black 0.2291667 0.7708333 
 
, , black 
             yes       no  
white 0.00000000 1.000000 
black 0.02797203 0.972028 
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Getting the marginals can be done by re-calling the function without victim, or one can use the update 
function to update the call by subtracting victim from the formula.  update is a generic function for 
which methods are written for different classes of objects.  There is no method for class crosstabs, so a 
call to update via the set of commands: 
 
temp<-crosstabs(count~defendant+death+victim, data=table.2.6) 
update(object=temp, formula=~ . -victim) 

 
will cause S-PLUS to use the default method, update.default, to re-evaluate the call.  However, this 
method is not suitable for objects of class crosstabs.  Thus, we can create our own method, which 
turns out to change just one line of update.default (else I probably wouldn’t have it in here!).  
Creating a method is equivalent operationally to creating a function.  Thus, the same tools that work to 
create functions work to create methods (which are just functions, themselves).  See the Introduction to 
this manual for how to edit functions in S-PLUS 6.1 and R. 
 
First, I define a method function called update.crosstabs, which is the same code as 
update.default, but changes the line in update.default 
 
if(!missing(formula)) newcall$formula<-as.vector(update.formula(object, formula, evaluate = T)) 

 
to 
 
if(!missing(formula))newcall$formula<-as.vector(my.update.formula(object, formula, evaluate = T)) 

 
where the function my.update.formula changes the function update.formula by substituting the 
line 
 
form <- as.formula(object) 

 
with 
 
form <- as.formula(attr(object, "call")) 

 
Then, I set the update method for crosstabs to be update.crosstabs  
 
setMethod("update","crosstabs",update.crosstabs) 

 
The call  
 
update(object=temp, formula=~ . -victim) 
 
gives  
 
Call: 
crosstabs(formula = count ~ defendant + death, data = table.2.6) 
674 cases in table 
+----------+ 
|N         | 
|N/RowTotal| 
|N/ColTotal| 
|N/Total   | 
+----------+ 
defendant|death 
       |yes    |no     |RowTotl| 
-------+-------+-------+-------+ 
white  | 53    |430    |483    | 
       |0.11   |0.89   |0.72   | 
       |0.78   |0.71   |       | 
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       |0.079  |0.64   |       | 
-------+-------+-------+-------+ 
black  | 15    |176    |191    | 
       |0.079  |0.92   |0.28   | 
       |0.22   |0.29   |       | 
       |0.022  |0.26   |       | 
-------+-------+-------+-------+ 
ColTotl|68     |606    |674    | 
       |0.1    |0.9    |       | 
-------+-------+-------+-------+ 
Test for independence of all factors 
 Chi^2 = 1.468519 d.f.= 1 (p=0.2255796) 
 Yates' correction not used 
 
which is the bottom portion of Table 2.6 in Agresti. 
 
In R, we also create an update method for xtabs, which is a function that we will call update.xtabs.  
This will be the same as update.default, with the following substitutions: 
 
Change the line 
 
call <- object$call 

 
to 
 
call<-attr(object, "call") 

 
And, change the line 
 
call$formula <- update.formula(formula(object), formula.) 

 
to 
 
call$formula <- update.formula(call$formula, formula.) 

 
The method has been constructed, as verified by a call to methods(“update”) or to 
methods(class = xtabs).  Note that this procedure uses the S3 scheme (see the help file), as 
opposes to the S4 scheme used for the S-PLUS example.   
 
Then, the update call gives the marginal table 
 
update(temp, formula= ~.-victim) 

 
         death 
defendant yes  no 
    white  53 430 
    black  15 176 
 
 
Paik Diagram 
 
Tobias Verbeke has written a function that draws the Paik Diagram (Paik, 1985, citation in Agresti), which 
is a graphical representation of Simpson’s Paradox.  The diagram is similar to Figure 2.2 in Agresti (p. 50) 
for the death penalty example.   However, in the example sent to me, Verbeke plots Death Penalty by 
proportion white defendant.  From this plot, you can see the paradox in a different way. 
 
The function code is given in the file that holds the R code for this manual. 
 
paik(xtabs(count~defendant+death+victim ,data=table.2.6)) 
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In the body of the plot are the segments for white and black victims.  The sizes of the circles connected 
by segments represent the relative count at that particular cell of the table.  The dotted segment 
represents the marginal table (not conditioning on race of victim). It shows that the proportion of white 
defendants is higher for the death penalty group than for those who did not get the death penalty. 
 
From conditional associations, however, we see that a white victim is much more likely to have a white 
defendant than a black defendant (due to the height of the “white” segment), and a black victim is much 
more likely to have a black defendant.  Those who receive the death penalty are more frequently those 
who had white victims than those who had black victims (see the circles for the “yes” column). 
 
D. Conditional Odds Ratios 
 
As the objects returned by xtabs in R and crosstabs in S-PLUS are already arrays, we can just use 
apply on the 2D slices representing the conditional tables. 
 
apply(temp,3,function(x) x[1,1]*x[2,2]/(x[2,1]*x[1,2])) 

 
    white     black  
0.4306105 0.0000000 
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The R package vcd has a function oddsratio, which computes conditional odds ratios for 2x2x… tables, 
along with asymptotic confidence intervals.  If we use it on the death penalty table to get odds ratios 
within victim’s race, we get 
 
summary(oddsratio(temp, log=F, stratum=3)) 
 
      Odds Ratio        lwr        upr 
white  0.4208843 0.20498745  0.8641678 
black  0.9393939 0.04838904 18.2367947 
 
Note that the odds ratio for black victims is noticeably larger than that computed using apply.  The 
function oddsratio adds 0.5 to each count prior to computing the odds ratios.  The estimate near 1.0 
implies that for black victims, the odds of getting the death penalty are equal for white and black 
defendants.   
 
A plot method is also available for oddsratio (plot.oddsratio), which may be quite useful with a large 
table. 
 
E. Summary Measures of Assocation: Ordinal Trends 
 
An example to illustrate ordinal measures of association comes from the income and job satisfaction data 
in Table 2.8 (p. 57, Agresti).  The respondents are black males in the U.S.  Four ordinal classifications 
constitute the response categories for both variables (see the table).  We might postulate that as income 
increases, reported job satisfaction increases as well, and vice versa.  Measures analogous to correlation 
measure the degree of monotonic relationship between the two variables.  Agresti uses a concordance 
measure to quantify the association. 
 A pair of individuals in the sample is concordant if the individual who is ranked higher (among the two 
individuals) on one variable, say X, also ranks higher on the second variable, say Y.  The pair is 
discordant if the individual ranking higher on X ranks lower on Y.  The pair is tied if the individuals have 
the same classification on X and/or Y.   If the number of concordant pairs, say C, exceeds the number of 
discordant pairs, say D, then a positive monotonic relationship is supported.  A statistic that is based on 
this difference is Goodman and Kruskal’s Gamma.  It is the estimated difference between the probability 
of concordance and the probability of discordance, given that a pair is untied.  Gamma, γ , is estimated 
as 

 
( )ˆ
( )
C D
C D

γ −=
+

 (2.2) 

 
Gamma measures monotonic association between two variables, with range ˆ1 1γ− ≤ ≤ .  Positive and 
negative associations have the corresponding sign changes in γ̂ .  Perfect monotonicity in the sample 

( ˆ 1γ = ) occurs when there are either no discordant pairs (D = 0: ˆ 1γ =  ) or there are no concordant 

pairs (C = 0: ˆ 1γ = − ).   
 
One can create a cross-classified table in S-PLUS out of Table 2.8 using the following commands (use 
xtabs in R instead of crosstabs): 
 
income<-c("<15000","15000-25000","25000-40000",">40000") 
jobsat<-c("VD","LD","MS","VS") 
table.2.8<-expand.grid(income=income,jobsat=jobsat)  
data<-c(1,2,1,0,3,3,6,1,10,10,14,9,6,7,12,11) 
table.2.8<-cbind(table.2.8,count=data) 
(temp<-crosstabs(count~income+jobsat,table.2.8)) 
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Call: 
crosstabs(formula = count ~ income + jobsat, data = table.2.8) 
96 cases in table 
+----------+ 
|N         | 
|N/RowTotal| 
|N/ColTotal| 
|N/Total   | 
+----------+ 
income |jobsat 
       |VD     |LD     |MS     |VS     |RowTotl| 
-------+-------+-------+-------+-------+-------+ 
<15000 | 1     | 3     |10     | 6     |20     | 
       |0.05   |0.15   |0.5    |0.3    |0.21   | 
       |0.25   |0.23   |0.23   |0.17   |       | 
       |0.01   |0.031  |0.1    |0.062  |       | 
-------+-------+-------+-------+-------+-------+ 
15000-2| 2     | 3     |10     | 7     |22     | 
       |0.091  |0.14   |0.45   |0.32   |0.23   | 
       |0.5    |0.23   |0.23   |0.19   |       | 
       |0.021  |0.031  |0.1    |0.073  |       | 
-------+-------+-------+-------+-------+-------+ 
25000-4| 1     | 6     |14     |12     |33     | 
       |0.03   |0.18   |0.42   |0.36   |0.34   | 
       |0.25   |0.46   |0.33   |0.33   |       | 
       |0.01   |0.062  |0.15   |0.12   |       | 
-------+-------+-------+-------+-------+-------+ 
>40000 | 0     | 1     | 9     |11     |21     | 
       |0      |0.048  |0.43   |0.52   |0.22   | 
       |0      |0.077  |0.21   |0.31   |       | 
       |0      |0.01   |0.094  |0.11   |       | 
-------+-------+-------+-------+-------+-------+ 
ColTotl|4      |13     |43     |36     |96     | 
       |0.042  |0.14   |0.45   |0.38   |       | 
-------+-------+-------+-------+-------+-------+ 
Test for independence of all factors 
 Chi^2 = 5.965515 d.f.= 9 (p=0.7433647) 
 Yates' correction not used 
 Some expected values are less than 5, don't trust stated p-value 
   
 
Here is a function for computing Goodman and Kruskal’s gamma.  There is a different version of this 
function in Chapter 3 of this manual (called Gamma2.f).  This version uses the computations from problem 
3.27 in Agresti, and also computes the standard error of Gamma.  It is faster than Gamma.f. 
 
Gamma.f<-function(x) 
{ 
 # x is a matrix of counts.  You can use output of crosstabs or xtabs. 
 n<-nrow(x) 
 m<-ncol(x) 
 res<-numeric((n-1)*(m-1)) 
 for(i in 1:(n-1)) {  
  for(j in 1:(m-1)) res[j+(m-1)*(i-1)]<-x[i,j]*sum(x[(i+1):n,(j+1):m])  
 } 
 C<-sum(res) 
 res<-numeric((n-1)*(m-1)) 
 iter<-0 
 for(i in 1:(n-1))  
  for(j in 2:m) {  
   iter<-iter+1; res[iter]<-x[i,j]*sum(x[(i+1):n,1:(j-1)])  
  } 
 D<-sum(res) 
 gamma<-(C-D)/(C+D) 
 list( gamma=gamma, C=C, D=D) 
 } 
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We can use this on table 2.8 by just inputting the result of the crosstabs call above: 
 
Gamma.f(temp) 
 
$gamma: 
[1] 0.2211009 
 
$C: 
[1] 1331 
 
$D: 
[1] 849 
 
 
Selvin (1998) computes the number of concordant and discordant pairs using the outer function along 
with ifelse statements (Selvin, p. 339). However, the procedure is memory intensive. The function 
above takes between 0.33 and 0.60 CPU seconds on a Pentium 4, 1.4 GHz, with 512 MB RAM.  
 
Other measures of association can be computed immediately from the chi-square value output from 
chisq.test (e.g., phi, Cramer’s V, Cramer’s C).  See Selvin p. 336ff for more details.  The R package 
vcd has a function assoc.stats that computes these association measures along with the Pearson and 
LR chi-square tests.  For example, on the job satisfaction data (where we used xtabs instead of 
crosstabs), 
 
summary(assoc.stats(temp)) 

 
             jobsat 
income        VD LD MS VS 
  <15000       1  3 10  6 
  15000-25000  2  3 10  7 
  25000-40000  1  6 14 12 
  >40000       0  1  9 11 
 
                    X^2 df P(> X^2) 
Likelihood Ratio 6.7641  9  0.66167 
Pearson          5.9655  9  0.74336 
 
Phi-Coefficient   : 0.249  
Contingency Coeff.: 0.242  
Cramer's V        : 0.144 
 
 
A nice method for an object of class crosstabs is the “[“ method.  This allows us to select smaller tables 
in the following way.  Suppose I want to print Table 2.8 with the last category of the income variable 
eliminated.  This is 
 
temp[1:3,1:4] 
 
Call: 
crosstabs(formula = count ~ income + jobsat, data = table.2.8) 
75 cases in table 
+----------+ 
|N         | 
|N/RowTotal| 
|N/ColTotal| 
|N/Total   | 
+----------+ 
income |jobsat 
       |VD     |LD     |MS     |VS     |RowTotl| 
-------+-------+-------+-------+-------+-------+ 
<15000 | 1     | 3     |10     | 6     |20     | 
       |0.05   |0.15   |0.5    |0.3    |0.27   | 
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       |0.25   |0.23   |0.23   |0.17   |       | 
       |0.01   |0.031  |0.1    |0.062  |       | 
-------+-------+-------+-------+-------+-------+ 
15000-2| 2     | 3     |10     | 7     |22     | 
       |0.091  |0.14   |0.45   |0.32   |0.29   | 
       |0.5    |0.23   |0.23   |0.19   |       | 
       |0.021  |0.031  |0.1    |0.073  |       | 
-------+-------+-------+-------+-------+-------+ 
25000-4| 1     | 6     |14     |12     |33     | 
       |0.03   |0.18   |0.42   |0.36   |0.44   | 
       |0.25   |0.46   |0.33   |0.33   |       | 
       |0.01   |0.062  |0.15   |0.12   |       | 
-------+-------+-------+-------+-------+-------+ 
ColTotl|4      |12     |34     |25     |75     | 
       |0.053  |0.16   |0.45   |0.33   |       | 
-------+-------+-------+-------+-------+-------+ 
Test for independence of all factors 
 Chi^2 = 1.432754 d.f.= 6 (p=0.9638357) 
 Yates' correction not used 
Some expected values are less than 5, don't trust stated p-value 
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Chapter 3: Inference for Contingency Tables 

 
A.  Summary of Chapter 3, Agresti 
 
 This chapter discusses interval estimation and testing for two-way contingency tables, both 
unordered and ordered.  Confidence intervals for association parameters like the odds ratio, difference in 
proportions, and relative risk for 2x2 tables can be computed using large-sample normality (Wolf’s 
procedure).  Score and profile likelihood confidence intervals are better alternatives, especially for smaller 
sample sizes. 
 For an I x J contingency table, the hypothesis that the row and column variables are independent 
may be tested using a chi-square test (either likelihood ratio statistic or Pearson’s chi-squared statistic).   
Although the two statistics are asymptotically equivalent and asymptotically chi-squared, Pearson’s chi-
squared statistic tends to be better for smaller counts.  If the row and column variables are ordered, then 
a trend may be used as the alternative hypothesis.  Chi-squared tests can be followed up by residual 
analysis and chi-squared tests on partitioned tables to indicate exactly where association lies.  Rules for 
partitioning likelihood ratio chi-squared tests appear on p. 84 of Agresti. 
 If independence of the two classification factors of an I x J contingency table approximately 
describes the table, then the MLEs of the cell probabilities under the hypothesis of independence can 
have lower MSE than can the MLEs under the alternative (i.e., the sample proportions), except for when 
the sample size is very large.  This is because the variance of the MLEs under independence is smaller 
because they are based on fewer parameters.  However, they are biased.  The bias can dominate the 
variance when the sample size increases, thereby causing the independence MLEs to lose their 
advantage over the sample proportions.  Agresti gives details on p. 85-86. 
 If row and column variables are ordered, then a test of independence that has a trend alternative 
has greater power to detect a true association (if the association is a trend of that type) than would a 
general-purpose chi-squared test.  One reason for this is due to the fewer degrees of freedom for the 
trend statistics versus the chi-squared statistics, as there are fewer parameters to estimate for the trend 
statistics.  

There is a disadvantage in using trend tests with ordinal level variables because one has to 
choose the scores for the levels of each of the variables.  An inappropriate choice can downplay an 
association, making the test less sensitive to it.  Agresti shows that the popular choice to use category 
midranks as scores can affect sensitivity of test statistics if the cell sizes are quite disparate.  A 
suggestion is to use equally-spaced scores unless there is an inherent numerical order in the levels 
already. 

When either the row or column variable has two categories, then the tests based on linear or 
monotone trend that are discussed in Section 3.4 of Agresti reduce to certain well-known nonparametric 
tests.  See p. 90 in Agresti.  However, some care is needed when using midranks for the categories of 
the response variable (reducing to Wilcoxon Mann-WhitneyTest), as there may be very many ties (see 
Sprent, 1997). 

With a small total sample size, the exact tests of Section 3.5 are preferred over analogous large-
sample tests.  Fisher’s Exact Test is for testing independence of row and column variables in a 2x2 table.  
The same ideas apply for an I x J table, though the computing time is increased.  The test assumes fixed 
row and column totals, but as these are sufficient statistics for the row and column probabilities, which 
determine the null distribution, the test can be applied even if row and column totals are not fixed by 
design. If marginal totals were not fixed by design, an alternative is to use the “unconditional” test of 
Section 3.5.5, which fixes row totals only and assumes independent binomial row samples. An 
unconditional test may have more power than Fisher’s Exact Test because the null distribution is less 
discrete, allowing more values for the p-value to assume.  Thus, one is not forced to be as conservative 
as with a conditional test. 

Small-sample “exact” confidence intervals for the odds ratio for a 2x2 table can be computed 
using Cornfield’s tail method.  However, if the data are highly discrete, then Agresti suggets an 
adjustment to the interval using the mid-p-value. 
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B. Confidence Intervals for Association Parameters  
 
 Wald confidence intervals, score intervals, and profile likelihood intervals are illustrated for the 
Aspirin and Myocardial Infarction example on p. 72 in Agresti.  We briefly describe each type of interval. 
 
1.  Wald Confidence Intervals 
 

Suppose the statistic Tn is used to estimate an unknown parameter ( )nE Tθ = .  Wald confidence 

intervals are based on asymptotic normality of the standardized statistic, ( )
( )

nT
se T

θ− .  Inverting this statistic 

gives the 100(1 α− )% confidence interval on θ , / 2 ( )n nT z Tα σ± , where / 2zα  is the 100(1 / 2α− )th 

quantile of the standard normal distribution, and ( )nTσ  is the standard deviation of Tn.  An estimate of 

( )nTσ  is given by the delta method (see Section 3.1.5 in Agresti), with sample statistics inserted where 

parameters are required (e.g., replace cell probabilities with sample proportions).  For the odds ratio (θ ), 
difference in proportions ( 1 2π π− ), and relative risk ( 1 2π π ) in a 2x2 table (assuming independent 
binomial distributions for each of the two samples), the standard errors estimated using this method are: 

 

 ( )1/ 21 1 1 1
11 12 21 22

ˆˆ (log ) n n n nσ θ − − − −= + + +   (3.1) 

 

 
1/ 2

1 1 2 2
1 2

1 2

ˆ ˆ ˆ ˆ(1 ) (1 )ˆ ˆ ˆ( )
n n

π π π πσ π π − −⎡ ⎤− = −⎢ ⎥⎣ ⎦
 (3.2) 

and 
 ( ) 1/ 21 1 1 1

1 2 1 1 1 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆlog (1 ) (1 )n nσ π π π π π π− − − −⎡ ⎤= − + −⎣ ⎦  (3.3) 

 
A Wald confidence interval on either the log odds ratio or the log ratio is more stable than one 
constructed for the respective ratios, themselves.  Take the antilog of the interval endpoints to get a 
confidence interval on the ratio. 
 
We can apply these formulae to the Aspirin and Myocardial Infarction data easily using arithmetic 
operations in S.  However, sometimes a function is useful.   The function Wald.ci below computes 
asymptotic confidence intervals for the proportion difference, odds ratio, and relative risk.  
 
To set up the data, we first do so as a data frame, then use the design.table function (S-PLUS) to 
change it to an array. 
 
Drug<-c("Placebo","Aspirin") 
Infarction<-c("yes","no") 
table.3.1<-expand.grid(drug=Drug,infarction=Infarction)  
Data<-c(28,18,656,658)      
table.3.1<-cbind(table.3.1,count=Data) 
(temp<-design.table(table.3.1))  # turn data frame into an array 
 
        yes  no  
Placebo  28 656 
Aspirin  18 658 
 
Remark: The bold line above used parentheses around an assignment statement.  The effect is to make 
the assignment and also to print the result.  (Or, more technically, apply the print method associated 
with the class of the object on the right hand side). 
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We apply the function Wald.ci below to get the confidence intervals. 
 
Wald.ci<-function(Table, aff.response, alpha=.05){ 
 # Gives two-sided Wald CI's for odds ratio, difference in proportions and relative risk. 
 # Table is a 2x2 table of counts with rows giving the treatment populations 
 # aff.response is a string like "c(1,1)" giving the cell of the beneficial response and the  
 #  treatment category  
 # alpha is significance level 
  
 pow<-function(x, a=-1) x^a  
 z.alpha<-qnorm(1-alpha/2) 
  
 if(is.character(aff.response))  
  where<-eval(parse(text=aff.response))  
 else where<-aff.response 
  
 Next<-as.numeric(where==1) + 1 
  
 # OR 
 odds.ratio<-

Table[where[1],where[2]]*Table[Next[1],Next[2]]/(Table[where[1],Next[2]]*Table[Next[1],where[
2]]) 

 se.OR<-sqrt(sum(pow(Table))) 
 ci.OR<-exp(log(odds.ratio) + c(-1,1)*z.alpha*se.OR) 
  
 # difference of proportions  
 p1<-Table[where[1],where[2]]/(n1<-Table[where[1],Next[2]] + Table[where[1],where[2]]) 
 p2<-Table[Next[1],where[2]]/(n2<-Table[Next[1],where[2]]+Table[Next[1],Next[2]]) 
  
 se.diff<-sqrt(p1*(1-p1)/n1 + p2*(1-p2)/n2) 
 ci.diff<-(p1-p2) + c(-1,1)*z.alpha*se.diff 
  
 # relative risk 
 RR<-p1/p2 
 se.RR<-sqrt((1-p1)/(p1*n1) + (1-p2)/(p2*n2)) 
 ci.RR<-exp(log(RR) + c(-1,1)*z.alpha*se.RR) 
  
 list(OR=list(odds.ratio=odds.ratio, CI=ci.OR), proportion.difference=list(diff=p1-p2, 

CI=ci.diff), relative.risk=list(relative.risk=RR,CI=ci.RR)) 
 } 
 
 
Wald.ci(temp, “c(1, 1)”)  # or use Wald.ci(temp, c(1, 1)) 
 
$OR: 
$OR$odds.ratio: 
[1] 1.560298 
 
$OR$CI: 
[1] 0.8546703 2.8485020 
 
 
$proportion.difference: 
$proportion.difference$diff: 
[1] 0.01430845 
 
$proportion.difference$CI: 
[1] -0.004868983  0.033485890 
 
 
$relative.risk: 
$relative.risk$relative.risk: 
[1] 1.537362 
 
$relative.risk$CI: 
[1] 0.858614 2.752671 
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So, the death rate for the placebo group ranges from 0.85 to 2.85 times that for the aspirin group (odds 
ratio confidence interval).  As the interval for the odds ratio covers 1.0 and somewhat below 1.0, there is 
still a small chance that aspirin has slight negative effects.  The intervals on the relative risk and 
difference of proportions give similar conclusions.   
 
Note that the relative risk estimate is very close to that of the odds ratio.  This is not surprising because 
the sample proportion of deaths from myocardial infarction were small in both groups.  The relationship 
between the odds ratio and relative risk (see p. 47 of Agresti) indicates that the two will be similar in this 
circumstance.  
 
The same code works in R with minor changes.  R does not have the design.table function (although 
with the change of one line, you can source it, as well as factor.names into R.  Contact me for the one-
line change).  However, a glance at the function design.table in S-PLUS shows that the “workhorse” is 
the tapply function.  So, just change the last line as follows: 
 
Drug<-c("Placebo","Aspirin") 
Infarction<-c("yes","no") 
table.3.1<-expand.grid(drug=Drug,infarction=Infarction)  
Data<-c(28,18,656,658)     # note capital D (see comment below) 
table.3.1<-cbind(table.3.1,count=Data) 
tapply(table.3.1$count,table.3.1[,1:2], sum) # turn data frame into an array 

 
Then, use the Wald.ci function.  Make sure that “Data” above is capitalized, as “data” is a function in the 
base environment of R. 
 
 
2.  Score Confidence Intervals 
 
Computing a score interval on the difference of proportions ( 1 2π π− ) is easy using some simple steps in 

S-PLUS.  To test the null hypothesis that 1 2π π− = Δ , we can use the test statistic (z Δ)  given on p. 77 

of Agresti.  This statistic depends on the values of the unconstrained MLEs of 1π  and 2π , and the values 

of the constrained MLEs subject to the null equality, 1 2π π− = Δ . The score confidence interval is then 

the set of Δ  such that 1 / 2| (z z α−Δ) | < .   
 
To get the constrained MLEs of 1π  and 2π  in S, we use the method of Lagrange multipliers.  The 

Lagrangian is the log likelihood minus a constant, λ , times an expression representing the left-hand side 
of the constraint set equal to 0.  Thus, the Lagrangian here is (up to an additive constant) 
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 (3.4) 

 

1 2 1 2 1 2( , | , , , )L y y n nπ π  in (3.4) is the kernel of the log likelihood of two independent binomial counts.  

1 2( , )c π π  is the constraint expression.  To maximize 1 2 1 2 1 2( , | , , , )L y y n nπ π  subject to 1 2( , )c π π = 0, we 

search for a point in 1 2( , )π π -space that falls along 1 2( , )c π π  = 0 but so that the level curve of 

1 2 1 2 1 2( , | , , , )L y y n nπ π  going through that point is tangent to 1 2( , )c π π  = 0.  This point will be a local 
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minimizer of 1 2 1 2 1 2( , | , , , )L y y n nπ π  (see for example Fletcher, 1987).  It can be shown that this implies 
that the gradients of the two functions L and c are related as follows:  
 

 1 2 1 2 1 2 1 2( , | , , , ) ( , )L y y n n cπ π λ π π∇ = ∇  (3.5) 
 
implying that to find a local minimizer (note that we will negate L later to find a maximizer) we must solve 
(3.5) and also the equation 1 2( , )c π π  = 0.  Thus, we must solve a system of three equations in three 

unknowns 1 2( , , )π π λ , then discard the solution for the constant λ  (called the Lagrange multiplier). 
 
The function f below is the left-hand side of the system of equations we want to solve.  This is a function 
that returns a three-dimensional S vector whose first two values represent the gradient of (the negative 
of) the Lagrangian, with respect to 1 2( , )π π , with values for yi and ni given by the values in Table 3.1 

(Agresti).  The third value in the vector is 1 2( , )c π π . 
 
f <- function(p) { 
 c(-(28/p[1])+(656/(1-p[1]))-p[3], -(18/p[2])+(658/(1-p[2]))+p[3], p[1]-p[2]) 
  }  

 
We now use the solveNonlinear function introduced in Chapter 1 to solve the system, where y0 is equal 
to c(0, 0, Δ ).  Note that g in solveNonlinear is a sum of squared errors between f and y0. 
 
solveNonlinear <- function(f, y0, x,...){ 
  # solve f(x) = y0 
  # x is vector of initial guesses, same length as y0 
  # ... are additional arguments to nlmin (not to f) 
  g <- function(x, y0, f) sum((f(x) - y0)^2) 
  g$y0 <- y0   # set g's default value for y0 
  g$f <- f     # set g's default value for f 
  nlmin(g, x, ...) 
} 

 
Now, the function score.ci solves the equations given a value for Δ .  Then, it computes z using the 
solutions for 1π  and 2π .  We use the unconstrained MLE’s as starting values for 1 2( , )π π  and use trial 

and error for a starting value for λ . 
 
score.ci<-function(Delta) { 
 temp<-solveNonlinear(f, y0=c(0,0,Delta), 

x=c(28/(28+656),18/(18+658),7),print.level=0,max.fcal=100,max.iter=100, 
init.step=.001) 

 p<-temp$x[1:2] 
 z<-(p[1]-p[2]-Delta)/sqrt(p[1]*(1-p[1])/684 + p[2]*(1-p[2])/676) 
} 

 
Now, I find the values of Δ satisfying the inequality, 0.975| (z zΔ) | <  for a 95% confidence interval. 
 
Delta<-seq(-.2,.2,.001) 
z<-sapply(Delta,score.ci) 
range(Delta[abs(z)< qnorm(.975)]) 
 
[1] -0.005 0.035 
 
Thus, the score interval is (-0.005, 0.035), slightly wider than the Wald interval. 
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The same idea can be carried out with R, using, for example, the optim function.  Then, the following 
commands produce a score confidence interval.  This time, the function g (here called gfun) is directly 
used instead of just existing within solveNonlinear.  Also, we control the step sizes (ndeps) for the 
computation of the finite difference gradient to be much smaller than the default (see also, the R package 
Bhat with function dfp to possibly get around this).  And, we use a set of Deltas much narrower in order 
to get better accuracy without needing much more computation time. 
 
gfun<-function(p,y0){ 
    sum((c(-(28/p[1])+(656/(1-p[1]))-p[3],-(18/p[2])+(658/(1-p[2]))+p[3],p[1]-p[2])-

y0)^2) 
} 
 
score.ci<-function(Delta) { 
 
   temp<-optim(fn=gfun,par=c(28/(28+656),18/(18+658),7), 

method="BFGS",y0=c(0,0,Delta),  
   control=list(ndeps=c(rep(.000000001,3)))) 
 
   p<-temp$par[1:2] 
   z<-(p[1]-p[2]-Delta)/sqrt(p[1]*(1-p[1])/684 + p[2]*(1-p[2])/676) 
} 
 
 
Delta<-seq(-.05,.05,.0001)  # range only from -.05 to 0.05 to get better accuracy 
z<-sapply(Delta,score.ci) 
range(Delta[abs(z)< qnorm(.975)]) 

 
[1] -0.0042 0.0341 
 
Thus, the confidence interval is ( − 0.0042, 0.0341). 
 
 
3.  Profile Likelihood Confidence Intervals 
 
Agresti illustrates a profile likelihood confidence for the odds ratio of a 2x2 table.  He notes that the 
multinomial likelihood for the table can be expressed in terms of the odds ratio θ  and the two marginal 
probabilities 1π +  and 1π+ .  This is easily seen by writing the four equations 11 22 21 12θ π π π π= , 

1 11 21π π π+ = + , 1 11 12π π π+ = + , and 11 12 21 22 1π π π π+ + + = . Unfortunately, the actual expressions for 

11 12 21 22{ , , , }π π π π  for use in the new likelihood are rather complicated to type into an optimization 

program.  However, if done, then the resulting likelihood can be maximized subject to setting θ  equal to 

0θ , and the maximized value is the profile likelihood for θ  at the value 0θ .   
 
If, as Agresti, we denote the value of the profile likelihood at 0θ  as 0 1 0 1 0ˆ ˆ( , ( ), ( ))L θ π θ π θ+ + , where 

1 0ˆ ( )π θ+  and 1 0ˆ ( )π θ+  are the maximizers as a function of 0θ , and we denote as 1 1
ˆ ˆ ˆ( , , )L θ π π+ + , the 

unconstrained log likelihood evaluated at the MLEs, then the profile-likelihood based confidence interval 
for θ  includes all those values of 0θ  for which 
  

 2
0 1 0 1 0 1 1 1

ˆˆ ˆ ˆ ˆ2 ( , ( ), ( )) ( , , ) ( )L Lθ π θ π θ θ π π χ α+ + + +⎡ ⎤− − <⎣ ⎦  (3.6) 

 
With a small amount of tedium, we could use optim or nlminb to maximize the constrained log likelihood 
for each value of 0θ  and then check condition (3.6).  Luckily, the R package Bhat contains a function 
plkhci for profile-likelihood based confidence intervals which eliminates some of the work for us.  
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However, we still must type in the log likelihood as a function of θ , 1π + , and 1π+ .  One can find the 
necessary transformations very easily using a computer algebra system like Mathematica (2001)..much 
more readily than using S!.  These are then copied almost “word” for “word” into the following function, 
nlogf: 
 
library(Bhat) 
 
# neg. log-likelihood of "new" multinomial model 
nlogf <- function (p) {  
    p1p<-p[1] 
    pp1<-p[2] 
    theta<-p[3] 
    n11 <- table.3.1$count[1]  # recall table.3.1 above 
    n21<-table.3.1$count[2] 
    n12<-table.3.1$count[3] 
    n22<-table.3.1$count[4] 
# the following are the transformations from Mathematica 4.0 
    p22<-(-1 + p1p + pp1 + 2*theta - (p1p + pp1)*theta - sqrt(-4*p1p*(-1 + pp1)*(-1 + theta) +  
        (1 + p1p + pp1*(-1 + theta) - p1p*theta)^2))/(2*(-1 + theta)) 
    p11 <- (1 + p1p*(-1 + theta) + pp1*(-1 + theta) - sqrt(-4*p1p*(-1 + pp1)*(-1 + theta) +  
        (1 + p1p + pp1*(-1 + theta) - p1p*theta)^2))/(2*(-1 + theta)) 
    p21 <- (-1 + p1p + pp1*(-1 + theta) - p1p*theta + sqrt(-4*p1p*(-1 + pp1)*(-1 + theta) +  
        (1 + p1p + pp1*(-1 + theta) - p1p*theta)^2))/(2*(-1 + theta)) 
    p12 <- (-1 + pp1 + p1p*(-1 + theta) - pp1*theta + sqrt(-4*p1p*(-1 + pp1)*(-1 + theta) +  
        (1 + p1p + pp1*(-1 + theta) - p1p*theta)^2))/(2*(-1 + theta)) 
                 
    -(n11*log(p11) + n12*log(p12) + n21*log(p21) + n22*log(p22)) 
    } 

 
Now, we must set up a list with names: label for the parameter names, est for parameter estimates 
(such as MLEs), and low and upp for the upper and lower bounds of the parameters. 
 
x <- list(label=c("p1p","pp1","theta"),  # p1p = row marginal, pp1 = col marg 
 est=c((28+656)/(684+676),(28+18)/(684+676),1.56), 
 low=c(0,0,0),upp=c(1,1,100))  # needed theta < finite bound to work 

 
Now, call the function with arguments, the named list, the name of the function, and finally the label of the 
parameter for which you want confidence bounds. 
 
plkhci(x,nlogf,"theta") 

 
neg. log. likelihood:  1142.580  
  
 will atempt to compute both bounds (+/- direction)  
 
trying lower bound ------------------------  
starting at:    0.9352881  
initial guess:  0.5029413 0.03382281 2.107252  
 
begin Newton-Raphson search for profile lkh conf. bounds:  
eps value for stop criterium: 0.001  
nmax                        : 10  
 
 CONVERGENCE:  6  iterations  
 
chisquare value is:  3.841455  
confidence bound of  theta  is  2.896089  
log derivatives:     2.161155e-06 6.867801e-06  
  label estimate  log deriv   log curv 
1 p1p   0.502911  2.16116e-06 341.928  
2 pp1   0.0336962 6.8678e-06  42.171   
3 theta 2.89609   -5.75779    7.95543  
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trying upper bound ------------------------  
starting at:    0.9856728  
initial guess:  0.5029411 0.03382424 1.153263  
 
begin Newton-Raphson search for profile lkh conf. bounds:  
eps value for stop criterium: 0.001  
nmax                        : 10  
 
 CONVERGENCE:  6  iterations  
 
chisquare value is:  3.841459  
confidence bound of  theta  is  0.8617511  
log derivatives:     2.122385e-06 6.523067e-06  
  label estimate  log deriv   log curv 
1 p1p   0.502946  2.12238e-06 339.335  
2 pp1   0.0336989 6.52307e-06 41.8502  
3 theta 0.861751  6.44456     10.8561  
 
[1] 0.8617511 2.8960895 
 
Thus, the profile likelihood based confidence interval for the odds ratio is: (0.862, 2.896), fairly close to 
the Wald interval. 
 
 
C. Testing Independence in Two-way Contingency Tables  
 
For multinomial sampling with probabilities { }ijπ  in an I x J contingency table, the null hypothesis of 

statistical independence of the row and column variables is 0 : ij i jH π π π+ +=  for all i and j.   Pearson’s 

chi-squared statistic can be used to test this hypothesis.  The expected frequencies in an I x J 
contingency table under H0 are ij ij i jn nμ π π π+ += = , with MLEs given by ˆij i jn n nμ + += .  Then, the 
chi-squared statistic, X2, is given on p. 78 of Agresti.   
 
The score test uses Pearson’s chi-squared statistics.  But, as mentioned in Agresti, the likelihood ratio 
test uses a different “chi-squared statistic” (they are both called chi-squared statistics because they both 
have asymptotic chi-squared distribution under the null hypothesis of independence).  The likelihood ratio 
chi-squared statistic is given on p. 79 of Agresti.  The degrees of freedom for each asymptotic chi-
squared distribution is (I − 1)(J − 1).  The limiting distributions apply when the total sample size is large 
and the number of cells is fixed.  Agresti p.79-80 gives further details. 
 
Agresti uses data on religious fundamentalism and degree of education to illustrate the two different chi-
squared tests of independence. The data are in Table 3.2 (p.80).   
 
First, I set up the data in S-PLUS: 
 
religion.counts<-c(178,138,108,570,648,442,138,252,252) 
table.3.2<-cbind(expand.grid(list(Religious.Beliefs=c("Fund", "Mod", "Lib"), 

Highest.Degree=c("<HS","HS or JH", "Bachelor or Grad"))),count=religion.counts) 
(table.3.2.array<-t(design.table(table.3.2))) # t() is to arrange the table as in 

Agresti 
 
                 Fund Mod Lib  
             <HS  178 138 108 
        HS or JH  570 648 442 
Bachelor or Grad  138 252 252 
 

Now, we can use the chisq.test function.  In S-PLUS, type 
 
chisq.test(table.3.2.array) 
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 Pearson's chi-square test without Yates' continuity correction 
 
data:  design.table(table.3.2)  
X-square = 69.1568, df = 4, p-value = 0  
 

To obtain the expected frequencies, we take advantage of the outer function, as well as the functions 
rowSums and colSums: 
 
expected.freqs<-

outer(rowSums(table.3.2.array),colSums(table.3.2.array),FUN="*")/sum(table.3.2.arra
y) 

 
expected.freqs 
 
                     Fund      Mod      Lib  
             <HS 137.8078 161.4497 124.7425 
        HS or JH 539.5304 632.0910 488.3786 
Bachelor or Grad 208.6618 244.4593 188.8789 
 
In R, the data set-up uses tapply directly, instead of going through design.table, as in Section 1.B.  
The package ctest contains the function chisq.test, which is similar to that above in output, except 
that the function also returns the expected frequencies invisibly (A very nice addition. And, it happens to 
be computed in the same way I computed it above!).  For example, 
 
table.3.2.array<-tapply(table.3.2$count,table.3.2[,1:2], sum) 
(res<-chisq.test(table.3.2.array))  
 
        Pearson's Chi-squared test 
 
data:  table.3.2.array  
X-squared = 69.1568, df = 4, p-value = 3.42e-14 
 
res$expected 
                  Religious.Beliefs 
Highest.Degree         Fund      Mod      Lib 
  <HS              137.8078 161.4497 124.7425 
  HS or JH         539.5304 632.0910 488.3786 
  Bachelor or Grad 208.6618 244.4593 188.8789 
 
The chi-square tests (both Pearson and LR) and expected frequencies (as well as marginal totals) can be 
obtained just as easily with the package vcd, using functions, assoc.stats, expected, and mar.table, 
respectively. 
 
library(vcd) 
assoc.stats(table.3.2.array) 
 
                    X^2 df   P(> X^2) 
Likelihood Ratio 69.812  4 2.4869e-14 
Pearson          69.157  4 3.4195e-14 
 
Phi-Coefficient   : 0.159  
Contingency Coeff.: 0.157  
Cramer's V        : 0.113 
 
expected(table.3.2.array) 
 
          <HS HS or JH Bachelor or Grad 
Fund 137.8078 539.5304         208.6618 
Mod  161.4497 632.0910         244.4593 
Lib  124.7425 488.3786         188.8789 
 
A nice feature of the R package version of chisq.test is that one has the option of computing the p-
value via Monte Carlo simulation.  This is very nice in cases where the expected frequencies do not meet 
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the rules of thumb required for the asymptotic chi-squared distribution to be appropriate, and the table is 
too large to use some of the exact tests offered.  To request p-value computation via Monte Carlo 
simulation, set the argument simulate.p.value (or sim) to TRUE.  The argument B controls the number 
of replicates in the simulation. 
 
chisq.test(table.3.2.array, sim=T, B=2000) 

 
        Pearson's Chi-squared test with simulated p-value (based on 2000 
        replicates) 
 
data:  table.3.2.array  
X-squared = 69.1568, df = NA, p-value = < 2.2e-16 
 
Here, the p-value is similarly very low, rejecting the hypothesis of independence of the two variables. 
 
For the likelihood ratio test statistic, one can easily use the expected frequencies obtained above and the 
formula for the statistic on p. 79 of Agresti.  For example,  
 
2*sum(table.3.2.array*log(table.3.2.array/expected.freqs)) # R: Use res$expected instead 

of expected.freqs 
  
[1] 69.81162  
 
Alternatively, jumping ahead a bit, we can use the glm function for generalized linear models (see 
Chapter 4) and the Poisson distribution (which is the distribution of the counts in the table when the total 
number of cases is not fixed – see p. 132 in Agresti) to get the likelihood ratio chi-squared statistic.  For 
example, in either S-PLUS or R, we get 
 
fit.glm<-glm(count~Religious.Beliefs+Highest.Degree, data=table.3.2, family=poisson) 
fit.glm$deviance 
 
[1] 69.81162 
 
The expected frequencies can then be obtained using the function predict. 
 
temp<-predict(fit.glm,type="response") 
matrix(temp, nc=3, byrow=T, dimnames=list(c("<HS","HS or JH", "Bachelor or 

Grad"),c("Fund", "Mod", "Lib"))) 
 
                     Fund      Mod      Lib  
             <HS 137.8078 161.4497 124.7425 
        HS or JH 539.5305 632.0910 488.3786 
Bachelor or Grad 208.6618 244.4593 188.8790 
 
 
D. Following Up Chi-Squared Tests 
 
After running a chi-squared test and rejecting the hypothesis of independence, one may want to know 
where the association between the two variables lies.  Agresti lists the use of residual analysis and 
partitioning the overall chi-squared statistic for subtables as methods for assessing where association 
may lie. 
 
1. Standardized Pearson residuals 
 
The (squared) Pearson residuals are actually components of the Pearson chi-squared statistic.  One can 
extract the Pearson residuals from a glm object in S by using the function residuals, with type argument 
“pearson”.  For example, using the data above, 
 
resid.pear <- residuals(fit.glm, type = "pearson")  
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Note that the sum of the squared Pearson residuals equals the Pearson chi-squared statistic: 
 
sum(resid.pear^2) 
[1] 69.11429 
 
To get the standardized residuals, just modify resid.pear according to the formula on p. 81 of Agresti. 
 
ni<-rowSums(table.3.2.array) # row sums 
nj<-colSums(table.3.2.array) # column sums 
n<-sum(table.3.2.array)  # total sample size 
resid.pear.mat<-matrix(resid.pear, nc=3, byrow=T, dimnames=list(c("<HS","HS or JH", 

"Bachelor or Grad"),c("Fund", "Mod", "Lib"))) 
 
n*resid.pear.mat/sqrt(outer(n-ni,n-nj,"*") ) # standardized Pearson residuals 
 
                      Fund        Mod       Lib  
             <HS  4.534062 -2.5520482 -1.941537 
        HS or JH  2.552988  1.2859745 -3.994669 
Bachelor or Grad -6.806638  0.7007539  6.250329 
 
Because the standardized residuals are asymptotically standard normal, we can compare them against 
standard normal “critical values” such as ± 1.96 as an indication of lack of fit of the respective cell 
frequency to an independence model.  Thus, for the religious fundamentalism example, there is strong 
lack of fit in three of the four corners of the table, indicating higher frequency than expected by H0 in the 
cells for liberal/bachleor’s and fundamentalist/<HS, and lower frequency than expected in the 
bachelor/fundamentalist cell. 
 
2. Partitioning Chi-Squared 
 
Because a chi-squared random variable with ν  degrees of freedom can be partitioned into the sum of ν  
independent chi-squared random variables, we can also partition a chi-squared test of independence into 
separate independent tests, the sum of which equal the overall chi-squared statistic.  As Agresti says, this 
partitioning may highlight where in a table association applies.    
 
Not all partitions of an overall table yield independent component chi-squared statistics, but one that does 
is given on p. 83 of Agresti, and explicit rules appear on p. 84.  This partitioning is illustrated with the 
Schizophrenia data set on p. 83, which cross-classifies a sample of psychiatrists by their school of 
psychiatric thought and their opinion on the origin of schizophrenia.  To calculate the likelihood ratio (LR) 
chi-squared statistic for the test of the null hypothesis of independence of the two variables, School and 
Origin, we can use the glm function again with the Poisson family. 
 
schizo.counts<-c(90,12,78,13,1,6,19,13,50) 
table.3.3<-cbind(expand.grid(list(Origin=c("Biogenic", "Environmental", 

“Combination"),  School=c("Eclectic","Medical", “Psychoanalytic"))), 
count=schizo.counts) 

 
The full LR test is 
 
fit<-glm(count~Origin+School, family="poisson", data=table.3.3) 
fit$deviance  # LR statistic 
 
[1] 23.03619 
 
which is significant at the 0.05 level, rejecting independence.  Now, to test independence of the row and 
columns variables in Subtable 1 in Table 3.4 in Agresti p. 83, we can use the update function.  This test 
compares the Eclectic and Medical schools of thought on whether the origin of schizophrenia is biogenic 
or environmental, given that classifications only in these last two categories are considered. 
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update(fit, subset=(School=="Eclectic" | School=="Medical") & (Origin=="Biogenic" | 
Origin=="Environmental"))$deviance 

 
[1] 0.2941939 
 
Thus, we do not reject the hypothesis of independence for Subtable 1.  Subtables 2 through 4 require a 
bit more than just case selection via an update call.  Subtable 2 compares the Eclectic and Medical 
schools on whether the origin is a combination or not.  So, we use the aggregate function to sum 
columns.   
 
First, I add a column called select that indicates the new categories.  Then, I aggregate the counts in 
table.3.3 by School and select, and sum these counts.  This gives the new table, which is supplied as 
the data argument to glm.  Finally, to restrict the analysis to just the Eclectic and Medical schools, I use 
the subset argument. 
 
table.3.3$select<-rep(c("Bio+Env","Bio+Env","Com"),3) 
table.3.3.sub2<-aggregate(table.3.3$count,by=list(School=table.3.3$School, 

select=table.3.3$select),sum) 
(fit<-glm(x~select+School, family="poisson", data=table.3.3.sub2, subset= 

School=="Eclectic" | School=="Medical"))$deviance 
 
[1] 1.358793 
 
Thus, we also do not reject the null hypothesis for Subtable 2, as the LR statistic is too small (for any 
significance level less than about 0.24) compared to a chi-squared distribution with 1 df.  So, in neither of 
Subtables 1 and 2 does the association between Origin of Schizophrenia and School of Thought lie. 
 
The remaining subtable tests are calculated similarly, and the sum of their LR statistics is the LR statistic 
of the full table.  The above functions can be used in R or S-PLUS.  Pearson chi-squared tests can be 
conducted as before using the chisq.test function with the subtable data frames as arrays. 
 
E. Two-Way Tables with Ordered Classification 
 
The LR and Pearson chi-squared statistics ignore information about any inherent order that is present in 
the categories of one or more classification variables.  This section deals with tests of independence of 
two classification factors where both factors have ordinal-level categories.  The alternatives to 
independence that Agresti discusses in this section are a linear association between the two factors and 
a monotone association. 
 
1.  Linear Trend Alternative to Independence 
 
The first test is one for detecting nonzero true correlation between two ordinal factors.  It is 
 

 2 2( 1)M n r= −  (3.7) 
 
Thus, with a larger correlation, r, or larger sample, M2 is larger.  For large samples, it is approximately chi-
squared with 1 df.  A small p-value indicates that there may be a strong linear component to any 
association. 
Implementation of (3.7) in S is just a matter of computing r on chosen scores.  For example, for the Job 
Satisfaction data in Table 2.8 of Agresti, he uses scores 1, 2, 3, and 4 for job satisfaction and scores 7.5, 
20, 32.5, and 60 in thousands of dollars for income.  The income scores represent approximate category 
midpoints.  In S-PLUS or R, correlation (via the product-moment formula) is computed using the function 
cor.  First, we must convert the levels of income and jobsat to numeric labels. 
 
levels(table.2.8$income)<-c(7.5,20,32.5,60) 
levels(table.2.8$jobsat)<-1:4 
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Then, we repeat the income and jobsat values in table.2.8 count times.  We can do this in at least two 
ways.  One way is to use apply.  The other is to just rep the row labels count times.  Both methods are 
fairly comparable in efficiency, but method 2 requires a subsequent change of class of the columns to 
numeric.  Then, we apply cor, which returns an entire matrix, from which we select the 2,1 element. 
 
res<-table.2.8[,1:2][rep(1:nrow(table.2.8),table.2.8$count),] # method 2 (see above) 
res<-apply(table.2.8[,1:2],2,function(x){rep(x,table.2.8$count)}) # method 1 
(cor(res)[2,1]^2)*(nrow(res)-1) 
[1] 3.807461 
 
1-pchisq(3.807461,1)  # M^2 ~~ chisq, 1 df 
[1] 0.0510247 
 
As the p-value is relatively low, we can conclude that an association that involves a linear component 
may be likely.   
 
2.  Monotone Trend Alternative to Independence 
 
One problem with the above analysis is that the scores impose an interval scale on the two factors, which 
may not be appropriate because we really only have ordinal level variables.  This section uses the 
gamma statistic (Section 2.4.4 in Agresti) to test independence against the weaker alternative of 
monotonicity.  We can use our Gamma.f function from Section 2.E to compute the monotonic association 
between jobsat and income. 
 
We’ll modify Gamma.f a little to get the standard error of gamma.  One modification appears below in 
Gamma2.f.  This is based on problem 3.27 in Agresti.  Instead of fiddling with table.2.8 to get the matrix 
of counts needed for input into Gamma2.f, we can just reuse the call to crosstabs (or xtabs), or call it 
again if it wasn’t saved.  
 
There is also a slight difference in implementation of Gamma2.f across S-PLUS and R.  Thus, I first check 
(using version) whether we are using R or S-PLUS.  The version object is different across the two 
implementations.  Check this for yourself. 
 
Gamma2.f<-function(x, pr=0.95) 
{ 
    # x is a matrix of counts.  You can use output of crosstabs or xtabs in R. 
    # A matrix of counts can be formed from a data frame by using design.table. 
     
    # Confidence interval calculation and output from Greg Rodd 
     
    # Check for using S-PLUS and output is from crosstabs (needs >= S-PLUS 6.0) 
    if(is.null(version$language) && inherits(x, "crosstabs")) { oldClass(x)<-NULL; 

attr(x, "marginals")<-NULL} 
         
    n <- nrow(x) 
    m <- ncol(x) 
    pi.c<-pi.d<-matrix(0,nr=n,nc=m) 
         
    row.x<-row(x) 
    col.x<-col(x) 
     
    for(i in 1:(n)){ 
        for(j in 1:(m)){ 
            pi.c[i, j]<-sum(x[row.x<i & col.x<j]) + sum(x[row.x>i & col.x>j]) 
            pi.d[i, j]<-sum(x[row.x<i & col.x>j]) + sum(x[row.x>i & col.x<j]) 
        } 
    } 
 
    C <- sum(pi.c*x)/2 
    D <- sum(pi.d*x)/2 
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    psi<-2*(D*pi.c-C*pi.d)/(C+D)^2 
    sigma2<-sum(x*psi^2)-sum(x*psi)^2 
     
    gamma <- (C - D)/(C + D) 
    pr2 <- 1 - (1 - pr)/2 
    CIa <- qnorm(pr2) * sqrt(sigma2) * c(-1, 1) + gamma 
 
    list(gamma = gamma, C = C, D = D, sigma = sqrt(sigma2), Level = paste( 
        100 * pr, "%", sep = ""), CI = paste(c("[", max(CIa[1], -1),  
        ", ", min(CIa[2], 1), "]"), collapse = ""))      
} 
 
 
temp<-crosstabs(formula = count ~ income + jobsat, data = table.2.8) 
Gamma2.f(temp) 
 
$gamma 
[1] 0.2211009 
 
$C 
[1] 1331 
 
$D 
[1] 849 
 
$sigma 
[1] 0.1171628 
 
$Level 
[1] "97.5%" 
 
$CI 
[1] "[-0.00853400851071168, 0.450735843373097]" 
 
Using the SE estimate of 0.117, a 95% confidence interval on γ is ( − 0.01, 0.45). 
 
The function Gamma2.f takes less than 1 CPU second on a Pentium 4 (original version) computer with 
512 MB of RAM running S-PLUS 6.1, and takes even less time using R. 
 
resources(res<-Gamma2.f(temp)) # S-PLUS (resources is available from Venables and 

Ripley (2000)) 
 
  CPU Elapsed % CPU Child Cache Working  
 0.16    0.16   100     0     0    6274 
 
 
F. Small Sample Tests of Independence 
 
When the total sample size for the table is small (where “small” in practice may be defined by your 
computer software, as we will see shortly), exact tests and exact confidence intervals are preferred to 
their large-sample “equivalents” for obvious reasons.  In this section I describe how to use S for the exact 
tests discussed in Section 3.5 in Agresti for testing independence of row and column variables. 
 
1.  Fisher’s Exact Test 
 

For 2x2 tables, given the marginal totals, the entire table is determined by one cell count (say the 1,1 
cell).  Under independence, this cell count has the hypergeometric distribution given in (3.16) in Agresti.   
(In general, it has a noncentral hypergeometric distribution with noncentrality parameter the odds ratio). 
For a 2x2 table, Fisher’s Exact Test is a test of the null hypothesis that the odds ratio corresponding to 
the table is 1.  A one-sided p-value of the test is the sum of all hypergeometric probabilities that are more 
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consistent with the alternative hypothesis than the one corresponding to the observed table, plus the 
probability corresponding to the observed table. One possible two-sided p-value is double this result, 
provided the answer does not exceed 1. Other possibilities are given in Agresti p. 93.  Some of these can 
be implemented using dhyper (see below). 
 
To demonstrate Fisher’s Exact Test, Agresti uses the data from Table 3.8 (p. 92).  The function 
fisher.test in S-PLUS gives a two-sided test; the version in R gives either a one- or two-sided test.  
The function can be used for I x J tables as well, with I, J ≤  10, but the total sample size in the table 
cannot exceed 200.  (Interesting, the “Tea Tasting” example is given in the help page for fisher.test in 
R).  In S-PLUS we get 
 
(test<-fisher.test(matrix(c(3,1,1,3),byrow=T,ncol=2))) 
 
 Fisher's exact test 
 
data:  matrix(c(3, 1, 1, 3), byrow = T, ncol = 2)  
p-value = 0.4857  
alternative hypothesis: two.sided  
 
To get the one-sided p-value, type: 
 
test$p.value/2 
[1] 0.2428572 
 
Note that the one-sided p-value can be obtained using dhyper, as might be expected. 
 
sum(dhyper(q=c(3,4),m=4,n=4,k=4)) 
[1] 0.2428571 
 
In R, for 2x2 tables, we can specify the alternative to be “greater”.  Plus, we get a confidence interval 
result. 
 
library(ctest) 
(fisher.test(matrix(c(3,1,1,3),byrow=T,ncol=2), alternative="greater")) 
 
        Fisher's Exact Test for Count Data 
 
data:  matrix(c(3, 1, 1, 3), byrow = T, ncol = 2)  
p-value = 0.2429 
alternative hypothesis: true odds ratio is greater than 1  
95 percent confidence interval: 
 0.3135693       Inf  
sample estimates: 
odds ratio  
  6.408309 
 
The R version allows for a null value of the odds ratio to be something other than 1 (using argument or). 
 
Mid-p-values can be calculated using dhyper. 
 
 
2.  Unconditional Test of independence 
 
If only row totals are fixed by design, a better alternative might be to use the unconditional small-sample 
test of independence described in Section 3.5.5 in Agresti.  If we assume that rows represent 
independent binomial samples, then the hypothesis of independence (or homogeneity of proportions) is 
that the column (or response) probabilities are equal across rows ( 0 1 2:H π π π= = ).  Using a test 

statistic such as Pearson’s chi-squared, the p-value is the supremum over 0 1π≤ ≤  of the probability 
that Pearson’s chi-squared meets or exceeds the observed value.  For the (3, 0 / 0, 3) table given on p. 
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95 of Agresti, X2 = 6 and we need the supremum of 2 3 3( 6) 2 (1 )P X π π≥ = − .  In S, we can use general 
optimization functions for this.  The function optim exists for both R and S-PLUS implementations (in S-
PLUS it resides in the MASS library). 
 
library(MASS) # S-PLUS only 
(res<-optim(par=.25, fn=function(pi){ log(2) + 3*log(pi) + 3*log(1-pi)},  
 method="L-BFGS-B", lower=.00001, upper=.9999, control=list(fnscale=-1))) 
 
$par: 
[1] 0.5 
 
$value: 
[1] -3.465736 
 
 

. . .(snip) 
 
exp(res$value) # p-value 
[1] 0.03125 
 
Different ranges of π  can be used by changing the lower and upper arguments. 
 
 
3.  Fisher’s Exact Test for I x J Tables 
 
For product multinomial sampling or ordinary multinomial sampling, conditioning on both the row and 
column totals, under independence, yields the multiple hypergeometric distribution for the cell counts.  As 
mentioned in Agresti, the p-value of the test of independence is the probability of the set of tables with the 
given margins that are no more likely to occur than the table observed.  Sometimes the tables are 
ordered using a statistic that describes distance from independence (such as Pearson’s chi-squared).  
For a table with ordinal categories, the statistic might measure positive association (such as gamma). 
 
Table 3.9 in Agresti cross-classifies level of smoking and myocardial infarction for a sample of women in 
a case-control study.  We can use an exact conditional test of independence for ordered categories that 
uses the gamma statistic and calculates for the p-value, the probability of observing a gamma as large as 
that corresponding to Table 3.9, under independence.  This will involve the multiple hypergeometric 
probability mass function given in equation (3.19) of Agresti. 
 
We can easily calculate the p-value using the functions prod and factorial, but the function 
fisher.test can also be used, as it now handles I x J tables. 
 
(table.3.9<-matrix(c(25,25,12,0,1,3),byrow=T,ncol=3)) 
 
     [,1] [,2] [,3]  
[1,]   25   25   12 
[2,]    0    1    3 
 
Gamma.f(table.3.9) # observed gamma 
 
$gamma: 
[1] 0.8716578 
 
$C: 
[1] 175 
 
$D: 
[1] 12 
 
To get the p-value, we can use the functions factorial and prod.  For R, we must use the function 
fact instead of factorial.  fact is available in library combinat. 
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num<-prod(factorial(rep(1,2)%*%table.3.9))*prod(factorial(rep(1,3)%*%t(table.3.9))) 
den<-factorial(sum(table.3.9))*prod(factorial(table.3.9)) 
term1<-num/den 
 
temp<-matrix(c(25,26,11,0,0,4), byrow=T, ncol=3) # only other table with C-D as least 

as large 
 
num<-prod(factorial(rep(1,2)%*%temp))*prod(factorial(rep(1,3)%*%t(temp))) 
den<-factorial(sum(temp))*prod(factorial(temp)) 
term2<-num/den 
 
term1+term2 # sum the two probabilities 
[1] 0.01830808 
 
Otherwise, we can use fisher.test: 
 
fisher.test(table.3.9)$p.value/2 
[1] 0.01704545 
 
 
G. Small-Sample Confidence Intervals For 2x2 Tables 
 
Conditional on the marginal totals, the distribution of the (1, 1) cell in a 2x2 table is noncentral 
hypergeometric, with non-centrality parameter the odds ratio, θ .  The distribution is given on p. 99 of 
Agresti.  A confidence interval for the odds ratio results from inverting the test of 0 0:H θ θ= , given the 

observed cell counts.  Cornfield’s (1956) tail method for constructing a confidence interval on θ  is given 
on p. 99 on Agresti.  Briefly, the lower endpoint of a 100(1 α− )% confidence interval is 0θ  for which the 

p-value equals / 2α  in testing against an alternative hypothesis that 0θ θ>  (the value of 0θ  that would 

cause us to “just” accept H0 with the observed cell counts).  The upper endpoint is the value of 0θ  for 

which the p-value equals / 2α  in testing against an alternative hypothesis that 0θ θ< .  Because of the 

discreteness of the p-value, the interval is the set of 0θ  for which both one-sided p-values / 2α≥ . 
 
As mentioned previously, the fisher.test function in R outputs a confidence interval on the odds ratio 
for a 2x2 table.  For the tea tasting data, it gives  
 
library(ctest) 
res<-fisher.test(matrix(c(3,1,1,3),byrow=T,ncol=2), alternative="two.sided", or=1) 
res$conf.int 
 
[1]   0.2117329 621.9337505 
 
attr(,"conf.level") 
[1] 0.95 
 
and it gives the estimate 
 
res$estimate 
 
odds ratio  
  6.408309 
 
The estimate of the odds ratio is the conditional MLE of θ  discussed by Agresti, that is, the value of θ  
that maximizes the likelihood of the cell counts, conditional on the marginal totals. 
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Liao and Rosen (2001) give an R function for probability calculations from a non-central hypergeometric 
distribution.  Their function can be used to obtain the confidence interval above.  The syntax (using 
Agresti’s notation) is 1 1( , , , )hypergeometric n n n θ+ + . This returns a set of functions such as the 
cumulative distribution function (CDF), the probability mass function, and moment functions.  The 
confidence interval can be found by trial and error via the CDF, changing the odds ratio each time.  Or, 
one can use optim.  We can determine both endpoints with the same function by summing the squared 
differences of the two p-values from 0.025. 
 
f<-function(x, alpha,t0){ 
    resl<-hypergeometric(4,4,8,x[1]) 
    resu<-hypergeometric(4,4,8,x[2]) 
    sum(c(1-resl$p(t0-1) - alpha/2, resu$p(t0)-alpha/2)^2) 
} 
 
optim(par=c(.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, control= 
list(parscale=c(1,100))) 
 
$par 
[1]   0.2117342 626.2385687 
 
$value 
[1] 1.345465e-13 
 
$counts 
function gradient  
      91       80  
 
$convergence 
[1] 0 
 
So, the two endpoints are (0.211, 626.24), which we check using hypergeometric. 
 
res<-hypergeometric(4,4,8,626.24)  # Upper endpoint 
res$p(3) # p is the CDF returned by hypergeometric. we evaluate it at t=3 
[1] 0.02500014 
 
res<-hypergeometric(4,4,8,.212)  # lower endpoint 
1-res$p(2) 
[1] 0.02505818 
 
As both probabilities just exceed 0.025, we take the corresponding odds ratios as the endpoints.  Note 
the slight difference in the result compared with fisher.test above.   
 
Using the non-central hypergeometric distribution function for the mid-p-value-adjusted confidence 
interval is just as easy. 
 
f<-function(x, alpha,t0){ 
    resl<-hypergeometric(4,4,8,x[1]) 
    resu<-hypergeometric(4,4,8,x[2]) 
    sum(c(1-resl$p(t0-1) -.5*resl$d(t0) - alpha/2, resu$p(t0-1) + .5*resu$d(t0) -
alpha/2)^2) 
} 
 
optim(par=c(.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, control= 
list(parscale=c(1,100))) 
 
$par 
[1]   0.3100547 308.5567363 
 
$value 
[1] 6.545662e-16 
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$counts 
function gradient  
      58       46  
 
$convergence 
[1] 0 
 
res<-hypergeometric(4,4,8,308.5567363) 
res$p(2) + .5*res$d(3) 
[1] 0.02500000 
 
res<-hypergeometric(4,4,8,0.3100547) 
1-res$p(2) - .5*res$d(3) 
[1] 0.02499998 
 
Thus, the confidence interval is approximately (0.31, 309). 
 
I have neglected to mention that the hypergeometric function, as it is, won’t work in S-PLUS because it 
uses R scoping rules that S-PLUS doesn’t follow.  The functions returned by hypergeometric access 
variables that belong to the environment in which the functions were created (i.e., the hypergeometric 
environment).  Thus, all the returned functions can use any variables created within hypergeometric.  
The same won’t work in S-PLUS because a function created in S-PLUS only has access to the objects 
created in the evaluation frame (the environment created with the function) or that exist in the parent 
frame (the environment in which the function was invoked) or on the search path.  It is possible to modify 
the function so that it will work in S-PLUS.  A simple way to do so is to pass as arguments all variables 
that are needed.  Another way is to use a function that can make a closure (see the MC function in the 
Appendix of Gentleman and Ihaka (2000)).  A modified version of the hypergeometric function is given 
below, that uses MC, as well as substitute(): 
 
  hypergeometric.SPLUS <- function(n1, m1, N, psi) 
   {     
      n2 <- N - n1; 
      if(n1<0 | n2<0 | m1<0 | m1>N | psi<=0) stop("wrong argument in hypergeometric"); 
 
      ll <- max(0, m1-n2); 
      uu <- min(n1, m1);     
 
      prob <- array( 1, uu-ll+1 ); 
         
      shift <- 1-ll;  
 
      mode.compute <- substitute(function()     
    { 
       a <- psi - 1; 
       b <- -( (m1+n1+2)*psi + n2-m1 ) ;     
       c <- psi*(n1+1)*(m1+1); 
       q <- b + sign(b)*sqrt(b*b-4*a*c); 
       q <- -q/2; 
              
       mode <- trunc(c/q);  
       if(uu>=mode && mode>=ll) return(mode) 
       else return( trunc(q/a) );       
    }   , list(psi=psi, m1=m1, n1=n1,ll=ll, uu=uu, n2=n2)) 
     
      mode <- mode.compute();   
 
      r.function <- substitute(function(i) (n1-i+1)*(m1-i+1)/i/(n2-m1+i)*psi, list(psi=psi, 

m1=m1, n1=n1,ll=ll, uu=uu, n2=n2)); 
 
    if(mode<uu) #note the shift of location 
    {   
       r1 <- r.function( (mode+1):uu );    
       prob[ (mode+1 + shift):(uu + shift) ] <- cumprod(r1);        
      } 
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      if(mode>ll) 
      { 
         r1 <- 1/r.function( mode:(ll+1) ); 
         prob[ (mode-1 + shift):(ll + shift) ] <- cumprod(r1); 
      } 
             
      prob <- prob/sum(prob);  
 
      mean <- function() sum( prob[(ll:uu)+shift]*(ll:uu) );  
 
      var <-  function() sum( prob[(ll:uu)+shift]*(ll:uu)^2 ) - mean()^2;           
      
      d <- substitute(function(x) return(prob[x + shift]), list(prob=prob, shift=shift, ll=ll, 

uu=uu)); 
 
      p <- substitute(function(x, lower.tail=TRUE) 
      {    
          if(lower.tail) return( sum(prob[ll:(x+shift)]) ) 
          else return( sum( prob[(x+shift):uu] ) ); 
      },list(prob=prob, shift=shift, ll=ll, uu=uu)) 
 
    
     sample.low.to.high <- function(lower.end, ran) 
     {  
     for(i in lower.end:uu) 
       {                     
          if(ran <= prob[i+shift]) return(i); 
          ran <- ran - prob[i+shift]; 
       }                                 
     } 
        
    sample.high.to.low <- function(upper.end, ran) 
    {        
       for(i in upper.end:ll) 
         {                       
           if(ran <= prob[i+shift]) return(i); 
           ran <- ran - prob[i+shift]; 
         }  
      }   
 
   
      r <- function() 
      { 
          ran <- runif(1);  
           
          if(mode==ll) return( sample.low.to.high(ll, ran) );             
          if(mode==uu) return( sample.high.to.low(uu, ran) );                                      
              
          if(ran < prob[mode+shift]) return(mode);              
          ran <- ran - prob[mode+shift]; 
              
          lower <- mode - 1;                                                         
          upper <- mode + 1; 
                     
          repeat 
          {                          
            if(prob[upper + shift] >= prob[lower + shift]) 
            {               
              if(ran < prob[upper+shift]) return(upper); 
              ran <- ran - prob[upper+shift]; 
              if(upper == uu) return( sample.high.to.low(lower, ran) ); 
              upper <- upper + 1;                     
            } 
                 
            else 
            { 
              if(ran < prob[lower+shift]) return(lower); 
              ran <- ran - prob[lower+shift]; 
              if(lower == ll) return( sample.low.to.high(upper, ran) ); 
              lower <- lower - 1;                
            }       
          }  
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      } 
   
  MC(mean, list(prob=prob, shift=shift, ll=ll, uu=uu))       
     MC(var, list(prob=prob, shift=shift, ll=ll, uu=uu))        
     MC(sample.low.to.high, list(prob=prob, shift=shift, ll=ll, uu=uu)      ) 
     MC(sample.high.to.low, list(prob=prob, shift=shift, ll=ll, uu=uu)    )   
     MC(r, list(prob=prob, shift=shift, ll=ll, uu=uu)      ) 
 
      return(mean, var, d, p, r); 
   } 
 
Thus, the small-sample confidence interval on the odds ratio, and its adjustment using the mid-p-value 
can be obtained using the same commands as above: 
 
f<-function(x, alpha,t0){ 
    resl<-hypergeometric.SPLUS(4,4,8,x[1]) 
    resu<-hypergeometric.SPLUS(4,4,8,x[2]) 
    sum(c(1-resl$p(t0-1) - alpha/2, resu$p(t0)-alpha/2)^2) 
} 
 
library(MASS) 
optim(par=c(.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, 

control=list(parscale=c(1,100), trace=1)) 
 
$par: 
[1]   0.2117342 626.2385697 
 
$value: 
[1] 1.345311e-013 
 
$counts: 
 function gradient  
       92       80 
 
$convergence: 
[1] 0 
 
And for the mid-p-value: 
 
f<-function(x, alpha,t0){ 
    resl<-hypergeometric.SPLUS(4,4,8,x[1]) 
    resu<-hypergeometric.SPLUS(4,4,8,x[2]) 
    sum(c(1-resl$p(t0-1) -.5*resl$d(t0) - alpha/2, resu$p(t0-1) + .5*resu$d(t0) -

alpha/2)^2) 
} 
 
optim(par=c(.22, 622), fn=f, method="BFGS", alpha=.05, t0=3, 

control=list(parscale=c(1,100), trace=1)) 
 
$par: 
[1]   0.3100547 308.5567363 
 
$value: 
[1] 6.546435e-016 
 
$counts: 
 function gradient  
       57       46 
 
$convergence: 
[1] 0 
 
$message: 
NULL 
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The small-sample confidence interval on the difference of proportions, mentioned in Section 3.6.4 of 
Agresti, can be computed using the methodology from Section 3.F.2 of this manual. 
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Chapter 4: Generalized Linear Models 
 
A. Summary of Chapter 4, Agresti 
 
 Chapter 4 in Agresti deals with generalized linear models (GLIMs).  GLIMs extend the general 
linear model by allowing nonnormal response distributions and allowing a nonlinear mean function.  
There are three components of a GLIM, which are detailed on p. 116-117 of Agresti.  Briefly, the random 
component consists of independent observations from a distribution in the natural exponential family.  
The pdf for this family is given in equation (4.1) of Agresti.  Special discrete random variable cases are 
the Poisson and binomial distributions.  The systematic component relates a vector, 1( ,... )T

nη η=η , to a 

set of explanatory variables through a linear model: = Xη β .  η  is called the “linear predictor”.  The link 
function links the random and systematic components.  It describes the relationship between the mean of 
the response, iμ , and the linear predictor, ( )i igη μ= .  When we specify a link function, g, we are saying 
that the systematic effects are additive on the scale given by the link function. 

A fourth component is sometimes specified explicitly.  This is the variance function, which is a 
function relating the variance to the mean (see Section 4.4 in Agresti).  It is proportional to the variance of 
the response distribution, with proportionality constant the inverse of a parameter called the dispersion 
parameter. (If we use a particular random component, we automatically accept its variance function.  
However, there are methods where we can use a particular variance function that we believe describes 
the random phenomenon, but then refrain from “choosing” a distribution for the random component.   
These methods use what are called “quasi-likelihood functions”.) 

Typical cases of GLIMs are the binomial logit model (Bernoulli response with log odds link 
function) and the Poisson loglinear model (Poisson response with log link).  Other cases are given in 
Table 4.1 in Agresti.  For binomial and Poisson models, the dispersion parameter is fixed at 1.   

GLIMs are fit by solving the set of likelihood equations.  This leads to maximum likelihood 
estimates of the coefficients of the linear predictor.  As the likelihood equations are usually nonlinear in 
the coefficients β  of the linear predictor, the solutions are found iteratively.  Iterative Reweighted Least 
Squares (IRLS) is the iterative method commonly used to fit GLIMs (it is used in S-PLUS).  It uses Fisher 
scoring, which is based on the Newton-Raphson method, which achieves second-order convergence of 
the estimates.  The difference between the two algorithms lies in the use of the observed information 
matrix for Newton-Raphson and the expected information matrix for Fisher scoring (see p. 145-146, 
Agresti).  For canonical link models, these are the same.  Fisher scoring will produce the estimated 
asymptotic covariance matrix as a by-product, but it need not have second-order convergence.  Plus, the 
observed information matrix may be easier to calculate for complex models.  The name IRLS comes from 
the iterative use of weighted least squares estimation, where the weights and responses (linearized forms 
of the link function evaluated at the observed data) change at each iteration.  It is explained on p. 147 of 
Agresti that IRLS and Fisher scoring are the same thing. 

Model deviance is the LR statistic for testing the null hypothesis that the model holds against the 
general alternative of a saturated model.  It is twice the difference between the saturated log likelihood 
and the log likelihood maximized under the restrictions of the model being tested.  In certain cases, this 
quantity has an asymptotic chi-squared distribution.  If the dispersion parameter is not fixed at 1, then 
twice the difference between the saturated log likelihood and the restricted log likelihood is equal to the 
deviance scaled by the dispersion parameter (hence called the scaled deviance).  Model deviance for a 
two-way contingency table is equivalent to the likelihood ratio chi-squared statistic.  The deviance has an 
approximate chi-squared distribution for large Poisson expected values and large binomial sample sizes 
per covariate combination.  Thus, the model deviance for Bernoulli data (0/1, instead of counts out of a 
total) is not asymptotically chi-squared. 

One can compare two nested models (i.e., one model is a subset of the other) using the 
difference between their deviance values.  The deviance for the larger model (more parameters to 
estimate) will be smaller.  The comparison proceeds by first assuming that the larger model holds and 
testing to see if the smaller model is not statistically significantly worse in deviance.  The difference in 
deviance is then a LRT and has an asymptotic chi-squared null distribution.  For binomial or Bernoulli 
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data, the difference in deviance is the same, unlike their respective model deviances.  Thus, the chi-
squared approximation holds for both.  In general, the use of the chi-squared approximation is much 
more reliable for differences of deviances than model deviances themselves (see also, McCullagh and 
Nelder, 1989).  Model comparison is examined in detail in later chapters.  Standardized Pearson and 
deviance residuals are additional ways to assess the fit of a model. 
 When we want to fit a GLIM such as the Poisson loglinear model to a data set, but the observed 
variance of the data is greater than that allowed by the Poisson model, we may have a case for fitting an 
overdispersed version of the model.  If overdispersion is the result of subject heterogeneity, where 
subjects within each covariate combination still differ greatly (perhaps because we didn’t measure 
enough covariates), then a random effects version of the model (e.g., random effects Poisson regression, 
random effects logistic regression) may be appropriate.  Another alternative is to fit a model with a 
random component that allows for a greater variance than the ordinary Poisson or binomial.  Some 
examples are the negative binomial (for random count data) and the beta-binomial (for counts out of a 
total).   

A third alternative is to use quasi-likelihood estimation.  In quasi-likelihood estimation, we take 
advantage of the fact that the likelihood equations for GLIMS depend on the assumed response 
distribution only through its mean and variance (which may be a function of the mean).  Distributions in 
the natural exponential family are characterized by the relationship between the mean and the variance.  
Quasi-likelihood estimation is determined by this relationship. Thus, if we wanted to assume that the 
variance of a random count was some specified function of its mean, but not equal to it, we could use 
quasi-likelihood estimation to estimate the coefficients of the linear predictor. 

Generalized Additive Models (GAMs) further generalize GLIMs by replacing the linear predictor 
with smooth functions of the predictors (one for each predictor).  A commonly used smooth function is the 
cubic spline.  Each smooth function is assigned a degrees of freedom, which determines how rough the 
function will be.  The GLIM is the special case of each smooth function being a linear function.  GAMs are 
fit via penalized maximum likelihood estimation in S-PLUS (Chambers and Hastie, 1992).  GAMs have an 
advantage over procedures like lowess because they recognize the form of the response variable and 
only give predictions within its bounds, which is not true of lowess (although, one can use a lowess 
function in a GAM).  In general, the advantage of GAMs over GLIMS is that the form of the predictors 
does not need to satisfy a particular functional relationship, like linear, logarithmic, etc.  Finally, GAMs 
may be used in an exploratory sense by determining a parametric function to use for a predictor based on 
its fitted smooth function. 
 
 
B. Generalized Linear Models for Binary Data 
 
Suppose the response is binary, taking one of two possible outcomes.   Then, three special cases of the 
GLIM use an identity link (linear probability model), a logit link (logistic regression model), and an inverse 
normal CDF link (probit regression model).  I briefly remind you what these models are, then fit some data 
to them using functions in S-PLUS and R. 
 
For a binary response, the regression model 

 
 ( )π α β= +x x  

 
is called a linear probability model because it purports a linear relationship between the probability of 
positive response and the explanatory variables.  Although it has a simple interpretation, the linear 
probability model has a structural defect in that the predicted probability of positive response can exceed 
1 or be less than 0, due to the link function being the identity. 
 
The regression model 
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is called a logistic regression model.  This model corresponds to a binomial GLIM with log odds link (i.e., 
( ( )) log( ( ) (1 ( )) )g π π π= −x x x ). 

 
The regression model 

 ( ) ( )π α β= Φ +x x  
 
for a normal(0, 1) cdf, Φ , is called a probit regression model.  It is a binomial GLIM with link function 

1( ( ))π−Φ x . 
 
The decision to use each of these link functions can depend on the expected rate of increase of ( )π x  as 
a function of x or can depend on a comparison of appropriate goodness-of-fit measures (note that 
otherwise identical models with different link functions are not nested models). 
 
To illustrate a logit, probit, and linear probability model, Agresti uses Table 4.2 (Snoring and heart 
disease, p. 121).  The response variable is whether the subject had heart disease.  The explanatory 
variable is the subject’s spouse’s report of the level of snoring (never, occasionally, nearly every night, 
every night).  These levels are changed into scores (0, 2, 4, 5).  The levels of snoring are treated as 
independent binomial samples.   
 
To fit the three models using iterative reweighted least squares (IRLS), we can use the function glm, with 
family=”binomial” (for the logit and probit links, at least).  However, glm doesn’t have a Newton-
Raphson method or any other type of optimization method.  Thus, for more general maximum likelihood 
estimation, we might use the function optim (both S-PLUS and R).  Conveniently, Venables and Ripley 
(2002) wrote a function for maximum likelihood estimation for a binomial logistic regression.  We can 
make minor changes to fit the linear probability model and the probit regression model. 
 
To set up the data, type, 
 
n<-c(1379, 638, 213, 254) 
snoring<-rep(c(0,2,4,5),n) 
y<-rep(rep(c(1,0),4),c(24,1355,35,603,21,192,30,224)) 
 
To fit a GLIM using maximum likelihood estimation, we use the following function slightly modified from 
Venables and Ripley (2002, p. 445).  The default optimization method is Nelder-Mead, which is useful in 
many cases.  Set method=”BFGS” for a quasi-Newton method. 
 
logitreg <- function(x, y, wt = rep(1, length(y)), 
               intercept = T, start = rep(0, p), ...) 
{ 
 if(!exists("optim")) library(MASS) 
  fmin <- function(beta, X, y, w) { 
      p <- plogis(X %*% beta) 
      -sum(2 * w * ifelse(y, log(p), log(1-p))) 
  } 
  gmin <- function(beta, X, y, w) { 
      eta <- X %*% beta; p <- plogis(eta) 
      t(-2 * (w *dlogis(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X 
  } 
  if(is.null(dim(x))) dim(x) <- c(length(x), 1) 
  dn <- dimnames(x)[[2]] 
  if(!length(dn)) dn <- paste("Var", 1:ncol(x), sep="") 
  p <- ncol(x) + intercept 
  if(intercept) {x <- cbind(1, x); dn <- c("(Intercept)", dn)} 
  if(is.factor(y)) y <- (unclass(y) != 1) 
  fit <- optim(start, fmin, gmin, X = x, y = y, w = wt, ...) 
  names(fit$par) <- dn 
  cat("\nCoefficients:\n"); print(fit$par) 
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  cat("\nResidual Deviance:", format(fit$value), "\n") 
  cat("\nConvergence message:", fit$convergence, "\n") 
  invisible(fit) 
} 
 
The function is written for binomial logistic regression, but is easily modified for probit regression and 
linear probability regression.   
 
Thus, to fit a linear probability model, we change the functions fmin and gmin within logitreg to read 
 
  fmin <- function(beta, X, y, w) { 
      p <- X %*% beta 
      -sum(2 * w * ifelse(y, log(p), log(1-p))) 
  } 
  gmin <- function(beta, X, y, w) { 
      p <- X %*% beta; 
      t(-2 * (w * ifelse(y, 1/p, -1/(1-p))))%*% X 
 } 

 
These are the objective function and gradient function, respectively.  For probit regression, we change 
fmin and gmin to read 
 
  fmin <- function(beta, X, y, w) { 
      p <- pnorm(X %*% beta) 
      -sum(2 * w * ifelse(y, log(p), log(1-p))) 
  } 
  gmin <- function(beta, X, y, w) { 
      eta <- X %*% beta; p <- pnorm(eta) 
      t(-2 * (w *dnorm(eta) * ifelse(y, 1/p, -1/(1-p))))%*% X 
 } 
 
So, the respective fits are obtained with: 
 
(logit.fit<-logitreg(x=snoring, y=y, hessian=T, method="BFGS")) 
 
Coefficients: 
 (Intercept)     Var1  
   -3.866245 0.397335 
 
Residual Deviance: 837.7316  
 
Convergence message: 0  
 
 
(lpm.fit<-lpmreg(x=snoring, y=y, start=c(.05,.05), hessian=T, method="BFGS")) 
 
Coefficients: 
  1: NAs generated in: log(x) 
  2: NAs generated in: log(x) 
  3: NAs generated in: log(x) 
 (Intercept)       Var1  
  0.01724645 0.01977784 
 
Residual Deviance: 834.9919  
 
Convergence message: 0  
 
 
(probit.fit<-probitreg(x=snoring, y=y, start=c(-3.87,.40))) 
 
Coefficients: 
 (Intercept)      Var1  
    -2.06055 0.1877702 
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Residual Deviance: 836.7943  
 
Convergence message: 0  
 
The warnings given with the linear probability model are somewhat expected, as the probability can be 
less than 0 or greater than 1.  Also, note that we cannot use the default starting values.   
 
Approximate standard errors for the two parameter estimates can be obtained using the inverse of the 
observed information matrix. 
 
sqrt(diag(solve(logit.fit$hessian))) 
[1] 0.11753115 0.03536285 
 
sqrt(diag(solve(lpm.fit$hessian))) 
[1] 0.002426329 0.001976457 
 
sqrt(diag(solve(probit.fit$hessian))) 
[1] 0.04981505 0.01670894 
 
 
We can obtain fitted probabilities for all three link functions.  
 
eta<-cbind(1,snoring)%*%logit.fit$par 
logit.probs<-(exp(eta)/(1+exp(eta))) 
 
eta<-cbind(1,snoring)%*%lpm.fit$par 
lpm.probs<-(eta) 
 
eta<-cbind(1,snoring)%*%logit.fit$par 
probit.probs<-(pnorm(eta)) 
 
res<-cbind(logit=unique(logit.probs), lpm=unique(lpm.probs), 

probit=unique(probit.probs)) 
dimnames(res)[[1]]<-unique(snoring) 
# R: dimnames(res)<-list(unique(snoring),NULL) 
res 
 
       logit        lpm        probit  
0 0.02050626 0.01724271 0.00005524827 
2 0.04428670 0.05683766 0.00106395563 
4 0.09302543 0.09643260 0.01138590189 
5 0.13239167 0.11623008 0.03005570088 
 
 
To plot the predicted probabilities, use the following commands: 
 
snoring.plot<-unique(snoring) 
plot(snoring,logit.probs,type="n",xlim=c(0,5),ylim=c(-.005,.20),xlab="Level of 

Snoring", 
 ylab="Predicted Probability", bty="L")  
lines(snoring.plot,unique(logit.probs),type="b",pch=16) 
lines(snoring.plot,unique(probit.probs),type="b",pch=17) 
lines(snoring.plot,unique(lpm.probs),type="l",lty=1) 
key(x=.5,y=.18,text=list(c("Logistic","Probit","Linear")), 
lines=list(type=c("b","b","l")),lty=c(1,1,1),pch=c(16,17,1),divide=3,border=T) 
 
# R: legend(x=.05,y=.18,legend=c("Logistic","Probit","Linear"), lty=c(1,1,1), 

pch=c(16,17,-1), cex=.85, text.width=1, adj=-.5) 
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Estimation with IRLS 
 
If you were wondering what estimates and standard errors IRLS would give, you can fit all three of the 
above models using the glm function, which is described in more detail in the next section.  For example, 
to fit the binomial with logit link using IRLS, type 
 
snoring<-c(0,2,4,5) 
 
logit.irls<-glm(cbind(yes=c(24,35,21,30), no=c(1355,603,192,224))~snoring, 

family=binomial(link=logit)) 
 
summary(logit.irls)$coefficients 
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept) -3.8662481 0.16620356 -23.262125 
    snoring  0.3973366 0.05000865   7.945358 
 
 
The difference in the standard errors as compared with the ML fit above (for the logit link) has to do with 
the fact that the hessian is numerically differentiated in the first fit.   
 
Similarly, the probit regression model is fit using 
 
probit.irls<-glm(cbind(yes=c(24,35,21,30), no=c(1355,603,192,224))~snoring, 

family=binomial(link=probit)) 
 
summary(probit.irls)$coefficients 
 
                 Value Std. Error    t value  
(Intercept) -2.0605515 0.07016609 -29.366769 
    snoring  0.1877704 0.02348045   7.996883 
 
Fitting the linear probability model using IRLS and glm requires using the quasi family with identity link 
(and variance function implicitly set to constant).  Specifying the quasi family uses a quasi-likelihood 
instead of a binomial likelihood (for example).  The score equations for both the 
binomial(link=identity) and quasi(link=identity) estimations are the same.  Thus, the estimates 
will be the same, without having to specify a distribution for the response. Quasi-likelihood is discussed in 
Section 4.7 of Agresti. 
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Notice also that, in the formula, we use the proportions for each category as the response, plus we add 
the weights argument, which is the total number in each category. 
 
prop<-c(24/1379, 35/638, 21/213, 30/254) 
lpm.irls<-glm(prop~snoring, weights=c(1379,638,213,254),family=quasi(link=identity)) 
 
summary(lpm.irls)$coefficients 
                 Value   Std. Error  t value  
(Intercept) 0.01687233 0.0011341069 14.87719 
    snoring 0.02003800 0.0005094491 39.33269 
 
 
All of the IRLS estimates are similar to the MLEs. 
 
 
C. Generalized Linear Models for Count Data 
 
The Poisson distribution is frequently used for modeling responses that are counts.  A Poisson loglinear 
GLIM assumes a Poisson distribution for the response and the log function for the link function.  So, the 
linear predictor is related to the mean as 

 exp( )μ = Xβ  (4.1) 
 
Thus, explanatory variables are modeled to have multiplicative impacts on the mean response. 
 
Agresti uses the Horseshoe Crab data to fit a Poisson generalized linear model.  Each female crab in the 
data set had a male crab resident in her nest.  The response variable measured was the number of 
additional males (satellites) residing nearby each female.  Explanatory variables were the female crab’s 
color, spine condition, weight and carapace width.  Width is the only explanatory variable used to fit the 
Poisson model in this section.  This data set is available on Agresti’s text book web site.  I copied it into a 
text file, which I called crab.ssc. 
 
First, however, we can reproduce Figures 4.3 and 4.4 on pages 128 and 129 of Agresti.  Figure 4.3 plots 
the number of satellites by carapace width, with numbered symbols indicating the number of observations 
at each point.   We first read in the data set.  Then, to plot the numbered symbols, we first aggregate the 
response and explanatory variables by unique pairs, then sum the number of observations with those 
pairs.  These sums are what appear as the symbols.  I explain each step below. 
 
First I read in the data 
 
table.4.3<-read.table("crab.ssc", col.names=c("C","S","W","Sa","Wt")) 

 
Now I get the number of observations using aggregate. The new data frame called plot.table.4.3 
contains Sa (number of satellites), W (width), and the number of observations at that Sa, W combination. 
 
plot.table.4.3<-aggregate(rep(1,nrow(table.4.3)), list(Sa=table.4.3$Sa, 

W=table.4.3$W), sum) 

 
As aggregate will change Sa and W to factors, we must convert them back to numeric. 
 
plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("Sa"), 

column.type = "double") 
#faster: plot.table.4.3$Sa<-as.numeric(levels(plot.table.4.3$Sa))[plot.table.4.3$Sa] 
# R: plot.table.4.3$Sa<-as.numeric(as.vector(plot.table.4.3$Sa)) 
plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("W"), 

column.type = "double") 
# R: plot.table.4.3$W<-as.numeric(as.vector(plot.table.4.3$W)) 
 
Now, I plot figure 4.3 (plot not shown) 
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plot(y=plot.table.4.3$Sa,x=plot.table.4.3$W,xlab="Width (cm)",  
ylab="Number of Satellites", bty="L", axes=F, type="n") 
axis(2, at=1:15) 
axis(1, at=seq(20,34,2)) 
text(y=plot.table.4.3$Sa,x=plot.table.4.3$W,labels=plot.table.4.3$x) 

 
It is probably possible to do the above using table instead of aggregate. 
 
Figure 4.4 plots the mean number of satellites for the mean width of eight width categories created from 
the W variable.  In addition, a fitted smooth from the result of a generalized additive model (GAM) fit to 
these data is superimposed.  Generalized additive models (as extensions to GLIMs) are discussed briefly 
in Section 4.8 in Agresti, and in the corresponding section of this manual. 
 
In the following code, first I cut the W variable into categories, then use aggregate again to get means of 
Sa and of W by the categories.  Then, the points are plotted. 
 
table.4.3$W.fac<-cut(table.4.3$W, breaks=c(0,seq(23.25, 29.25),Inf)) 
plot.y<-aggregate(table.4.3$Sa, by=list(W=table.4.3$W.fac), mean)$x 
plot.x<-aggregate(table.4.3$W, by=list(W=table.4.3$W.fac), mean)$x 
plot(x=plot.x, y=plot.y, ylab="Number of Satellites", xlab="Width (cm)",bty="L",  
axes=F, type="p", pch=16) 
axis(2, at=0:5) 
axis(1, at=seq(20,34,2)) 

 
Next, I use gam in S-PLUS (and gam from package mgcv in R) to fit the GAM using a Poisson distribution 
with log link.  The smooth that is used for the width means allows for five degrees of freedom (default was 
three).  This smooth is distinctly different from the smooth in Figure 4.4 in Agresti, as it falls between the 
points and not directly below it. 
 
res<-gam(plot.y~s(plot.x, df=5), family=poisson(link=log)) 
# R: library(mgcv) 
# res<- gam(plot.y~s(plot.x, k=4, fx=TRUE), family=poisson(link=log)) 
lines(x=plot.x,y=res$fitted.values) 
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If we set df=1 or 1.5 in s, we get a smooth that curves slightly upward at both ends. 
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To see exactly what the smoothed term in width in the gam call represents, we can plot (mean) width by 
the smoothed term.  The se=T argument adds plus and minus two pointwise standard deviations as 
dashed lines to the plot.  
 
plot.gam(res, se=T)  
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The smoothed term does not deviate too much from linearity, and Figure 4.4 shows a linear trend relating 
the mean number of satellites to width.  Agresti fits Poisson GLIMs with both log and identity links to the 
data. 
 
We will use IRLS and glm to fit the Poisson models.  For non-canonical links (e.g., identity), the estimates 
may differ slightly from Agresti’s.  A Poisson loglinear model is fit using 
 
log.fit<-glm(Sa~W, family=poisson(link=log),data=table.4.3) 
summary(log.fit) 
 
Call: glm(formula = Sa ~ W, family = poisson(link = log), data = table.4.3) 
Deviance Residuals: 
       Min        1Q     Median      3Q      Max  
 -2.852632 -1.988425 -0.4933188 1.09697 4.922148 
 
Coefficients: 
                 Value Std. Error   t value  
(Intercept) -3.3047572 0.54222774 -6.094777 
          W  0.1640451 0.01996492  8.216665 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 632.7917 on 172 degrees of freedom 
 
Residual Deviance: 567.8786 on 171 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
Correlation of Coefficients: 
  (Intercept)  
W -0.996627 
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I’ve given the output from a call to summary (in S-PLUS), which summarizes model fitting by giving 
coefficient estimates, their approximate SEs, residual deviance, and a summary of deviance residuals.  
The dispersion parameter by default is set to 1 (we will change that later).  The correlation between the 
coefficient estimates is quite high (almost perfectly negative).  This can be reduced by using the mean 
deviation in width instead of width in the model.   The null deviance is the deviance value (p. 119, Agresti) 
for a model with only an intercept.  The residual deviance is the deviance value for a model with both an 
intercept and width.  The reduction in deviance is a test of the width coefficient.  That is  
 
log.fit$null.deviance-log.fit$deviance 
[1] 64.91309 
 
is the LR statistic for testing the significance of the Width variable in the model. Compared to a chi-
squared distribution with 1 degree of freedom, the p-value of this test is quite low, rejecting the null 
hypothesis of a zero-valued coefficient on width.  We can get similar information from the Wald test given 
by the t-value next to the coefficient estimate (z-value in R version).  However, the LRT is usually 
considered more reliable (see Agresti, and also Lloyd 1999). 
 
The summary result for any glm.object in S-PLUS has the following attributes that can be extracted: 
 
attributes(summary(log.fit)) # S-PLUS 
$names: 
 [1] "call"           "terms"          "coefficients"   "dispersion"     "df"    "deviance.resid" 
 [7] "cov.unscaled"   "correlation"    "deviance"       "null.deviance"  "iter"           "nas"            
[13] "na.action"      
 
$class: 
[1] "summary.glm" 

 
The same summary call in R has a few additional components, notably AIC. 
 
attributes(summary(log.fit)) # R 

 
$names 
 [1] "call"           "terms"          "family"         "deviance"       
 [5] "aic"            "contrasts"      "df.residual"    "null.deviance"  
 [9] "df.null"        "iter"           "deviance.resid" "aic"            
[13] "coefficients"   "dispersion"     "df"             "cov.unscaled"   
[17] "cov.scaled"   
 
As an example, to extract the estimated coefficients, along with their standard errors, type: 
 
summary(log.fit)$coefficients 
 
                 Value Std. Error   t value  
(Intercept) -3.3047572 0.54222774 -6.094777 
          W  0.1640451 0.01996492  8.216665 
 
 
Thus, the fitted model is  

 ˆlog 3.305 0.164 xμ = − +  (4.2) 
 
The glm.object itself has the following components.  It “inherits” all the attributes of lm.objects 
 
attributes(log.fit) # S-PLUS (R has quite a few more) 
$names: 
 [1] "coefficients"     "residuals"         "fitted.values"     "effects"        "R"                
 [6] "rank"             "assign"            "df.residual"       "weights"   "family"            
[11] "linear.predictors" "deviance"          "null.deviance"     "call"       "iter"              
[16] "y"                "contrasts"         "terms"             "formula"  "control"           
 
$class: 
[1] "glm" "lm"  
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For example, the fitted response values (expected values) at each of the width values in the model can 
be obtained by extracting the fitted.values. 
 
log.fit$fitted.values 

 
The same answer can be obtained by the call fitted(log.fit).  The functions, fitted, resid, 
coef are shortened versions to extract fitted values, residuals, and coefficients, respectively, from glm 
objects. 
 
Using the predict method for glm, we can get the fitted response value for any width value we input.  
For example, the expected number of satellites at a width of 26.3 is  
 
predict.glm(log.fit, type="response", newdata=data.frame(W=26.3)) 
 
[1] 2.744581 
 
Agresti also fits a Poisson model with identity link to the Horseshoe Crab data.  This is fit in S-PLUS using 
 
id.fit<-glm(Sa~W, family=poisson(link=identity),data=table.4.3, start=predict(log.fit, 

type="link")) # S-PLUS 
 
summary(id.fit)$coefficients 
 
Coefficients: 
                  Value Std. Error   t value  
(Intercept) -11.4051613 0.99511013 -11.46121 
          W   0.5446717 0.04056604  13.42679 
 
Because of convergence problems with the identity link, we give the initial estimate of the log of the mean 
vector μ  as the estimated linear predictor vector η  from the log link fit, instead of using the (log of the) 
data values, which is the default (see bottom of p.147 of Agresti).  In R, use the estimated coefficients 
themselves.  Thus, 
 
# R 
id.fit<-glm(Sa~W, family=poisson(link=identity),data=table.4.3, start=coef(log.fit)) 

 
The fitted model is then 

 ˆ 11.41 0.55xμ = − +  (4.3) 
 
Thus, carapace width has an additive impact on mean number of satellites instead of multiplicative, as 
with the log link.  The additive effect is 0.55 (about half a satellite) per 1 cm increase in width.  A 
comparison of the two models’ predictions is in Figure 4.5 in Agresti, which is reproduced below.  I use 
the guiCreate function (in S-PLUS only) to make the Greek letter mu.  (In R, there is a flexible package 
called plotmath (in the “base” environment) that can be used to create mathematical notation.  See 
below and help(plotmath)).  I also use the arrows command to make arrows.  This function is 
somewhat different in S-PLUS and R (most notably the coordinate arguments!). 
 
plot(x=plot.x, y=plot.y, ylab="", xlab="Width (cm)",bty="L",axes=F, type="p", pch=16) # S-PLUS 
# R: plot(x=plot.x, y=plot.y, ylab=expression(paste("Mean number of satellites,", 

{mu})), xlab="Width (cm)",bty="L",axes=F, type="p", pch=16) 
axis(2, at=0:5) 
axis(1, at=seq(20,34,2)) 
 
# make y-axis title (Only needed in S-PLUS.  See plot call for R above.) 
guiCreate( "CommentDate", Name = "GSD2$1", 
 Title = "Mean Number of Satellites, \\\"Symbol\"m", 
 FillColor = "Transparent", FontSize="16") 
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guiModify( "CommentDate", Name = "GSD2$1", 
 xPosition = "0.542857", 
 yPosition = "3.52967", Angle = "90") 
 
# make arrows and text 
ind<-order(table.4.3$W) 
lines(x=table.4.3$W[ind],y=log.fit$fitted.values[ind]) 
lines(x=table.4.3$W[ind],y=id.fit$fitted.values[ind]) 
arrows(x1=23.5,y1=2.9,x2=23.5,y2=predict(log.fit,newdata=data.frame(W=23.5), 

type="response"), open=T, size=.3) 
# R: arrows(x0=23.5,y0=2.9,x1=23.5,y1=predict(log.fit,newdata=data.frame(W=23.5), 

type="response"), length=.2) 
text(x=23.5,y=3,"Log Link") 
arrows(x1=29.75,y1=3.1,x2=29.75,y2=predict(id.fit,newdata=data.frame(W=29.75), 

type="response"), open=T, size=.3) 
# R: arrows(x0=29.75,y0=3.1,x1=29.75,y1=predict(id.fit,newdata=data.frame(W=29.75), 

type="response"), length=.2) 
text(x=29.75,y=2.9,"Identity Link") 
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Using the R version of summary.glm (or the extractAIC function in MASS library in S-PLUS), we can 
compare the AICs of these two link functions.  The returned AIC assumes that the dispersion parameter 
is known; so there is a caveat in using it when the dispersion parameter is actually estimated (see next 
section). 
 
summary.glm(log.fit)$aic # R 
[1] 927.1762 
 
summary.glm(id.fit)$aic # R 
[1] 917.014 
 
A lower AIC implies a better model fit.  A comparison of residuals from each of the models may also be 
helpful.  
 
D. Overdispersion in Poisson Generalized Linear Models 
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If we examine Table 4.4 (p. 129 in Agresti) of the sample mean and variance of the number of satellites 
per Width category, we see that the variance exceeds the mean in all cases.  A Poisson model postulates 
that for each Width, the variance and mean of the number of satellites is the same.  Thus, we have 
evidence of overdispersion, where the “ordinary” Poisson model is not correct.  Incidentally, the function 
tapply (or by) can be used to get the sample means and variances: 
 
tapply(table.4.3$Sa, table.4.3$W.fac, function(x) c(mean=mean(x), variance=var(x))) 
# by(table.4.3$Sa, table.4.3$W.fac, function(x) c(mean=mean(x), variance=var(x))) 
 
The general density for the random component of a GLIM has an unspecified dispersion parameter that is 
related to the scale of the density.  This density is given in equation (4.14) in Agresti (2002).  For 
example, with a Gaussian random component, the dispersion parameter is the variance.  For a binomial 
or Poisson random component, the dispersion is fixed at 1, so we have not needed to deal with it yet.  
However, if we believe that the mean response is like a Poisson mean, but the variance is proportional to 
the Poisson mean (with proportionality constant the dispersion parameter), then we can leave the 
dispersion parameter unspecified and estimate it along with the mean parameter.  In this case, we no 
longer have a Poisson distribution as our random component.  Plus, the estimate of the dispersion 
parameter must be used in standard error and deviance calculations.  The general form of the scaled 
deviance is given in equation (4.30) in Agresti. 
 
If the actual Poisson means (i.e., per Width value) are large enough (or, in the case of binomial data, the 
sample sizes at each covariate condition are large enough), then a simple way to detect overdispersion is 
to compare the residual deviance with the residual df, which will be equal in the asymptotic sense just 
mentioned.  These two quantities are quite disparate for both link models.  So, we decide to estimate the 
dispersion parameter instead of leaving it fixed at 1.  We can do this in S-PLUS using a dispersion=0 
argument to summary.glm.  In R, we must use the quasipoisson family first. (This makes sense after the 
discussion of quasi-likelihood). 
 
summary.glm(log.fit, dispersion=0)$dispersion # S-PLUS 
 
  Poisson  
 3.181952 
 
# R 
log.fit.over<-glm(Sa~W, family=quasipoisson(link=log),data=table.4.3) 
summary.glm(log.fit.over)$dispersion 
 
[1] 3.181786 
 
The estimate of the dispersion parameter is the sum of the squared Pearson residuals divided by the 
residual degrees of freedom.  The rationale for this is given on p. 150 in Agresti, and is based on moment 
estimation.  From the estimate given, the variance of our random component (the number of satellites for 
each Width) is roughly three times the size of the mean. 
 
Other estimates returned by summary.glm are adjusted using the dispersion estimate.  For example, the 
standard errors are multiplied by it.  Compare the following in S-PLUS: 
 
res<-summary.glm(log.fit) 
sqrt(diag(res$cov.unscaled) * summary.glm(log.fit, dispersion = 0)$dispersion) # see 

also vcov.glm from MASS 
 
[1] 0.96722735 0.03561348 
 
summary.glm(log.fit, dispersion = 0)$coefficients 
 
                 Value Std. Error   t value  
(Intercept) -3.3047572 0.96722735 -3.416733 
          W  0.1640451 0.03561348  4.606263 
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The usual deviance must be divided by the dispersion estimate to get the scaled deviance used in F-tests 
for model comparison (see Venables and Ripley, 2002).  An anova method is available for glm objects 
that does these tests provided argument test=”F” is supplied.  anova.glm will print the F-test that uses 
the dispersion estimate from the larger model.  Thus, if we wanted to compare the null model (with q = 1 
parameters) to log.fit (with p = 2) using the F-test (in Agresti’s notation) 
 

 0 1( ( ; ) ( ; ))
ˆ( )

D D
F

p q φ
−

=
−

y yμ μ
 (4.4) 

we would do  
 
null.fit<-glm(Sa~1, family=poisson(link=log),data=table.4.3)  
anova.glm(null.fit, log.fit,test="F") # S-PLUS 
# R: anova.glm(null.fit, log.fit.over, test="F")  
 
Analysis of Deviance Table 
 
Response: Sa 
 
  Terms Resid. Df Resid. Dev Test Df Deviance F Value         Pr(F)  
1     1       172   632.7917                                        
2     W       171   567.8786       1 64.91309 20.4004 0.00001166917 
 
 
Note that this is the correct F value because 
 
(deviance(null.fit)-deviance(log.fit))/summary.glm(log.fit, dispersion=0)$dispersion 
# R (deviance(null.fit)-deviance(log.fit))/summary.glm(log.fit.over)$dispersion 
[1] 20.4004 
 
Because the estimate of dispersion is based on a chi-squared statistic that has an approximate chi-
squared distribution (see p. 150 in Agresti), it is a good idea to meet the assumptions for this 
approximation in terms of number of cases per unique covariate combination.  Thus, Agresti uses the 
satellite totals and fit for all female crabs at a given width to increase the counts and fitted values. 
 
In S-PLUS or R, the chi-squared statistic is 
 
Sa<-tapply(table.4.3$Sa, table.4.3$W, sum) 
mu<-tapply(predict(log.fit, type="response"), table.4.3$W, sum) 
(chi.squared<-sum(((Sa-mu)^2)/mu)) 
[1] 174.2737 
 
with estimated dispersion parameter 
 
chi.squared/64 
[1] 2.723027 
 
From the revised estimate, the variance of our random component (the number of satellites for each 
Width) is a little less than three times the size of the mean.  As a Poisson random component assumes 
that the variance and mean are equal, an ordinary Poisson random component is probably not a good 
model choice.  In Chapter 12, Agresti discusses adding random effects to GLIMs, which can help account 
for overdispersion.  Another possibility is to fit a GLIM with negative binomial random component, as 
described below.   The negative binomial does not assume the variance and mean are equal. 
 
E. Negative Binomial GLIMs  
 
For count data, a negative binomial random component has a second parameter in additional to the 
mean, called the dispersion parameter.  The variance of the random component is a function of both the 
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mean and dispersion parameter.  The pdf of the negative binomial is given in equation (4.12) of Agresti, 
with  

( )E Y μ=  and 2var( )Y kμ μ= +  
 
where k is the (positive) dispersion parameter.  The smaller the dispersion parameter, the larger the 
variance as compared to the mean.  But, with growing dispersion parameter, the variance converges to 
the mean, and the random quantity converges to the Poisson distribution.  Actually, negative binomial is 
the distribution of a Poisson count with gamma-distributed rate parameter (see Section 13.4 in Agresti). 
 
There are several methods for going about fitting a negative binomial GLIM in S-PLUS and R.  If the 
dispersion parameter is known, then the MASS library has a negative.binomial family function to use 
with glm.  For example, to fit a negative binomial GLIM to the Horseshoe Crab data, where the dispersion 
parameter (called theta in the function) is fixed to be 1.0, we can use 
 
library(MASS) 
glm(Sa~W, family=negative.binomial(theta=1.0,link="identity"),data=table.4.3, 

start=predict(log.fit, type="link")) # for R use start=coef(log.fit) 
 
Call: 
glm(formula = Sa ~ W, family = negative.binomial(theta = 1, link = "identity"), data = 

table.4.3, start = predict(log.fit, type = "link")) 
 
Coefficients: 
 (Intercept)         W  
   -11.62843 0.5537723 
 
Degrees of Freedom: 173 Total; 171 Residual 
Residual Deviance: 202.8936  
 
 
A simpler version of negative.binomial (called neg.bin, with only the log link) is also available from 
MASS, as well as a function called glm.nb. The function glm.nb allows one to estimate theta using 
maximum likelihood estimation.  The output is similar to that of glm and has a summary method. 
 
library(MASS) 
nb.fit<-glm.nb(Sa ~ W, data = table.4.3, init.theta=1.0, link=identity, 

start=predict(id.fit, type="link")) # for R use start=coef(id.fit) 
summary(nb.fit) 
 
Call: glm.nb(formula = Sa ~ W, data = table.4.3, start = predict(id.fit, type = 

"link"), init.theta =  0.931699963253856, link = identity) 
 
Deviance Residuals: 
      Min        1Q     Median        3Q      Max  
 -1.78968 -1.409158 -0.2558914 0.4522508 2.106918 
 
Coefficients: 
                  Value Std. Error   t value  
(Intercept) -11.6329804 1.08204466 -10.75092 
          W   0.5539562 0.05135274  10.78728 
 
(Dispersion Parameter for Negative Binomial family taken to be 1 ) 
 
    Null Deviance: 216.5127 on 172 degrees of freedom 
 
Residual Deviance: 195.5161 on 171 degrees of freedom 
 
Number of Fisher Scoring Iterations: 1  
 
Correlation of Coefficients: 
  (Intercept)  
W -0.9996673  
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              Theta:  0.932  
          Std. Err.:  0.168  
 
 2 x log-likelihood:  -747.929  
 
The coefficient estimates are slightly different that those obtained by Agresti (p. 131). 
 
LRTs are also available for comparing nested negative binomial GLIMs (via the anova method).  
However, as theta must be held constant between the two models being compared, one must first 
convert the glm.nb object to a glm object, which will fix theta if the model is then update’d.  The 
conversion is done using the glm.convert function. 
 
To use custom GLIMs, one must create a family.  The function make.family can be used to make a new 
glm family.  You must specify the name of the family, the link functions allowed for it (e.g., logit, log, 
cloglog) and their derivatives, inverses, and initialization expressions (used to initialize the linear 
predictor for Fisher scoring), and the variance and deviance functions. 
 
For example, in the function listing for negative.binomial, you can see where the links and variances 
lists are defined and where the function make.family is used. The reason why the link functions are not 
actually typed out in function form is because all the links already appear in other glm families in S-PLUS.  
Their information is stored in the matrix glm.links.  negative.binomial accesses the appropriate link 
function using glm.links[,link]. 
 
Beta-binomial regression models can be fit using gnlr in library gnlm for R. 
 
 
F. Residuals for GLIMs  
 
To demonstrate how to obtain the residuals in Agresti’s Section 4.5.5, I use the Horseshoe Crab data fit.  
For example, the Pearson and deviance residuals are obtained from 
 
resid(log.fit, type="deviance") 
pear.res<-resid(log.fit, type="pearson") 

 
The standardized Pearson residuals are obtained by dividing the output from resid by a function of the 
hat diagonal values, obtained from the lm.influence function. 
 
pear.std<-resid(log.fit, type="pearson")/sqrt(1-lm.influence(log.fit)$hat) # both S-

PLUS and R 
 
However, as most of the hat diagonals are very small, there is really no difference between the two sets 
of residuals, as the following graph shows. 
 
par(mfrow=c(2,2)) 
plot(pear.res, xlab="observation",ylab="Pearson Residuals") 
abline(h=0) 
plot(pear.std, xlab="observation",ylab="Standardized Pearson Residuals") 
abline(h=0) 
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Issuing the command plot(log.fit) may also be useful:  
 
par(mfrow=c(1,2)) 
old.par<-par(pty="s") # save old pty settings 
par(pty="s")    # change pty par setting to “s” 
plot(log.fit) 
par(old.par)    # change back to old pty settings 
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G. Quasi-Likelihood and GLIMs  
 
Quasi-likelihood estimation assumes only a mean-variance relationship rather than a complete 
distribution for the response variable.  However, many times the relationship specified determines a 
particular distribution.  This is because distributions in the natural exponential family are characterized by 
the relationship between the mean and the variance function.  Thus, using the R function quasipoisson 
with log link (and constant variance) gives the same estimates as using the Poisson family with log link 
because the Poisson is a distribution in the natural exponential family.  The reason the estimates are the 
same is because the estimating equations used for quasi-likelihood estimation are the same as the 
likelihood equations in the case of a specified distribution with that mean and variance relationship.   
 In general then, quasi-likelihood estimates (QLEs) are not MLEs, but in some cases where we are 
assuming a particular distribution, but with a magnified variance (e.g., when the dispersion parameter 
multiplies the variance), the point estimates will be identical because the dispersion parameter drops out 
of the estimating equations. 
 
Agresti uses data from a teratology experiment to illustrate overdispersion and the use of quasi-likelihood 
estimation.  Rats in 58 litters were on iron-deficient diets and given one of four treatments (groups 1-4).  
The rats were made pregnant and killed after three weeks.  The number of dead fetuses out of the total 
litter size is the response variable. (The data set is available on Agresti’s CDA website).  I copied the data 
into a text file called teratology.ssc.  It is then read into S-PLUS/R by 
 
table.4.5<-read.table("teratology.ssc", 

col.names=c("","group","litter.size","num.dead"))[,-1] 
table.4.5$group<-as.factor(table.4.5$group) 
 

I changed the group column to be treated as a factor instead of numeric. 
 
The response is assumed binomially distributed.  Initially, the probability of death is assumed to differ only 
across treatment groups, but is identical for all litters within a treatment group.  This model can be fit via 
maximum likelihood in S-PLUS/R using glm by removing the intercept term in the model formula.  In this 
way, we get an identity link 
 
fit1<-glm(num.dead/litter.size~group-1, weights=litter.size, data=table.4.5, 

family=binomial) 
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The MLEs of the probabilities are then 
 
(pred<-unique(round(predict(fit1, type="response"),3))) 
[1] 0.758 0.102 0.034 0.048 
 
with SEs 
 
(SE<-sqrt(pred*(1-pred)/tapply(table.4.5$litter.size,table.4.5$group,sum))) 
          1          2          3         4  
 0.02368473 0.02786104 0.02379655 0.0209615 
 
Pearson’s chi-squared statistic gives 
 
(chi.squared<-sum(resid(fit1, type = "pearson")^2)) 
[1] 154.7069 
 
which compared to the residual degrees of freedom (58 – 4) = 54 is quite large.  This may indicate 
overdispersion, although the fitted counts ( ( ) ˆi g gn π ’s) are not all that large.  To adjust for possible 
overdispersion, Agresti uses the square root of the estimate of the dispersion parameter to multiply the 
SEs.   
 
SE*sqrt(chi.squared/54) 
          1          2          3          4  
 0.04008367 0.04715159 0.04027292 0.03547493 
 
We could have found the same estimates using quasi-likelihood estimation.  In particular, the following 
gives the probability estimates as the coefficient estimates.  I used a quasi family with identity link and 
with variance related to the mean, mu, as mu(1-mu).  Because I used an identity link, I first get starting 
values from a previous fit (fit1). 
 
glm(num.dead/litter.size~group-1, weights=litter.size, data=table.4.5, 

family=quasi(link=identity, variance="mu(1-mu)"),  
 start=predict(fit1, type="response")) 
# R: glm(num.dead/litter.size~group-1, weights=litter.size, data=table.4.5, 
family=quasi(link=identity, variance="mu(1-mu)"), start=unique(predict(fit1, 
type="response”))) 
 
 
Coefficients: 
    group1    group2     group3     group4  
 0.7584098 0.1016949 0.03448276 0.04807692 
 
Degrees of Freedom: 58 Total; 54 Residual 
Residual Deviance: 173.4532  
 
For R, we need to specify starting values in the range from 0 to 1, as the coefficients will be probabilities.  
Thus, I take the (unique set of) predicted probabilities from fit1 to use as starting values. 
 
 

H. Generalized Additive Models (GAMs) 
 

As the name implies, GAMs generalize additive models in the same way that GLIMs generalize linear 
models.  GAMs extend GLIMs by allowing the predictors to enter the model in flexible ways, via a smooth 
function that is not necessarily linear or some other simple transformation like logarithmic.  Thus, the link 
function of the mean response is  

 ( ) ( )i j ij
j

g s xμ =∑  (4.5) 
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where the sj are smooth functions of the predictors.  When the sj are linear, the GAM becomes a GLIM.   
The functions sj are fit using scatterplot smoothers.  One example of a scatterplot smoother is locally 

weighted least squares regression (lowess).  Another example is a smoothing spline.  A common function 
for the sj is a restricted cubic spline.  A cubic spline in a predictor variable is a piecewise cubic polynomial 
representation of the predictor, where the pieces are determined by “knot” locations placed over the 
range of the predictor variable. The restriction occurs by forcing the resulting piecewise curve to have 
vanishing second derivatives at the boundaries.  Then the number of degrees of freedom for each original 
predictor variable is equal to the number of knots minus 1.  The more degrees of freedom allotted to a 
predictor variable, the more complex the relationship between the predictor and the response. 
 A Fisher scoring-type outer loop (to update the working responses) with a backfitting inner loop (to 
update the smooth functions) can be used to find the estimates of the sj (see Chambers and Hastie, 
1992, p. 300ff).  When we assume that the sj in a GAM are polynomial smoothing splines (like the cubic 
splines above), then the algorithm corresponds to penalized maximum likelihood estimation, where the 
penalty is for roughness of the sj (Green and Silverman, 1994).   
 The function gam in S-PLUS can be used to fit GAMs.  If the functions are restricted to be smoothing 
splines (denoted by s in the gam formula) then gam uses a basis function algorithm, with a basis of cubic 
B-splines, to find the smooth functions (see Green and Silverman, 1994, p. 44ff).  The number of knots 
covering the range of the predictor values is chosen by default to be the number of unique data points (if 
these are less than 50), and otherwise “a suitable fine grid of knots is chosen”.  The smoothing parameter 
used in the penalized least squares estimation to find the basis function representation of the smooth 
functions can be specified by the user or determined via generalized cross-validation (see Green and 
Silverman, 1994, p. 35).  Equivalently, the number of degrees of freedom for a smooth function can be 
specified. 
 The function gam in S-PLUS “inherits” a lot of functionality from glm and lm.  But, the output is more 
graphical because the fitted smooth functions usually must be graphed to interpret the model (Chambers 
and Hastie, 1992). 
 
Horseshoe Crab Data – Bernoulli response 
 
 Agresti fits a GAM to the binary response of whether a female crab has at least one satellite, using a 
logit link and the width of carapace as a predictor.  We fit a GAM using gam in S-PLUS and R, with 3 
degrees of freedom for width.  Then, we plot the fitted smooth function. 
 
First, I get the binary response and the number of observations at each data point. 
 
table.4.3$Sa.bin<-ifelse(table.4.3$Sa>0,1,0) 
plot.table.4.3<-aggregate(table.4.3$Sa, 

by=list(Sa.bin=table.4.3$Sa.bin,W=table.4.3$W), length) 
plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = 

list("Sa.bin"), column.type = "double") 
# R: plot.table.4.3$Sa.bin<-as.numeric(as.vector(plot.table.4.3$Sa.bin)) 
plot.table.4.3 <- convert.col.type(target = plot.table.4.3, column.spec = list("W"), 

column.type = "double") 
# R: plot.table.4.3$W<-as.numeric(as.vector(plot.table.4.3$W)) 
 
Plot the number of observations. 
 
old.par<-par(pty="s") # save previous pty setting (use par(old.par) later to reset 

previous setting) 
par(pty="s")    # change pty par setting to “s” 
plot(y=table.4.3$Sa.bin,x=table.4.3$W,xlab="Width, x (cm)",  
ylab="Probability of presence of satellites", axes=F, type="n") 
# R: plot(y=table.4.3$Sa.bin,x=table.4.3$W,xlab=expression(paste("Width, ", italic(x), 

"(cm)")), ylab="Probability of presence of satellites", axes=F, type="n") 
axis(2, at=c(0,1)) 
axis(1, at=seq(20,34,2)) 
text(y=plot.table.4.3$Sa.bin,x=plot.table.4.3$W,labels=plot.table.4.3$x, cex=.5) 
guiModify( "XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", 
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 Title = "Width, `x` (cm)") # S-PLUS only (GSD2 is the name of the graphsheet.  
Substitute the name of your graphsheet in place of it, if GSD2 is not it) 

 
Fit the GAM and plot the fit. 
 
res<-gam(Sa.bin~s(W, df=3), family=binomial(link=logit), x=T, data=plot.table.4.3) 
# R: library(mgcv) 
# R: res<-gam(Sa.bin~s(W, k=3, fx=TRUE, bs="cr"), family=binomial(link=logit), 

data=plot.table.4.3) 
lines(x=plot.table.4.3$W,y=res$fitted.values) 
 
Get the proportions within each width category.  Width categories were defined earlier in Section C of this 
manual. 
 
prop<-aggregate(table.4.3$Sa.bin, by=table.4.3$W.fac, mean)$x 
# R, must be: prop<-aggregate(table.4.3$Sa.bin, by=list(W=table.4.3$W.fac), mean)$x 
 
Now, put the proportions on the plot. 
 
lines(plot.x, prop, type="p",pch=16) # see above for defn of plot.x 

 
The figure shows that an S-shaped function may describe the data well.  This signifies that a logistic 
regression model may be appropriate.  Indeed, the plot.gam function shows that the smoothing spline in 
width is close to linear for at least the middle portion of width values. 
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plot.gam(res, se=T) 
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par(old.par)    # change back to old pty setting 
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Chapter 5: Logistic Regression 
 
A.  Summary of Chapter 5, Agresti  
 
 This chapter treats logistic regression in more detail than did Chapter 4.  It begins with univariate 
logistic regression.  The interpretation of the coefficient, β , in the univariate logistic regression (equation 
5.1 in Agresti) is discussed initially.  The direction of this coefficient indicates the direction of the effect of 
the variable x on the probability of a positive response.  The magnitude of β  is usually interpreted in 
terms of the odds of a positive response.  The odds change multiplicatively by exp( )β  for each one-unit 
increase in x.  The expression exp( )β  is actually an odds ratio: the odds (of positive response) at 

1X x= +  to the odds at X x= .  Prior to fitting a logistic regression model to data, one should check 
the assumption of a logistic relationship between the response and explanatory variables.  A simple way 
to do this is to use the linear relationship between the logit and the explanatory variable.  The values of 
the explanatory variable can be plotted against the sample logits (p. 168, Agresti) at those values.  The 
plot should look roughly linear for a logistic model to be appropriate.  If there are not enough response 
data at each unique x value (and categorizing x values is undesirable), then the technique of the last 
section in Chapter 4 can be used (i.e., GAM).  There, we saw that a sigmoidal (or S-shaped) trend 
appeared in the plot of the response by predictor (Figure 4.7, Agresti). 
 Logistic regression can be used with retrospective studies to estimate odds ratios.  The fit of a 
logistic regression model to retrospective response data, given an explanatory variable whose values are 
not known in advance, yields a coefficient estimate whose exponent is the same estimated odds ratio as 
if the response variable had been prospective. 
 A logistic regression model is fit via maximum likelihood estimation.  In practice, this can be 
achieved via IRLS, as mentioned in the previous chapter.  That is, the MLE is the limit of a sequence of 
weighted least squares estimates, where the weight matrix changes at each iteration (see Section 5.5 in 
Agresti). 
 Inference for the maximum likelihood estimators is asymptotic. Confidence intervals can be Wald 
confidence intervals, LR confidence intervals or score confidence intervals. The Wald, LR, and score 
tests can be used to test hypotheses.  The LRT is preferred, as it uses both the null maximized likelihood 
value as well as the alternative maximized likelihood value (providing more information than the other 
tests), instead of just one of these values.  When comparing two unsaturated fitted models, the difference 
between their individual LRT statistics in comparison with the saturated model has an approximate chi-
squared null distribution, and this approximation is better than the chi-squared approximation by each 
LRT statistic alone. 
 Overall chi-squared goodness-of-fit tests for a logistic regression model can only be done for 
categorical predictors, and for continuous predictors only if they are categorized.  This is because the 
number of unique predictor combinations grows with increasing sample size when the predictors remain 
continuous. 
 When a logit model includes categorical predictors (factors), there is a parameter for each 
category of each predictor.  However, one of those parameters per predictor is redundant.  Setting the 
parameter for the last category equal to zero, and changing the definition of the remaining parameters to 
that of deviation from this last parameter, will eliminate redundancy of parameters in the logit model.  But, 
the interpretation of each parameter is modified.  Another way to eliminate redundancy is to set “sum-to-
zero constraints”, where the sum of the parameters for a particular factor is constrained to equal zero.  
However, any constraints for the category parameters does not affect the meaning of estimates of the 
odds ratios between two categories or of the joint probabilities. 
 Multiple logistic regression is the direct extension of univariate logistic regression.  The multiple 
logistic regression model is given in equations (5.8) and (5.9) in Agresti.  In that representation, the 
quantity exp( )iβ  for the ith covariate represents the multiplicative effect on the odds of a 1-unit increase 
in that covariate, at fixed levels of the other covariates, provided there are no interactions between the ith 
covariate and other covariates.  With all categorical predictors, the model is called a logit model.  A 
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representation of a logit model with two predictors is given on p. 184 of Agresti.  A logit model that does 
not contain an interaction between two categorical predictors assumes that the odds ratio(s) between one 
of the predictors and the binary dependent variable is(are) the same at or given each level of the other 
predictor.  (In the case of a binary predictor, there is just one odds ratio between that predictor and the 
dependent variable).  Then, the predictor and the dependent variable are said to be conditionally 
independent.  In terms of the model representation, this means that the parameters corresponding to the 
categories of that predictor are all equal (see p. 184 in Agresti).  A formal test of homogeneous odds 
ratios can be carried out using the chi-squared goodness-of-fit statistic G2. 

It is possible for additivity of predictors (i.e., no interactions) to hold on the logit scale, but not 
other link scales or vice versa. 
 
B.  Logistic Regression for Horseshoe Crab Data 
 

One interpretation of the horseshoe crab data of Table 4.3 in Agresti has a binary response with 
a positive response being that the female crab has at least one satellite.  So, a logistic regression is 
plausible for describing the relationship between width of carapace and probability of at least one 
satellite.  If the widths are grouped into eight categories (Table 4.4, p. 129 Agresti), then a plot of the 
means of the width categories by the proportion of female crabs within each category having satellites is 
in Figure 5.2 of Agresti, with a logistic regression fit superimposed.    
 We plotted these proportions in Section I of Chapter 4, where we superimposed a GAM with logit 
link and binary response.  Now, we will superimpose a logistic regression function. 
 
Here is the logit fit, using glm. 
 
table.4.3$Sa.bin<-ifelse(table.4.3$Sa>0,1,0) # change number of satellites to binary 

response 
(crab.fit.logit<-glm(Sa.bin~W, family=binomial, data=table.4.3)) 

 
Call: 
glm(formula = Sa.bin ~ W, family = binomial, data = table.4.3) 
 
Coefficients: 
 (Intercept)         W  
   -12.35082 0.4972305 
 
Degrees of Freedom: 173 Total; 171 Residual 
Residual Deviance: 194.4527  
 
So, the estimated odds of having a satellite increase by 1.64 for each 1 cm increase in width (a 64% 
increase).  Figure 5.2 is created using similar steps as before, except now we add the predicted logistic 
regression curve. 
 
# Recall from above the definitions: 
# table.4.3$W.fac<-cut(table.4.3$W, breaks=c(0,seq(23.25, 29.25),Inf)) 
# prop<-aggregate(table.4.3$Sa.bin, by=table.4.3$W.fac, mean)$x 
# R: prop<-aggregate(table.4.3$Sa.bin, by=list(W=table.4.3$W.fac), mean)$x 
# plot.x<-aggregate(table.4.3$W, by=list(W=table.4.3$W.fac), mean)$x 
 
old.par<-par(pty="s") # save previous pty setting (use par(old.par) later to reset 

previous setting) 
par(pty="s")    # change pty par setting to “s” 
 
# create axes and labels 
plot(y=table.4.3$Sa.bin,x=table.4.3$W,xlab="", ylab="", axes=F, type="n") 
axis(2, at=seq(0,1,.2)) 
axis(1, at=seq(20,34,2)) 
guiModify( "XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", Title = "Width, `x` 

(cm)")  # S-PLUS only 
guiModify( "YAxisTitle", Name = "GSD2$1$Axis2dY1$YAxisTitle", Title =  "Proportion 

having satellites, \\\"Symbol\"p(\\\"Arial\"x\\\"Symbol\")") # S-PLUS only 
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# plot points and regression curve (note the ordering of the widths first) 
lines(y=prop, x=plot.x, pch=16, type="p") 
ind<-order(table.4.3$W) 
lines(x=table.4.3$W[ind],y=predict(crab.fit.logit, type="response")[ind], type="l", 

lty=3) 
par(old.par)    # change back to old pty setting 
 
 

22 24 26 28 30 32 34

Width, x (cm)

0.0

0.2

0.4

0.6

0.8

1.0
P

ro
po

rti
on

 h
av

in
g 

sa
te

llit
es

, π
(x

)

 
For the plot in R, use  
 
plot(y=table.4.3$Sa.bin,x=table.4.3$W,xlab=expression(paste("Width, ", italic(x), 
"(cm)")), ylab=expression(paste("Proportion having satellites,", {pi}, "(x)")),  
axes=F, type="n") 

 
and do not use the two guiModify lines. 
 
Inference for the logistic regression is asymptotic.  Standard errors via the inverse of observed Fisher 
information can be obtained (among other ways) using the summary.glm function. 
 
summary(crab.fit.logit, correlation=F) 
 
Call: glm(formula = Sa.bin ~ W, family = binomial, data = table.4.3) 
 
Coefficients: 
                  Value Std. Error   t value  
(Intercept) -12.3508154  2.6280373 -4.699635 
          W   0.4972305  0.1017079  4.888809 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 225.7585 on 172 degrees of freedom 
 
Residual Deviance: 194.4527 on 171 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
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The Wald test is shown in the t value column under Coefficients (in R, this is a z value).  To get the 
LRT, we need the log likelihood value at the estimate and at the null value 0.  For this we can use the 
deviance values. 
 
crab.fit.logit$null.deviance-crab.fit.logit$deviance 
[1] 31.30586 
 
A profile likelihood ratio confidence interval can be found easily in R using package Bhat.  We first define 
the negative log likelihood, then use plkhci in the same way as in Chapter 2. 
 
library(Bhat) 
 
# neg. log-likelihood of logistic model with width included 
nlogf <- function (p) {  
    alpha<-p[1]; beta<-p[2] 
    y<-table.4.3$Sa.bin 
    lp<-alpha+beta*table.4.3$W 
     
    -sum(y*lp - y*log(1+exp(lp)) - (1-y)*log(1+exp(lp))) 
                 
    } 
 
# define a list with parameter labels and estimates 
x <- list(label=c("alpha", "beta"),est=c(-12.3508154, 0.4972305),low=c(-100,-100), 
upp=c(100,100)) # we include upper and lower bounds for stability 
 
# CI on beta 
plkhci(x,nlogf,"beta") 
 
...snip 
 CONVERGENCE:  4  iterations  
 
chisquare value is:  3.823855  
confidence bound of  beta  is  0.3087864  
log derivatives:     5.526653  
  label estimate log deriv log curv 
1 alpha -7.47862 5.52665   90404.4  
2 beta  0.308786 1217.3    61821100 
 
[1] 0.3087864 0.7090134 
 
# CI on alpha 
plkhci(x,nlogf,"alpha") 
 
...snip 
 CONVERGENCE:  4  iterations  
 
chisquare value is:  3.828054  
confidence bound of  alpha  is  -17.79965  
log derivatives:     -24.78501  
  label estimate log deriv log curv 
1 alpha -17.7997 30.2999   68230.4  
2 beta  0.708216 -24.785   48167900 
 
[1] -17.799654  -7.467987 
 
Thus, the confidence intervals match those obtained by SAS, appearing in Table 5.1 in Agresti.  A 1-cm 
increase in width has at least a 36% increase in odds (100*exp(0.308) = 136%) and at most about 100% 
increase (100*exp(0.709) = 203%). 
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I have since found that the MASS library has a function confint that computes profile-likelihood 
confidence intervals for the coefficients from glm objects.  It is much simpler to use than plkhci for logit 
models.  Below, I use it on the logit model fit to the crab data 
 
library(MASS) 
confint(crab.fit.logit) 
 
Waiting for profiling to be done... 
                  2.5 %     97.5 %  
(Intercept) -17.8104562 -7.4577421 
          W   0.3084012  0.7090312 
 
A plot of the predicted probabilities along with pointwise confidence intervals can be obtained using 
output from the predict function, which gives the standard errors of the predictions. 
 
crab.predict<-predict(crab.fit.logit, type="response", se=T) 
 
ind<-order(table.4.3$W) 
plot(table.4.3$W[ind],crab.predict$fit[ind], axes=F, type="l", xlim=c(20,33), 

ylab="Probability of satellite", xlab="") 
# R: plot(table.4.3$W[ind],crab.predict$fit[ind], axes=F, type="l", xlim=c(20,33), 

ylab="Probability of satellite", xlab=expression(paste("Width, ", italic(x), 
"(cm)"))) 

axis(2, at=seq(0,1,.2)) 
axis(1, at=seq(20,32,2)) 
guiModify( "XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", 
 Title = "Width, `x` (cm)") # S-PLUS only 
lines(table.4.3$W[ind],crab.predict$fit[ind]-1.96*crab.predict$se[ind],lty=3) 
lines(table.4.3$W[ind],crab.predict$fit[ind]+1.96*crab.predict$se[ind],lty=3) 
# see also the pointwise() function in S-PLUS  
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The above plot is from R.  Note that it extends on the left-hand side to only a width of 21.0 cm.  However, 
Figure 5.3 in Agresti extends to a width of 20.0 cm.  As 21.0 cm is the lowest width in the data set, in 
order to predict the probability of a satellite at a width of 20.0 cm using the function predict we need to 
use the newdata argument.  For example, 
 
predict(crab.fit.logit, type="response", se=T, newdata=data.frame(W=seq(20,32,1))) 

 
gives predictions and standard errors at widths from 20 to 32 cm, by cm. 
 
C.  Goodness-of-fit for Logistic Regression for Ungrouped Data  
 
With categorical predictors (grouped data), one may use a chi-squared goodness-of-fit statistic where the 
expected number of positive and negative responses per predictor value (or predictor combination, with 
more than one predictor) are obtained from the fitted model.  When the predictors are continuous 
(ungrouped data), they must be categorized prior to using the test.  In that case, one may assign the 
midpoint of the category to the observations in that category in order to compute the expected number of 
positives.   
 
 In Agresti’s Table 5.2, the expected number of positives in each category (Fitted Yes) is obtained by 
summing the predicted probabilities for each observation that falls within that category.  Then, the 
observed number of Yes’s are compared to these expected numbers in a chi-square test.  Roberto 
Bertolusso has sent me code to compute the values within Table 5.2, and also compute the goodness-of-
fit statistics.  I present his code (somewhat modified) below.  The original code appears in the code files 
for this document. 
 
First, we create a table with the successes and failures per width category 
 
cont.table<-crosstabs(~W+Sa.bin, data=table.4.3, margin=list(),drop.unused.levels=F)  
#R: cont.table<-xtabs(~W+Sa.bin, data=table.4.3) 
 
The unique widths can be extracted from the dimnames of the crosstabs. 
 
w.unique <-as.numeric(attr(cont.table,"dimnames")$W) 

 
This gives the observed successes and failures for each unique width, in a matrix, so that successes are 
listed first. 
 
matrix.succ.fail<-structure(.Data=cont.table,dim=c(66,2))[,2:1] 

 
Now, we create the first two columns of Table 5.2, summing elements in each column of 
matrix.succ.fail over the width categories, created using the cut function. 
 
w.cut <- cut(w.unique, breaks=c(0,seq(23.25, 29.25),Inf), left.include=T) 
observed<-apply(matrix.succ.fail,2,aggregate,by=list(W=w.cut),sum) 
observed <- matrix(c(observed[[1]][,ncol(observed.yes)], 

observed[[2]][,ncol(observed.no)]), ncol = 2) 

 
The last two columns contain the expected numbers of observations per category.  The expected number 
for each category is obtained by multiplying the fitted probability for each width in the category by the 
number of observations at that width, and then summing up all these quantities. 
 
fit.1ogit <- glm(matrix.succ.fail~w.unique, family=binomial) 
fitted.yes <- aggregate(predict(fit.1ogit, type="response") * 

apply(matrix.succ.fail,1,sum), by=list(W=w.cut), sum) 
fitted.no <- aggregate((1-predict(fit.1ogit, type="response")) * 

apply(matrix.succ.fail,1,sum), by=list(W=w.cut), sum) 
fitted.all <- matrix(c(fitted.yes$x,fitted.no$x), ncol = 2) 
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The Pearson chi-squared statistic is then easily computed 
 
(x.squared = sum((observed - fitted.all)^2/fitted.all)) 
[1] 5.320099 
 
df <- length(observed[,1]) - length(fit.logit$coefficients) 
1-pchisq(x.squared, df) 
[1] 0.2560013 
 
The likelihood ratio statistic is computed using the midpoints of the category spreads. 
 
glm(observed ~ seq(22.75, 29.75), family = binomial)$deviance 
[1] 6.24532 
 
However, one might also consider taking the medians of the categories, as suggested by Roberto. 
 
W.fac<-cut(table.4.3$W, breaks=c(0,seq(23.25, 29.25),Inf),left.include=T) 
glm(observed~aggregate(table.4.3$W, by=list(W=W.fac), median)$x, 

family=binomial)$deviance 
[1] 6.03537 
 
which gives a slightly lower deviance. 
 
 Instead of categorizing predictors one may use a test by Hosmer and Lemeshow, described by 
Agresti.  Their statistic forms groups based on the predicted probabilities.  The observed counts per 
group and the predicted probabilities are used in a Pearson-like statistic that has an approximate chi-
squared distribution if the number of distinct patterns of covariate values equals the sample size.  It is 
computed here for the horseshoe crab data.  First, I create a grouping variable that groups the predicted 
probabilities into ten groups.  I give two alternative ways to do the grouping.  Then, I calculate the statistic 
for each group using the by() function.  The value of the statistic differs somewhat from the number that 
Agresti gives on p. 179.  This may be due to the difference in forming groups. 
 
table.4.3$prob.group<-cut(crab.predict$fit,breaks=quantile(crab.predict$fit, 

seq(0,1,.1)), include.lowest=T ) 
#table.4.3$prob.group<-cut(crab.predict$fit,breaks=10) 
#table.4.3$prob.group<-cut(order(crab.predict$fit), breaks=seq(0,173,17.3), 

include.lowest=T) 
table.4.3$predict<-crab.predict$fit 
 
Hosmer.GOF<-sum(unlist(by(table.4.3, table.4.3$prob.group, function(x){ 
 p<-sum(x$predict) 
 ((sum(x$Sa.bin)-p)^2)/(p*(1-p/nrow(x))) 
}))) 
 
[1] 4.38554 
 
1-pchisq(Hosmer.GOF,df=8) 
# R: pchisq(Hosmer.GOF,df=8,lower.tail=F) 
 
[1] 0.8207754 
 
D.  Logit Models with Categorical Predictors  
 
As discussed in Agresti, when fitting logit models with categorical predictors, we have to constrain the 
category parameters to avoid redundancy in the model specification.  We can set up either of the two 
types of constraints mentioned.  The constraints are set in S-PLUS and R by specifying a global option 
via the options command.  For example, to set “sum-to-zero” constraints, use 
 
options(contrasts=c("contr.sum", "contr.poly")) 
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To constrain the first category parameter to be zero, use 
 
options(contrasts=c("contr.treatment", "contr.poly")) 

 
Thus, to fit a logit model to the data in Table 5.3 on maternal alcohol consumption and child’s congenital 
malformations, we use glm with options set according to the constraint used.  
 
Alcohol<-factor(c("0","<1","1-2","3-5",">=6"), levels=c("0","<1","1-2","3-5",">=6")) 
malformed<-c(48,38,5,1,1) 
n<-c(17066,14464,788,126,37)+malformed 

 
To set the first category parameter to zero, 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
(Table.5.3.logit<-glm(malformed/n~Alcohol,family=binomial, weights=n)) # saturated 

model 
 
Coefficients: 
 (Intercept)   Alcohol<1 Alcohol1-2 Alcohol3-5 Alcohol>=6  
   -5.873642 -0.06818947  0.8135823   1.037361   2.262725 
 
Degrees of Freedom: 5 Total; 0 Residual 
Residual Deviance: -3.394243e-012  
 
To set the last category parameter to zero, 
 
revAlcohol <- factor(c("0", "<1", "1-2", "3-5", ">=6"), levels = rev(c("0", "<1", "1-

2", "3-5", ">=6"))) 
(Table.5.3.logit2<-glm(malformed/n~revAlcohol, family=binomial, weights = n)) # 

saturated model 
 
Coefficients: 
 (Intercept) revAlcohol3-5 revAlcohol1-2 revAlcohol<1 revAlcohol0  
   -3.610918     -1.225364     -1.449142    -2.330914   -2.262725 
 
Degrees of Freedom: 5 Total; 0 Residual 
Residual Deviance: -4.331341e-012  
 
Remark: There is a difference in the reported “Total” df for R and S-PLUS.  S-PLUS gives the number of 
cells.  R gives the df for a null model, that is, one with an intercept only.  Thus, for the above saturated 
model, R gives Total (null) df = 5-1 = 4.  We lose a df for estimating an intercept. 
 
The fitted proportions are the same for each constraint.  The fitted proportions are the sample proportions 
because each model is a saturated model that has the same number of parameters as data points (thus, 
0 degrees of freedom for residual). 
 
cbind(logit=predict(Table.5.3.logit), fitted.prop= predict(Table.5.3.logit, type= 

"response")) 
 
      logit fitted.prop  
1 -5.873642 0.002804721 
2 -5.941832 0.002620328 
3 -5.060060 0.006305170 
4 -4.836282 0.007874016 
5 -3.610918 0.026315789 
 
cbind(logit=predict(Table.5.3.logit2), fitted.prop= predict(Table.5.3.logit2,type= 

"response")) 
 
      logit fitted.prop  
1 -5.873642 0.002804721 
2 -5.941832 0.002620328 
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3 -5.060060 0.006305170 
4 -4.836282 0.007874016 
5 -3.610918 0.026315789 
 
The sample proportions tend to increase with alcohol consumption. 
 
A model that specifies independence between alcohol consumption and congenital malformations is fit by 
 
(Table.5.3.logit3 <- glm(malformed/n~1, family=binomial, weights = n)) 
 
Coefficients: 
 (Intercept)  
   -5.855811 
 
Degrees of Freedom: 5 Total; 4 Residual 
Residual Deviance: 6.201998  
 
with likelihood-ratio and Pearson chi-squared statistics 
 
# LR statistic 
summary(Table.5.3.logit3)$deviance 
[1] 6.201998 
 
# Pearson chi-squared statistic 
sum(residuals(Table.5.3.logit3, type="pearson")^2) 
[1] 12.08205 
 
The latter rejects the hypothesis of model fit. 
 
1-pchisq(12.08205, df=4) 
[1] 0.01675144 
 
 
1. Linear Logit Model 
 
As mentioned by Agresti, these statistics ignore ordinality in the levels of alcohol consumption.  A logit 
model that incorporates monotone ordered categories of a predictor, but is more parsimonious than a 
saturated model, is a linear logit model.  This models the logit for the ith category as in equation (5.5) in 
Agresti.  To fit the model, one needs numerical scores to represent the ordered categories.  For the 
congenital malformation data, Agresti uses scores {0, 0.5, 1.5, 4.0, 7.0} for the predictor alcohol 
consumption.  In S, this model can be fit using a numeric vector representing the scores. 
 
scores<-c(0,.5,1.5,4,7) 
Table.5.3.LL<-glm(malformed/n~scores,family=binomial,weights=n) 
summary(Table.5.3.LL) 

 
(.. snip) 
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept) -5.9604602  0.1153620 -51.667434 
     scores  0.3165602  0.1254448   2.523503 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 6.201998 on 4 degrees of freedom 
 
Residual Deviance: 1.948721 on 3 degrees of freedom 
 
Number of Fisher Scoring Iterations: 8  
 
Correlation of Coefficients: 
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       (Intercept)  
scores -0.436482   
 
# chi-squared statistic 
sum(residuals(Table.5.3.LL, type="pearson")^2) 
[1] 2.050051 
 
# LR statistic 
Table.5.3.LL$null.deviance - Table.5.3.LL$deviance 
[1] 4.253277 
 
with fitted logits and proportions 
 
cbind(logit = predict(Table.5.3.LL), fitted.prop = predict(Table.5.3.LL, type = 

"response")) 
 
      logit fitted.prop  
1 -5.960460 0.002572092 
2 -5.802180 0.003011863 
3 -5.485620 0.004128846 
4 -4.694219 0.009065079 
5 -3.744539 0.023100295 
 
Profile likelihood confidence intervals can be obtained using the plkhci function in the R package Bhat, 
which is illustrated in subsection B of this chapter, or more easily using the confint function from library 
MASS.  
 
library(MASS) 
confint(Table.5.3.LL) 
 
Waiting for profiling to be done... 
                  2.5 %     97.5 %  
(Intercept) -6.19303606 -5.7396909 
     scores  0.01865425  0.5236161 
 
A logit model with an ordered categorical predictor can also be fit using orthogonal polynomial contrasts.  
However, by default, S-PLUS assumes the levels of the ordered factor are equally spaced.  For 
illustrative purposes, you could use 
 
AlcoholO<-as.ordered(Alcohol) 
res<-glm(malformed/n~AlcoholO,family=binomial,weights=n) 

 
to get up to quartic contrasts. 
 
2. Cochran-Armitage Trend Test 
 
As an alternative to the Pearson chi-squared statistic or LR statistic to test independence of alcohol on 
malformations, Agresti introduces the Cochran-Armitage Trend Test, which can test for a linear trend in 
an ordinal predictor using an I x 2 contingency table with ordered rows and I independent binomial( in , 

iπ ) response variates.  The test is actually equivalent to the score test for testing 0 : 0H β =  in a linear 

logit model: logit( )i ixπ α β= + .  It can be calculated using the statistic 2M  in equation (3.15) in Agresti, 
but with 1n − replaced by n .  Thus, for the alcohol consumption and malformation data, using the same 
scores as for the linear logit model, we can easily calculate the Cochran-Armitage trend statistic (denoted 
by 2z ).  We correlate the scores with the binary response variable. 
 
x <- c(rep(scores, malformed), rep(scores, n - malformed)) 
y <- c(rep(1, sum(malformed)), rep(0, sum(n - malformed))) 
(z2 <- 32574 * cor(x, y)^2) # n = 32,574 
[1] 6.569932 
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1 - pchisq(z2, df = 1) 
[1] 0.01037159 
 
which suggests strong evidence of a positive slope. 
 
E.  Multiple Logistic Regression 
 
1. Multiple Logit Model – AIDS Symptoms Data 
 
Agresti introduces multiple logistic regression with a data set that has two categorical predictors.  Thus, 
the model is a logit model.  Table 5.5 in Agresti cross-classifies 338 veterans infected with the AIDS virus 
on the two predictors Race (black, white) and (immediate) AZT Use (yes, no), and the dependent variable 
whether AIDS symptoms were present (yes, no).  The model that is fit is the “main effects” model 

 [ ]logit ( 1) AZT race
yes whiteP Y α β β= = + +  

 
In S, we will represent the predictors as factors with two levels each.  This ensures that we have the 
correct level specifications. 
 
table.5.5<-expand.grid(AZT=factor(c("Yes","No"),levels=c("No","Yes")), 

Race=factor(c("White","Black"),levels=c("Black","White"))) 
table.5.5<-data.frame(table.5.5,Yes=c(14,32,11,12), No=c(93,81,52,43)) 
 

We can fit the logit model using glm. 
 
options(contrasts=c("contr.treatment","contr.poly")) 
summary(fit<-glm(cbind(Yes,No) ~ AZT + Race , family=binomial, data=table.5.5) ) 

 
Call: glm(formula = cbind(Yes, No) ~ AZT + Race, family = binomial, data = table.5.5) 
 
Coefficients: 
                  Value Std. Error    t value  
(Intercept) -1.07357363  0.2629363 -4.0830185 
        AZT -0.71945990  0.2789748 -2.5789424 
       Race  0.05548452  0.2886081  0.1922487 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 8.349946 on 3 degrees of freedom 
 
Residual Deviance: 1.38353 on 1 degrees of freedom 
 
Thus, the estimated odds ratio between immediate AZT use and development of AIDS is around exp(-
0.7195) = 0.487.  Wald confidence intervals are obtained using the approximate standard errors.  LR 
confidence intervals can be obtained using confint from the MASS library.  
 
confint(fit) 
 
Waiting for profiling to be done... 
                 2.5 %     97.5 %  
(Intercept) -1.6088540 -0.5735061 
        AZT -1.2773512 -0.1798808 
       Race -0.5022939  0.6334414 
 
A LRT of the conditional independence of race and AIDS symptoms, given AZT treatment is given by 
fitting another model which excludes race. 
 
fit2<-update(object=fit, formula = ~ . -Race)  
 
anova(fit2, fit, test="Chisq") # R output 
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Analysis of Deviance Table 
 
Model 1: cbind(Yes, No) ~ AZT 
Model 2: cbind(Yes, No) ~ AZT + Race 
 
  Resid. Df Resid. Dev Df Deviance P(>|Chi|) 
1         2    1.42061                       
2         1    1.38353  1  0.03708   0.84730 
 
Thus, the reduction in deviance (0.03708) is not significantly greater than chance, and we conclude that 
Race probably does not belong in the model. 
 
As demonstrated above in Subsection D, one can easily change the type of constraint imposed on the 
parameters in order to estimate them uniquely.  Use the options statement above in either R or S-PLUS. 
 
The estimated probabilities for each of the four predictor combinations is given by the function predict, 
and standard errors are given by setting the argument se to TRUE. 
 
res<-predict(fit, type="response", se=T) 

 
To reproduce Figure 5.4 in Agresti, we need the asymptotic 95% confidence intervals on these 
predictions.  These are just the estimate ± 1.96 times the standard error.  A convenient function for 
getting these quantities is the function pointwise in S-PLUS.  However, pointwise, by default, uses the 
student-t quantile as its multiplier, not the Normal multiplier.  Here is a version of pointwise that uses a 
Normal quantile.  I apply it to the output from predict. 
 
pointwise.normal<-function(results.predict, coverage = 0.99) 
{ 
 fit <- results.predict$fit 
 limits <- qnorm(1. - (1. - coverage)/2.) * results.predict$se.fit 
 list(upper = fit + limits, fit = fit, lower = fit - limits) 
} 
 
(AIDS.bars<-pointwise.normal(res, coverage=.95)) 
 
$upper: 
         1        2        3         4  
 0.2095706 0.341256 0.210883 0.3525571 
 
$fit: 
         1         2         3         4  
 0.1496245 0.2653998 0.1427012 0.2547241 
 
$lower: 
         1         2          3        4  
 0.0896784 0.1895435 0.07451946 0.156891 
 
 
The function error.bar in S-PLUS can be used to plot confidence intervals around a plotted point.  For 
R, just source in the code for error.bar from S-PLUS (e.g., source(“c:/path/errorbar.txt”), if the 
error.bar code is saved in the text file errorbar.txt).  It works without modification (at least for this 
example).  Here, we use it to draw a plot like Figure 5.4. 
 
error.bar(c(2,2,1,1), y=AIDS.bars$fit, AIDS.bars$lower, AIDS.bars$upper,incr=F, gap=F, xlim=c(0,3),yl
 ylab="Probability of AIDS (95% CI)", pch=".") 
axis(1,at=c(2,1),labels=c("White","Black")) 
axis(2,at=c(0,.1,.2,.3)) 
 
lines(c(1,2),AIDS.bars$fit[c(3,1)]) 
lines(c(1,2),AIDS.bars$fit[c(4,2)]) 
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Now, add the sample proportions to the plot. 
 
attach(table.5.5) 
propAIDS<-Yes/(Yes+No) 
points(c(2,2,1,1),propAIDS, pch=16) 
detach(2) 
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The top line is for No AZT Use and the bottom line is for AZT Use.  This plot is somewhat different-
looking than that in Figure 5.4.  The reason why is because Agresti has inadvertently plotted error bars 
which give only a single standard error on each side of the point estimate, instead of the (roughly) two 
standard errors from a 95% CI.  Thus, the ordinate label on Figure 5.4 is incorrect.  In the plot above, the 
confidence intervals overlap vertically. 
 
The chi-squared and Pearson goodness-of-fit statistics for this model are obtained, respectively, by  
 
fit$deviance 
[1] 1.38353 
 
sum(residuals(fit, type = "pearson")^2) 
[1] 1.390965 
 
which are both nonsignificant at the 0.05 level, implying that the homogeneous association model holds.  
Thus, the odds ratio between AZT use and AIDS symptoms is deemed to be the same regardless of race. 
 
2. Multiple Logistic Regression Model – Horseshoe Crab Data 
 
The Horseshoe crab data has both continuous and categorical predictors.  Agresti uses the carapace 
width and color in a multiple logistic regression model to predict whether a crab has any satellites (the 
dependent variable).  The predictor, color, has four categories (medium light, medium, medium dark, and 
dark), and it is treated in the regression model using three dummy variables.  Crab color is dark when the 
three dummy variables are zero.  Although we could set up three dummy variables, it is more natural to 
use factor in S.  We construct the factor so that the coefficient set to zero is the dark color coefficient. 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
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table.4.3$C.fac<-factor(table.4.3$C, levels=c("5","4","3","2"), labels=c("dark","med-
dark","med","med-light")) 

 

MLEs of the no-interaction model can be obtained using glm.   
 
crab.fit.logist <- glm(Sa.bin ~ C.fac + W, family = binomial, data = table.4.3) 
summary(crab.fit.logist, cor = F) 
 
Coefficients: 
                     Value Std. Error   t value  
   (Intercept) -12.7151039  2.7604349 -4.606196 
 C.facmed-dark   1.1061211  0.5919829  1.868502 
      C.facmed   1.4023356  0.5483476  2.557384 
C.facmed-light   1.3299190  0.8523972  1.560210 
             W   0.4679557  0.1054959  4.435769 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 225.7585 on 172 degrees of freedom 
 
Residual Deviance: 187.457 on 168 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
 
As before, profile likelihood confidence intervals can be obtained using the R package Bhat, which is 
illustrated in subsection B of this chapter, or using confint from library MASS. 
 
library(MASS) 
confint(crab.fit.logist) 
 
                      2.5 %    97.5 %  
   (Intercept) -18.45748987 -7.579268 
 C.facmed-dark  -0.02793259  2.314084 
      C.facmed   0.35268302  2.526314 
C.facmed-light  -0.27381825  3.135721 
             W   0.27129460  0.687074 
 
The model has a different intercept parameter (for the linear logit) for crabs of different colors.  For 
example, the logit model for dark crabs is ˆlogit( ) 12.715 0.468widthπ = − + ; and for medium crabs it is 

ˆlogit( ) ( 12.715 1.4023) 0.468widthπ = − + + .  However, the slope on width is always the same:  
Regardless of color, a 1-cm increase in width has a multiplicative effect of exp(0.468) = 1.60 on the odds 
of having a satellite.  Also, at any given width, the estimated odds that a medium crab has a satellite are 
exp(1.4023 – 1.1061) = 1.34 times the estimated odds for a medium-dark crab. 
 
Figure 5.5 can be produced as follows.  First, we predict the probability at widths from 18 to 34 cm for 
each of the colors. 
 
res1<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1), 
 C.fac="med-light")) 
res2<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1), 
 C.fac="med")) 
res3<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1), 
 C.fac="med-dark")) 
res4<-predict(crab.fit.logist, type="response", newdata=data.frame(W=seq(18,34,1),C.fac="dark")) 
 
Then, we plot the results.  Here, I happen to use R. 
 
plot(seq(18,34,1),res1,type="l",bty="L",ylab="Predicted Probability", axes=F, 
xlab=expression(paste("Width, ", italic(x), "(cm)"))) 
axis(2, at=seq(0,1,.2)) 
axis(1, at=seq(18,34,2)) 
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lines(seq(18,34,1),res2) # add colors 2-4 
lines(seq(18,34,1),res3) 
lines(seq(18,34,1),res4) 
 
# add arrows and text 
arrows(x0=29, res1[25-17],x1=25, y1=res1[25-17], length=.09) 
text(x=29.1, y=res1[25-17], "Color 1", adj=c(0,0)) 
arrows(x0=23, res2[26-17],x1=26, y1=res2[26-17], length=.09) 
text(x=21.1, y=res2[26-17], "Color 2", adj=c(0,0)) 
arrows(x0=28.9, res3[24-17],x1=24, y1=res3[24-17], length=.09) 
text(x=29, y=res3[24-17], "Color 3", adj=c(0,0)) 
arrows(x0=25.9, res4[23-17],x1=23, y1=res4[23-17], length=.09) 
text(x=26, y=res4[23-17], "Color 4", adj=c(0,0)) 
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As mentioned previously, there are some differences in the use of arrows and text across R and S-
PLUS.  Here is the code to plot Figure 5.5 in S-PLUS. 
 
plot(seq(18,34,1),res1,type="l",bty="L",ylab="Predicted Probability",axes=F) 
axis(2, at=seq(0,1,.2)) 
axis(1, at=seq(18,34,2)) 
guiModify( "XAxisTitle", Name = "GSD2$1$Axis2dX1$XAxisTitle", Title= "Width,`x` 

(cm)") 
lines(seq(18,34,1),res2) 
lines(seq(18,34,1),res3) 
lines(seq(18,34,1),res4) 
arrows(x1=29, y1=res1[25-17],x2=25, y2=res1[25-17],size=.25,open=T) 
text(x=29.1, y=res1[25-17], "Color 1", adj=0) 
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arrows(x1=23, y1=res2[26-17],x2=26, y2=res2[26-17], size=.25,open=T) 
text(x=21.1, y=res2[26-17], "Color 2", adj=0) 
arrows(x1=28.9, y1=res3[24-17],x2=24, y2=res3[24-17], size=.25,open=T) 
text(x=29, y=res3[24-17], "Color 3", adj=0) 
arrows(x1=25.9, y1=res4[23-17],x2=23, y2=res4[23-17], size=.25,open=T) 
text(x=26, y=res4[23-17], "Color 4", adj=0) 

 
To test whether the width effect changes at each color, we can test the significance of a color by width 
interaction by fitting a new model with the addition of this interaction and comparing the model deviance 
with that of the previous fit. 
 
crab.fit.logist.ia <- update(object = crab.fit.logist, formula =  ~ . + W:C.fac) 
anova(crab.fit.logist, crab.fit.logist.ia, test = "Chisq") 
 
Analysis of Deviance Table 
 
Response: Sa.bin 
 
                Terms Resid. Df Resid. Dev     Test Df Deviance   Pr(Chi)  
1           C.fac + W       168   187.4570                                
2 C.fac + W + W:C.fac       165   183.0806 +W:C.fac  3 4.376405 0.2235832 
 
 
The p-value implies that an interaction model is not warranted. 
 
 
3. Multiple Logistic Regression Model with Quantitative Ordinal Predictor – Horseshoe Crab 
Data 
 
The predictor color is actually ordinal.  Agresti uses codes of {1, 2, 3, 4} for the four levels of color and fits 
a linear effect of color on the log odds of having a satellite.  This model is easily fit using the variables in 
the data frame table.4.3, as C is already coded consecutively. 
 
crab.fit.logist.ord<-glm(Sa.bin~C+W, family=binomial, data=table.4.3) 
summary(crab.fit.logist.ord, cor=F) 
 
Coefficients: 
                 Value Std. Error   t value  
(Intercept) -9.5617875  2.8819273 -3.317845 
          C -0.5090466  0.2236485 -2.276101 
          W  0.4583095  0.1039784  4.407737 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 225.7585 on 172 degrees of freedom 
 
Residual Deviance: 189.1212 on 170 degrees of freedom 
 
To test the hypothesis that the quantitative color model is adequate given that the qualitative color model 
holds, we can use anova. 
 
anova(crab.fit.logist.ord,crab.fit.logist, test="Chisq") # S-PLUS output 
 
Analysis of Deviance Table 
 
Response: Sa.bin 
 
Response: Sa.bin 
 
      Terms Resid. Df Resid. Dev    Test Df Deviance   Pr(Chi)  
1     C + W       170   189.1212                               
2 C.fac + W       168   187.4570 1 vs. 2  2 1.664145 0.4351466 
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Judging by the p-value, we can go with the simpler (fewer parameters) quantitative color model. 
 
Other scores can be created by using logical operators.  For example, the set of binary scores {1, 1, 1, 0} 
are created by 
 
table.4.3$C.bin<-ifelse(table.4.3$C<5,1,0) 
glm(Sa.bin~C.bin+W, family=binomial, data=table.4.3) 
 
Coefficients: 
 (Intercept)    C.bin        W  
   -12.97953 1.300512 0.478222 
 
Degrees of Freedom: 173 Total; 170 Residual 
Residual Deviance: 187.9579  
 
 
 
F.  Extended Example (Problem 5.17)  
 
This example illustrates some details in using S for a logit model.  The analysis is patterned after the 
section on binomial data in Venables and Ripley (2002, p. 190).  Problem 5.17 in Agresti (p. 204) 
describes data on 35 patients who received general anesthesia for surgery.  The dependent variable is 
whether the patient experienced a sore throat upon awakening (binary response).  Here, we model the 
probability of sore throat as a logistic function of duration of surgery in minutes and the type of device 
used to secure the airway (0 = laryngeal mask airway, 1 = tracheal tube). 
 
First, we set the type of contrast to treatment contrasts for factors. 
 
options(contrasts=c(“contr.treatment”,”contr.poly”)) 

 
Now, we get the data set up: 
 
duration<-c(45,15,40,83,90,25,35,65,95,35,75,45,50,75,30,25,20,60,70,30,60, 

61,65,15,20,45,15,25,15,30,40,15,135,20,40) 
type<-c(0,0,0,1,1,1,rep(0,5),1,1,1,0,0,1,1,1,rep(0,4),1,1,0,1,0,1,0,0,rep(1,4)) 
sore<-c(0,0,rep(1,10),0,1,0,1,0,rep(1,4),0,1,0,0,1,0,1,0,1,1,0,1,0,0) 
 
sore.fr<-cbind(duration, type, sore) 
 
Now, fit a binomial glm with interaction: 
 
sorethroat.lg<-glm(sore ~ type*duration, family=binomial) 
summary(sorethroat.lg, cor=T) 
 
Coefficients: 
                    Value Std. Error     t value  
  (Intercept)  0.04978674 1.46940067  0.03388234 
         type -4.47205400 2.45694142 -1.82017120 
     duration  0.02847802 0.03428574  0.83060812 
type:duration  0.07459608 0.05748718  1.29761230 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 46.17981 on 34 degrees of freedom 
 
Residual Deviance: 28.32105 on 31 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
Correlation of Coefficients: 
              (Intercept)       type   duration  
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         type -0.5980609                        
     duration -0.9190218   0.5496310            
type:duration  0.5481108  -0.9137683 -0.5964068 
 
 
The high negative correlation between duration and the intercept can probably be reduced by 
standardizing duration: 
 
sorethroat.lg<-glm(sore ~ type*scale(duration), family=binomial) 
summary(sorethroat.lg) 
 
Coefficients: 
                          Value Std. Error    t value  
         (Intercept)  1.3589619  0.6216850  2.1859332 
                type -1.0427657  1.0744104 -0.9705470 
     scale(duration)  0.7953023  0.9574941  0.8306081 
type:scale(duration)  2.0832361  1.6054380  1.2976123 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 46.17981 on 34 degrees of freedom 
 
Residual Deviance: 28.32105 on 31 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
Correlation of Coefficients: 
                     (Intercept)       type scale(duration)  
                type -0.5786290                             
     scale(duration)  0.3631314  -0.2101184                 
type:scale(duration) -0.2165740   0.3701497 -0.5964068      
 
 
The interaction does not appear significant based on the Wald test.  A LRT of the interaction parameter 
gives 
 
sorethroat.lg2<-glm(sore ~ type + scale(duration), family=binomial)# no interaction 
anova(sorethroat.lg2, sorethroat.lg, test = "Chisq") 
 
Analysis of Deviance Table 
 
Response: sore 
 
                   Terms Resid. Df Resid. Dev                  Test Df Deviance   Pr(Chi)  
1 type + scale(duration)        32   30.13794                                             
2 type * scale(duration)        31   28.32105 +type:scale(duration)  1 1.816886 0.1776844 

 
which indicates that an interaction may not really be present. 
 
We can plot the predicted probabilities.  First, we plot the data using “T” and “L” to indicate tracheal tube 
or laryngeal mask, respectively. 
 
plot(c(15,135),c(0,1), type="n", xlab="duration",ylab="prob") 
text(duration,sore,as.character(ifelse(type,"T","L"))) 
 
Now, we add the predicted lines for tracheal tube and laryngeal mask 
 
lines(15:135,predict.glm(sorethroat.lg,data.frame(duration=15:135,type=1), 
 type="response")) 
lines(15:135,predict.glm(sorethroat.lg,data.frame(duration=15:135,type=0), 
 type="response"), lty=2) 
key(x=100, y=.6, text=list(c("Tracheal","Laryngeal")), lines=list(lty=1:2, size=2), 

border=T) # S-PLUS only 
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# R: legend(x=100, y=.6, legend=list("Tracheal","Laryngeal"), lty=1:2) 
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We can test for a type difference at a particular duration, say at 60 minutes, which is about 0.5 standard 
deviations based on the mean and standard deviation of duration.  The I( ) function is used so that 
(scale(duration)-0.5) is interpreted as is, meaning as a number, here. 
 
sorethroat.lgA <- glm(sore ~ type * I(scale(duration) - 0.502), family = binomial) 
summary(sorethroat.lgA) # S-PLUS output 
 
Coefficients: 
                                      Value Std. Error     t value  
                    (Intercept) 1.758203676  0.9135373 1.924610748 
                           type 0.003018773  1.5636194 0.001930632 
     I(scale(duration) - 0.502) 0.795302340  0.9574941 0.830608118 
type:I(scale(duration) - 0.502) 2.083236102  1.6054380 1.297612304 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 46.17981 on 34 degrees of freedom 
 
Residual Deviance: 28.32105 on 31 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
Based on the very low magnitude t-value, there is no difference at one hour of duration of surgery. 
 
Now, we test a model with parallel lines for each type (common slope), but different intercepts.  The term 
‘-1’ in the update formula removes the common intercept (forces it through 0)  and gives separate 
intercepts across types. 
 
type.fac <- factor(ifelse(type, "trach", "laryn"), levels = c("trach", "laryn")) 
sorethroat.lgB <- update(sorethroat.lg, . ~ type.fac + scale(duration) - 1) 
summary(sorethroat.lgB)$coefficients 
 
                     Value Std. Error   t value  
  type.factrach 0.08092534  0.6909792 0.1171169 
  type.faclaryn 1.73987442  0.6900319 2.5214407 
scale(duration) 1.91795638  0.7373841 2.6010274 
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One result we can obtain from setting different intercepts is a prediction of the duration at which prob(sore 
throat upon awakening) = .25, .5, .75 for tracheal tubes/laryngeal mask.  We can use the function 
dose.p from the MASS library.  The second argument to the function (i.e., c(1, 3) or c(2, 3) ) refers to the 
coefficients specifying the common slope and separate intercept.  For tracheal tubes, they are the 
type.factrach coefficient and scale(duration) coefficient.  The third argument refers to the 
probability points (.25, .5, .75). 
 
For tracheal tubes, we have the following predictions: 
 
library(MASS) 
dose.p(sorethroat.lgB, c(1, 3), (1:3)/4) 
                 Dose        SE  
p = 0.25: -0.61499711 0.3808615 
p = 0.50: -0.04219353 0.3567465 
p = 0.75:  0.53061006 0.4543964 
 
And, for laryngeal mask, we have: 
 
dose.p(sorethroat.lgB, c(2, 3), (1:3)/4) 
                Dose        SE  
p = 0.25: -1.4799537 0.5190731 
p = 0.50: -0.9071502 0.3720825 
p = 0.75: -0.3343466 0.3231864 
 
Of course, the predicted durations are in standard deviation units.  The probability of sore throat is 
predicted to be higher at lower durations (“doses”) when one is using the laryngeal mask. 
 
To print residual plots for this model, use the plot.glm function, which is called via plot with first 
argument a glm object. 
 
par(mfrow=c(2,2)) 
plot(sorethroat.lgB,ask=T) 
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Chapter 6 – Building and Applying Logistic Regression 
Models 

 
A.  Summary of Chapter 6, Agresti   
 
 This chapter discusses logistic regression further, emphasizing practical issues related to model 
choice and model assessment.  In Section 6.6, other link functions besides logit link are discussed for 
binary data. 
 We would like to fit a model that is rich enough to describe the data, but does not overfit the data.  
We also must be aware of issues such as multicollinearity among predictors.  Multicollinearity may cause 
related predictors to appear nonsignificant marginally.  Stepwise procedures (forward selection, backward 
elimination, or both) can be used to select predictors for an exploratory analysis.  Forward selection adds 
terms sequentially until further terms do not improve the fit (based on a criterion such as Akaike’s 
Information Criterion, AIC).  Backward elimination starts with a model containing many terms and 
sequentially removes terms that do not add “significantly” to the fit.  Once the final model is obtained, p-
values must be interpreted cautiously because they are usually based on knowing the model form prior to 
looking at the data (whereas, with stepwise selection we use the data to choose the model).  Bootstrap 
adjustments may be needed for hypothesis tests and standard errors.  In certain cases, conceptually 
important predictors should be included in a model, even though they may not be statistically significant. 
 Model building can take advantage of causal diagrams that dictate conditional independence 
relations among a set of variables.  In this way, the causal diagram guides what models should be fit.  
Agresti gives an example from a British data set on extra-marital sex. 
 Section 6.2 expounds on diagnostics for logistic regression analysis.  These include residuals 
(Pearson and deviance), influence diagnostics or case-deletion diagnostics (e.g., Dfbetas, and 
confidence interval diagnostic that measures the change in a joint confidence region on a set of 
parameters after deleting each observation), and measures of predictive power (e.g. R-squared like 
measures, ROC curves). 
 Section 6.3 deals with conditional inference from 2 x 2 x K tables.  Testing conditional independence 
of a binary response Y and a binary predictor X conditional on the level of a third variable Z can be done 
using a test of the appropriate parameter of a logit model or using the Cochran-Mantel-Haenszel (CMH) 
Test (The CMH test is a score statistic alternative for the LR test of the logit model parameters).  The logit 
model tests differ depending on whether the association between the predictor and response is assumed 
the same at each level of the third variable (i.e., no XZ interaction) or it is assumed to differ. 
 The CMH test conditions on both response Y and predictor X totals within each level of Z.  Then, the 
first cell count in each table has a hypergeometric distribution (independent of the other tables).  The 
CMH statistic compares the sum of the first cell counts across the K tables to its expected value of 
conditional independence within strata. The asymptotic distribution of the statistic is chi-squared. 
 Section 6.4 discusses the use of parsimonious models to improve inferential power and estimation.  
One example of this concept is illustrated by showing the improved power in testing for an association in 
the presence of a logit model when a predictor has ordinal levels.  In this case, the use of numerical 
scores in place of the nominal levels of the ordinal predictor results in fewer parameters in the model and 
ultimately results in better power and smaller asymptotic variability of the cell probability estimates. 
 Section 6.5 discusses power and sample size calculations for the two-sample binomial test, test of 
nonzero coefficient in logistic regression and in multiple logistic regression, and chi-squared test in 
contingency tables.  The formulas provide rough indications of power and/or sample size, based on 
assumptions about the distribution of predictors and of the model probabilities expected.  
 When samples are small compared to the number of parameters in a logistic regression model, 
conditional inference may be used.  With conditional inference, inference for a parameter conditions on 
sufficient statistics for remaining parameters, thereby eliminating them.  What remains is a conditional 
likelihood that only depends on the parameter of interest.  In many respects, a conditional likelihood can 
be used like an ordinary likelihood, giving conditional MLEs and asymptotic standard errors.  Exact 
inference for parameters uses the conditional distributions of their sufficient statistics.  Conditional 
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inference is also used for sparse tables (with many zeroes) and tables that display “separation” where the 
success cases all correspond to one level of the risk factor.   
 
 
B.  Model Selection for Horseshoe Crab Data 
 

Backward elimination is done for the Horseshoe Crab data of Table 4.3 in order to select a 
parsimonious logistic regression model that predicts the probability of a female crab having a satellite.  
We begin by putting all the variables from Table 4.3 into a model.  Agresti uses two dummy variables for 
the variable spline condition, which we create by forming factors on the two variables. 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
table.4.3$C.fac<-factor(table.4.3$C, levels=c("5","4","3","2")) 
table.4.3$S.fac<-factor(table.4.3$S, levels=c("3","2","1")) 

 
Now, we fit the full model, with weight (Wt) being divided by 1000, as in the text.  Note the use of I() to 
interpret the argument literally. 
 
crab.fit.logist.full<-glm(Sa.bin~C.fac+S.fac+W+I(Wt/1000), family=binomial, 

data=table.4.3) 
 
summary(crab.fit.logist.full, cor=T)   
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept) -9.2733819  3.8364636 -2.4171693 
     C.fac4  1.1198011  0.5931762  1.8878052 
     C.fac3  1.5057627  0.5665525  2.6577638 
     C.fac2  1.6086660  0.9353686  1.7198203 
     S.fac2 -0.4962679  0.6290766 -0.7888830 
     S.fac1 -0.4002868  0.5025636 -0.7964899 
          W  0.2631276  0.1952484  1.3476557 
 I(Wt/1000)  0.8257794  0.7036640  1.1735422 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 225.7585 on 172 degrees of freedom 
 
Residual Deviance: 185.202 on 165 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
Correlation of Coefficients: 
           (Intercept)     C.fac4     C.fac3     C.fac2     S.fac2     S.fac1          W  
    C.fac4 -0.1318818                                                                    
    C.fac3 -0.0670015   0.7233703                                                        
    C.fac2 -0.0043035   0.4499020  0.5507148                                             
    S.fac2 -0.2184819  -0.0733221 -0.1685117 -0.2471148                                  
    S.fac1 -0.0120010  -0.0327826 -0.2074473 -0.3672790  0.2431179                       
         W -0.9649203   0.0241011 -0.0308300 -0.0336341  0.1922667  0.0161518            
I(Wt/1000)  0.6740016  -0.0097672 -0.0014684 -0.0365701 -0.0891985 -0.0402631 -0.8308544 
 
 
with LR statistic 
 
crab.fit.logist.full$null.deviance-crab.fit.logist.full$deviance 
[1] 40.55652 
 
Because of the high correlation between width and weight, Agresti eliminates the predictor Wt in further 
analyses. 
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To perform stepwise selection of predictor variables for various types of fitted models (including glm 
objects), one can use the function step with a lower and upper model specified.  The criterion is AIC.  
Only the final model is printed unless trace=T is specified.   An example of a call to the glm method is 
 
step.glm(fit, scope=list(lower = formula(fit), upper =  ~ .^2 ), scale=1, trace=T, 

direction="both")  
 
The above call specifies both forward and backward stepwise selection of terms (direction="both").  
The scope of the selection has a lower bound or starting model as “fit”.  The upper bound model 
includes all two-way interactions.  The component “anova” gives a summary of the trace path.   
 
To illustrate stepwise procedures, we perform backward elimination on a model fitted to the horseshoe 
crab data.  This model includes up to a three-way interaction among Color, Width, and Spine Condition.  
We fit this model in S-PLUS or R using 
 
crab.fit.logist.stuffed<-glm(Sa.bin~C.fac*S.fac*W, family=binomial,data=table.4.3) 

 
(Note that there are some warning messages after the fit.)  The backward elimination begins with the 
above three-way interaction model.  The lower bound of the scope is a null model.  The upper bound is 
the saturated or “stuffed” model, as I appear to have called it. 
 
res <- step.glm(crab.fit.logist.stuffed, list(lower =  ~ 1, upper = 

formula(crab.fit.logist.stuffed)), scale = 1, trace = F, direction = "backward") 
res$anova 
 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
Sa.bin ~ C.fac * S.fac * W 
 
Final Model: 
Sa.bin ~ C.fac + W 
 
 
             Step Df Deviance Resid. Df Resid. Dev      AIC  
1                                   152   170.4462 212.4462 
2 - C.fac:S.fac:W  3 3.232082       155   173.6783 209.6783 
3   - C.fac:S.fac  6 7.880494       161   181.5588 205.5588 
4       - S.fac:W  2 0.078190       163   181.6370 201.6370 
5         - S.fac  2 1.443615       165   183.0806 199.0806 
6       - C.fac:W  3 4.376405       168   187.4570 197.4570 
 
 
Compare the above table to Table 6.2 in Agresti.  The models chosen at each step are the same as those 
in Table 6.2, with the exception of step 5.  At step 5, step.glm opts to drop S instead of the two-way 
interaction C:W, giving a resulting AIC of 199.0806 instead of 200.6.  Setting trace=T in the call of the 
function shows this explicitly.  The model chosen by step.glm is C + W with AIC = 197.46.  The iterations 
stop before steps 7 and 8 in Table 6.2 because at step 7, no model decreases AIC. 
 
The stepAIC function from the MASS library also performs stepwise selection based on AIC.  In some 
cases, the AIC calculation from stepAIC is more accurate than that of step.glm.  See the help library for 
stepAIC or Venables and Ripley (2002).  Here, stepAIC gives the same anova summary. 
 
 
C. Using Causal Hypotheses to Guide Model Fitting  
 
In this subsection, I show how to fit the various models derived from the causal diagram in Figure 6.1 in 
Agresti.  There are no new techniques learned, but it gives an illustration of fitting several related models 
coming from the same contingency table.  A 2x2x2x2 table of variables: gender, premarital sex, 
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extramarital sex, and marital status (divorced, still married) is given in Table 6.3 (p. 217, Agresti).  The 
data come from a British survey of a sample of men and women who had petitioned for divorce, and a 
similar number of married people. 
 The causal diagram indicates a conditional independence relation:  M and G are conditionally 
independent given E and P.  Thus, if we broke the arrows connecting E to M and P to M, there would be 
no path between G and M.  A logit model with M as response, then, might have E and P as explanatory 
variables, but not G.  This model and the remaining in Table 6.4 (p. 218, Agresti) are fitted below using S. 
 
First, I enter the data (see note at end of this section) 
 
table.6.3<-expand.grid(list(M=c("divorced","married"),E=c("yes","no"), 

P=c("yes","no"), G=c("Female","Male"))) 
count<-c(17,4,54,25,36,4,214,322,28,11,60,42,17,4,68,130) 
table.6.3.expand<-table.6.3[rep(1:(length(count)),count),] 

 
Then, I fit the models and compare the reductions in deviance. 
 
Stage 1: 
EMS.10<-glm(P ~ 1, family=binomial, data=table.6.3.expand) 
EMS.11<-update(EMS.10, .~. +G) 
anova(EMS.10, EMS.11) 
 
Analysis of Deviance Table 
 
Response: P 
 
  Terms Resid. Df Resid. Dev Test Df Deviance  
1     1      1035   1123.914                  
2     G      1034   1048.654       1  75.2594 
 
Thus, adding G reduces the deviance by about 75.3. 
 
Stage 2: 
EMS.20<-glm(E ~ 1, family=binomial, data=table.6.3.expand) 
EMS.21<-update(EMS.20, .~. +P) 
EMS.22<-update(EMS.21, .~. +G) 
anova(EMS.20, EMS.21, EMS.22) 
 
Analysis of Deviance Table 
 
Response: E 
 
  Terms Resid. Df Resid. Dev Test Df Deviance  
1     1      1035   746.9373                  
2     P      1034   700.9209       1 46.01636 
3 P + G      1033   698.0138   +G  1  2.90718 
 
Adding P reduces the deviance by about 46 (= 48.9 – 2.9).  Adding G to this reduces the deviance by 2.9 
more points. 
 
Stage 3: 
EMS.31<-glm(M ~ E+P, family=binomial, data=table.6.3.expand) 
EMS.32<-update(EMS.31, .~. +E:P) 
EMS.33<-update(EMS.32, .~. +G) 
anova(EMS.31, EMS.32, EMS.33) 
 
Analysis of Deviance Table 
 
Response: M 
 
            Terms Resid. Df Resid. Dev Test Df Deviance  
1           E + P      1033   1344.180                  
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2     E + P + E:P      1032   1331.266 +E:P  1 12.91404 
3 E + P + G + E:P      1031   1326.718   +G  1  4.54768 
 
Adding E:P to a model with E and P reduces the deviance by about 13 points (=18.2 – 5.2).  Further 
adding G reduces deviance by 4.5 points ( = 5.2 – 0.7).  Thus, we see how Table 6.4 is obtained. 
 
I have since found this data set available in the R package vcd.  Thus, if you have loaded the vcd library, 
just issue the command: data(PreSex), to have the PreSex data array available.  The function 
as.data.frame() can be used to transform it to a data frame. 
 
 
D. Logistic Regression Diagnostics 
 
This section gives more details on diagnostics for logistic regression.  After illustrating each set of 
procedures, I use the two data sets in Subsections 6.2.2 and 6.2.3 in Agresti to demonstrate their use in 
S. 
 
1. Pearson, Deviance and Standardized Residuals 
 
We already illustrated Pearson residuals in Chapter 3, Section D.1 and Chapter 4, Section F.  The sum of 
the squared Pearson residuals is equal to the Pearson chi-squared statistic.  For a logistic regression 
model, with responses as counts out of totals, in , i=1,…,N, the fitted response value at the ith 
combination of the covariates is ˆi inπ .  So, the Pearson and deviance residuals use deviations of the 
observed responses from these fitted values. Pearson residuals are divided by an estimate of the 
standard deviation of an observed response, and the standardized version is further divided by the 
square root of the 1 −  the ith estimated leverage value (ith diagonal of estimated “hat” matrix).  This 
standardized residual is approximately distributed standard normal when the model holds.  Thus, 
absolute values of greater than about three provide evidence of lack of fit. 
 Deviance residuals were illustrated for S in Chapter 4, Section F. These are the signed square 
roots of the components of the LR statistic.  Standardized deviance residuals are approximately 
distributed standard normal. 
 These residuals can be plotted against fitted linear predictors to detect lack of fit, but as Agresti 
says, they have limited use.  When in  = 1, individual residuals can be either uninteresting (Pearson) or 
uninformative (deviance). 
 
The heart disease data in Agresti (Table 6.5, p. 221) classifies blood pressure (BP) for a sample of male 
residents aged 40-59, into one of 8 categories.  Then, a binary indicator response is whether each man 
developed coronary heart disease (CHD) during a six-year follow-up period.  An independence model is 
fit initially.  This model has BP independent of CHD. 
 
BP<-factor(c("<117","117-126","127-136","137-146","147-156","157-166","167-

186",">186")) 
CHD<-c(3,17,12,16,12,8,16,8) 
n<-c(156,252,284,271,139,85,99,43) 

 
Independence model: 
 
resCHD<-glm(CHD/n~1,family=binomial, weights=n)  
resCHD$deviance 
[1] 30.02257 
 
Predicted responses, deviance residuals, Pearson residuals, and standardized Pearson residuals. 
 
pred.indep<-n*predict(resCHD, type="response") 
dev.indep<-resid(resCHD, type="deviance") 
pear.indep<-resid(resCHD, type="pearson") 
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pear.std.indep<-resid(resCHD, type="pearson")/sqrt(1-lm.influence(resCHD)$hat) 

 
structure(cbind(pred.indep, dev.indep, pear.indep, pear.std.indep), dimnames = 
list(BP, c("fitted", "deviance resid",  "pearson resid", "pearson std resid"))) 
# R: structure(cbind(pred.indep, dev.indep, pear.indep, pear.std.indep), 

dimnames=list(as.character(BP),c("fitted","deviance resid","pearson resid", 
"pearson std resid"))) 

 
           fitted deviance resid pearson resid pearson std resid  
   <117 10.799097   -0.231005277    -2.4599611        -2.6298091 
117-126 17.444695   -0.006979615    -0.1103592        -0.1235339 
127-136 19.659895   -0.114009224    -1.7906464        -2.0374109 
137-146 18.759970   -0.041094691    -0.6604895        -0.7464933 
147-156  9.622272    0.065059023     0.7945128         0.8428348 
157-166  5.884123    0.093323311     0.9041221         0.9365792 
167-186  6.853273    0.314268383     3.6215487         3.7743451 
   >186  2.976674    0.386702000     3.0178895         3.0712637 
 
A plot of the standardized residuals shows an increasing trend.   
 
plot(pear.std.indep,xlab="",ylab="Standardized Pearson Residuals", pch=16, axes=F) 
axis(1,at=1:8, labels=as.character(BP), srt=90) 
axis(2);abline(h=0) 
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Agresti notes that this suggests that a linear logit model may be better to use, with scores for BP. 
 
To indicate residuals greater than | 3 | on the plot, use text and then points, as follows 
 
out<-abs(pear.std.indep)>3 
plot(pear.std.indep, xlab="",ylab="Standardized Pearson Residuals", axes=F, type="n") 
text((1:8)[out], pear.std.indep[out], ">3") 
points((1:8)[!out], pear.std.indep[!out], pch=16) 
axis(1,at=1:8, labels=as.character(BP), srt=90) 
axis(2) 
abline(h=0) 

 
Linear Logit Model: 
 
scores<-c(seq(from=111.5,to=161.5,by=10),176.5,191.5) 
resLL<-glm(CHD/n~scores,family=binomial,weights=n) 
resLL$deviance 
[1] 5.909158 
 
pred.indep<-n*predict(resLL, type="response") 
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dev.indep <- resid(resLL, type = "deviance") 
pear.indep <- resid(resLL, type = "pearson") 
pear.std.indep <- resid(resLL, type = "pearson")/sqrt(1 - lm.influence(resLL)$hat) 
 
structure(cbind(pred.indep, dev.indep, pear.indep, pear.std.indep), dimnames = 

list(as.character(scores), c("fitted", "deviance resid", "pearson resid", "pearson 
std resid"))) 

 
         fitted deviance resid pearson resid pearson std resid  
111.5  5.194869     -1.0616845    -0.9782938        -1.1046299 
121.5 10.606767      1.8501055     2.0037958         2.3724980 
131.5 15.072743     -0.8419675    -0.8127218        -0.9445420 
141.5 18.081622     -0.5162313    -0.5064454        -0.5724088 
151.5 11.616362      0.1170009     0.1175384         0.1260411 
161.5  8.856988     -0.3087751    -0.3041875        -0.3260156 
176.5 14.208763      0.5049658     0.5134918         0.6519597 
191.5  8.361957     -0.1402427     -0.139493        -0.1773537 
 
The residuals are generally smaller.  We can plot the fitted proportions along with the observed 
proportions using the following. 
 
win.graph(width=10, height=8) # R only 
plot(scores,CHD/n,pch="X",yaxt="n",xaxt="n",ylim=c(0,.2), 
 xlab="Blood Pressure Level",ylab="Proportion",bty="L") 
axis(side=1, at=seq(from=110,to=200,by=10)) 
axis(side=2, at=seq(from=0,to=.2,by=.05)) 
lines(scores,predict(resLL, type="response"),type="l") 
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The graduate admissions data in Table 6.7 p. 223 of Agresti cross-classifies applicants on gender (G), 
whether admitted (A) and department of application (D).  The number admitted of each gender for each 
department are assumed to be independent binomials with different probabilities of success.   
 
yes<-c(32,21,6,3,12,34,3,4,52,5,8,6,35,30,9,11,6,15,17,4,9,21,26,25,21,7,25,31,3,9, 

10,25, 25,39,2,4,3,0,29,6,16,7,23,36,4,10) 
no<-c(81,41,0,8,43,110,1,0,149,10,7,12,100,112,1,11,3,6,0,1,9,19,7,16,10,8,18,37,0, 

6,11,53,34,49,123,41,3,2,13,3,33,17,9,14,62,54) 
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table.6.7<-cbind(expand.grid(gender=c("female","male"), 
dept=c("anth","astr","chem","clas","comm","comp","engl","geog","geol","germ", 
"hist","lati","ling","math","phil","phys","poli","psyc","reli","roma","soci", 
"stat","zool")),prop=yes/(yes+no)) 

 
A model with no gender effect is 
 
res.gradadmit<-glm(prop~dept, family=binomial, data=table.6.7, weights=yes+no) 
res.gradadmit$deviance 
[1] 44.73516 
sum(resid(res.gradadmit, type="pearson")^2) 
[1] 40.80606 
 
Standardized Pearson residuals are obtained in the same way as above. 
 
resid(res.gradadmit, type="pearson")/sqrt(1-lm.influence(res.gradadmit)$hat) 

 
2. Influence Diagnostics 
 
The estimated “hat” matrix for GLIMs can be used to assess leverage for each observation.  For an 
observation with large leverage, if it also has an outlying residual, then deleting the observation from the 
model fit may cause large changes in the fit.   
 
Case deletion diagnostics measure the change in fit after deleting an observation.   A measure called 
Dfbeta measures the standardized change in a parameter estimate when an observation is deleted from 
the model fit.  In S-PLUS, we can compute Dfbeta measures using the function Cook.terms by John 
Chambers (Chambers and Hastie, 1992).  The signed square root of the output from this function gives 
the Dfbetas.  Using it on the linear logit model for blood pressure, we get 
 
sign(resLL$coefficients[2]-lm.influence(resLL)$coefficients[,2,drop=F]) 

*sqrt(Cook.terms(resLL)[,2]) 
        scores  
1  0.492099277 
2 -1.142149031 
3  0.327960528 
4  0.081380326 
5  0.007858333 
6 -0.065196274 
7  0.400949178 
8 -0.123737455 
 
In R, there is a function called influence.measures() that is used for computing influence measures for 
an lm.object.  There is also a dfbetas() function by itself.  Here, if we use dfbetas on the 
glm.object, resLL, we get values that are somewhat similar to those from S-PLUS. 
 
dfbetas(resLL)[,2,drop=F] 
 
        scores 
1  0.564578573 
2 -2.237161736 
3  0.341496449 
4  0.078670948 
5  0.007193748 
6 -0.061424292 
7  0.375986525 
8 -0.114761146 
 
Influence measures for logistic regression models are also available from Harrell’s library/package 
Design and Hmisc in the form of the function, residuals.lrm, with argument type=”dfbetas”.  The 
function takes as input the output from the Design function lrm.  We discuss this function next. 
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3. Summarizing Predictive Power: R and R-squared Measures 
 
The function lrm from Harrell’s Design library (available for both R and S-PLUS) computes measures of 
predictive ability of a logistic regression model, including R and R-squared-like measures.  These 
measures can also be validated using resampling (function validate.lrm).  This function calculates 
bias-corrected estimates of predictive ability.   Bias is incurred when the data used to fit a model is also 
used to assess its predictive ability on a potential new data set.  Model selection, assessment, and tuning 
of a model fit are usually not taken into account when one computes a measure of predictive power.  
These activities can bias the computed measure upward.  Thus, bias-correction is in order. 
 
To illustrate the variety of measures computed by these functions, I use lrm to fit the linear logit model to 
the blood pressure data.  lrm requires binary responses instead of count response, so I form table.6.5 
out of objects defined previously.  Note that I set the arguments x and y to TRUE so that we can use 
validate.lrm later on.  First, when loading the libraries, set first=T so that certain functions from 
Design don’t get confused with built-in ones from S-PLUS (done automatically in R). 
 
library(Hmisc, first=T) # first=T not needed in R 
library(Design, first=T) # R: loads Hmisc upon loading Design 
 
#BP<-factor(c("<117","117-126","127-136","137-146","147-156","157-166","167-

186",">186")) 
#scores<-c(seq(from=111.5,to=161.5,by=10),176.5,191.5) 
#CHD<-c(3,17,12,16,12,8,16,8) 
#n<-c(156,252,284,271,139,85,99,43) 
 
# form the data 
res<-numeric(2*length(CHD)) 
res[rep(c(T,F),length(CHD))]<-CHD 
res[rep(c(F,T),length(CHD))]<-n-CHD 
table.6.5<-data.frame(CHD=rep(rep(c(1,0),length(CHD)),res), BP=rep(BP,n), 

scores=rep(scores,n)) 
 
# fit the linear logit model 
options(contrasts=c("contr.treatment", "contr.poly")) 
(res.lrm<-lrm(CHD~scores,data=table.6.5, x=T, y=T)) 
 
Logistic Regression Model 
 
lrm(formula = CHD ~ scores, data = table.6.5, x = T, y = T) 
 
 
Frequencies of Responses 
    0  1  
 1237 92 
 
  Obs Max Deriv Model L.R. d.f. P     C   Dxy Gamma Tau-a    R2 Brier  
 1329    2e-005      24.11    1 0 0.636 0.273 0.316 0.035 0.045 0.063 
 
              Coef     S.E. Wald Z P  
Intercept -6.08203 0.724320 -8.40  0 
   scores  0.02434 0.004843  5.03  0 
 
 
The Model L.R. reported by lrm is resLL$null.deviance-resLL$deviance for the same model fit 
using glm (resLL).  Thus, it is the reduction in deviance by fitting scores.  However, because resLL was 
fit using grouped data instead of binary responses, the absolute deviances will be different.  This has 
implications for the reported R-squared measure.  The R2 measure reported by lrm is the Nagelkerke 
measure, 2

NR , which measures the proportionate reduction in deviance when fitting the unconstrained 
model versus the null model.  It is computed as 
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where L0 is the deviance (-2 times log likelihood) under the null model, and LM is the deviance under the 
unconstrained model, and n is the number of responses.  All three of these will differ when using grouped 
versus ungrouped data, and the R-squared values will differ.  Consider the value of 2

NR   for the glm fit, 
resLL<-glm(CHD/n~scores,family=binomial,weights=n) (from p. 94): 
 
 (1 - exp((resLL$deviance - resLL$null.deviance)/1329))/(1 - exp( -

resLL$null.deviance/1329)) 
 
[1] 0.8049576 
 
This value is much larger.  However, when we use binary responses with glm, we get 
 
 temp <- glm(formula = CHD ~ scores, family = binomial, data = table.6.5) 
 (1 - exp((temp$deviance - temp$null.deviance)/1329))/(1 - exp( - 

temp$null.deviance/1329)) # sum(n) = 1329 
 
[1] 0.04546905 
 
4. Summarizing Predictive Power: ROC Curve  
 
The measure “C” reported by the lrm output above is an index of the rank correlation between the 
predicted probability of response under the fitted model and the actual response.  It is the probability of 
concordance between predictions and outcomes, and is equivalent to the area under a receiver operating 
characteristic (ROC) curve.  If we were to classify predicted probabilities as success if the predicted 
probability exceeds some fixed value 0π  and failure if not, then a plot of the sensitivity of the model 
(predicting success when it should) by one minus the specificity (predicting failure when it should) for a 
range of values of 0π  is the ROC curve.  The larger the area under this curve, the better the predictions.  
The maximum area is 1.0, and an area of 0.5 implies random predictions (i.e., a prediction of success is 
as likely whether success or failure is the truth).  A value of C = 0.636 above is not much better than 
random predictions, in agreement with the very low R2 value.  Harrell (1998) gives a guideline of C 
exceeding 0.80 as implying useful predictability of the model. 
 
Somer’s D is a transformation of C, equal to 2(C – 0.5), where D = 0 if predictions are random and D = 1 
if predictions are perfect.  The various rank measures (Somer’s D, tau-a, C) only measure how well the 
predicted values can rank order responses, but the actual numerical predictions do not matter (i.e., only 
ordinal information is used). 
 
To validate the logistic model fit, we can use validate.lrm, from the same library.  This can be called 
using validate(), with an object of class lrm (but, be careful, as there is a validate function in S-PLUS 
that provides a completely different service).  I will use the full name here, instead of taking advantage of 
method dispatch. 
 
Below is the output of a call to validate.lrm, using 100 bootstrap repetitions, where sampling is done 
with replacement.  A repetition proceeds as follows.  A bootstrap sample is drawn from the original data 
and becomes the training set for the repetition.  The model is fit to this sample, coefficients are estimated 
and measures of predictive accuracy are obtained.  Another bootstrap sample is drawn (called the test 
sample), and the model is fit using the responses from that sample and one predictor: the linear predictor 
formed using the covariate matrix from the test sample along with the coefficient estimates from the 
training sample.  Measures of predictive accuracy are calculated from this fit.  After 100 repetitions, the 
training sample indexes are averaged and the test sample indexes are averaged.  These averages 
appear in the validate.lrm output. 
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I only show the two indexes of predictive accuracy, Dxy (Somer’s D) and R2, but several others are 
output as well.  The index.corrected column is the row index corrected for bias due to over-optimism 
(i.e., index.orig – optimism).  The optimism column is computed as the difference between the 
average of the indexes calculated from the training samples and the average calculated from the test 
samples.  Here, there is very little over-optimism, so the corrected estimates are very close to the original 
indexes. 
 
validate.lrm(res.lrm, method = "boot", B = 100) # excerpt 
 
            index.orig     training          test      optimism index.corrected   n  
      Dxy  0.272819936  0.270357318 0.27281993603 -0.0024626183   0.27528255435 100 
       R2  0.045469052  0.047315513 0.04546905186  0.0018464612   0.04362259074 100 
..........snip 
 
Harrell has written much about the topic of assessing predictive ability from linear, logistic, and survival 
models.  The above information came from a preprint (Harrell, 1998) of his now-published Springer book.   
In addition, on the website for one of my courses at UHCL (http://math.cl.uh.edu/~thompsonla/5537), I 
have html documents and S-PLUS scripts illustrating many of the lrm model assessments on GLIMs, 
with annotation.   
 
After using Design and Hmisc, we should detach them. 
 
detach("Design") # R: detach("package:Hmisc") 
detach("Hmisc") # R: detach("package:Design") 
 

 
E. Inference about Conditional Associations in 2 x 2 x K Tables 
 
In this section, I show how to test for conditional independence between response Y and predictor X in 2 
x 2 x K tables using S, where K is the number of levels of a stratification variable.  Agresti illustrates a test 
using an appropriate logit model and the Cochran-Mantel-Haeszel Test.  Table 6.9 (p. 230, Agresti) gives 
results of a clinical trial with eight centers.  The study compared two cream preparations, an active drug 
and a control, on their success in treating an infection.  This data set is available on Agresti’s text website 
(I have changed the name, and changed the extension to “ssc”).  I read it in using scan in order to read 
the numeric levels (1 and 2) for the response and treatment as characters.  Then, I make it a data frame 
and change the levels to something more meaningful. 
 
table.6.9<-data.frame(scan(file="clinical trials table 69.ssc", 

what=list(Center="",Treatment="",Response="",Freq=0))) 
levels(table.6.9$Treatment)<-c("Drug","Control") 
levels(table.6.9$Response)<-c("Success","Failure") 

 
The CMH test assumes that the odds ratios are in the same direction across strata.  Thus, prior to 
conducting the test, we can check the sample odds ratios across the centers.  This can be done using 
oddsratio from package vcd in R.  The same function can be sourced into S-PLUS with modifications 
due to restricted variable names and scoping rule differences between R and S-PLUS.  I have modified 
the function to be sourceable into S-PLUS as well as to use the non-corrected cell counts if desired.  
Here, we will use them. 
 
oddsratio.L<- 
function (x, stratum = NULL, Log = TRUE, conf.level = 0.95, correct=T)  
{ 
# modified version of oddsratio in package vcd 
    l <- length(dim(x)) 
    if (l > 2 && is.null(stratum))  
        stratum <- 3:l 
    if (l - length(stratum) > 2)  
        stop("All but 2 dimensions must be specified as strata.") 
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    if (l == 2 && dim(x) != c(2, 2))  
        stop("Not a 2 x 2 - table.") 
    if (!is.null(stratum) && dim(x)[-stratum] != c(2, 2))  
        stop("Need strata of 2 x 2 - tables.") 
    lor <- function(y, correct, Log) { 
        if(correct) y<-y + 0.5 
        or <- y[1, 1] * y[2, 2]/y[1, 2]/y[2, 1] 
        if (Log)  
            log(or) 
        else or 
    } 
    ase <- function(y, correct) sqrt(sum(1/(ifelse(correct,y + 0.5,y)))) 
    if (is.null(stratum)) { 
        LOR <- lor(x, correct) 
        ASE <- ase(x) 
    } 
    else { 
        LOR <- apply(x, stratum, lor, correct=correct, Log=Log) 
        ASE <- apply(x, stratum, ase) 
    } 
    I <- ASE * qnorm((1 + conf.level)/2) 
    Z <- LOR/ASE 
    structure(LOR, ASE = if (Log)  
        ASE, lwr = if (Log)  
        LOR - I 
    else exp(log(LOR) - I), upr = if (Log)  
        LOR + I 
    else exp(log(LOR) + I), Z = if (Log)  
        Z, P = if (Log)  
        1 - pnorm(abs(Z)), log = Log, class = "oddsratio") 
} 
 
 
This function is meant to work in both R and S-PLUS.   To use oddsratio.L we need the data as an 
array.  This is accomplished using design.table in S-PLUS (where I’ve moved the columns around to 
match those in Table 6.9, so that Z comes after X and Y) and xtabs in R. 
 
table.6.9.array<-design.table(table.6.9[,c(2,3,1,4)]) 
# R: table.6.9.array<-xtabs(Freq~Treatment+Response+Center, data=table.6.9) 
 
Then, we apply the function (here, in R) 
 
oddsratio.L(table.6.9.array, correct=F, Log=F) 
 
        a         b         c         d         e         f         g         h  
1.1880000 1.8181818 4.8000000 2.2857143       Inf       Inf 2.0000000 0.3333333 
 
If the odds ratios are very different across strata, we might opt to test for conditional independence by 
comparing a logit model with no X effect to a saturated model with X effect, Z effect and XZ association.  
If we assume that the actual odds ratios are nearer the same, we can use the Cochran-Mantel-Haenszel 
test, with asymptotic null chi-squared distribution.  It is available in both S-PLUS and R (however, the R 
version offers an exact test as well).  Here, we use the R version.  The argument, correct, set to FALSE, 
will not use a continuity correction for the asymptotic test. 
 
mantelhaen.test(table.6.9.array, correct=F) 
 
        Mantel-Haenszel chi-squared test without continuity correction 
 
data:  table.6.9.array  
Mantel-Haenszel X-squared = 6.3841, df = 1, p-value = 0.01151 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 1.177590 3.869174  
sample estimates: 
common odds ratio  
         2.134549 
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Thus, we reject the null hypothesis of conditional independence between Treatment and Response given 
Center.  (The common odds ratio result is discussed later).  We can also use the logit model test.  This is 
a test that the coefficient corresponding to Treatment in a logit model is zero, given the model includes 
Center (see equation (6.4) in Agresti).  If we use glm, we need to make a few modifications to the data 
frame.  Below, I add the total to each Center/Treatment combination. 
 
n<-aggregate(table.6.9$Freq, list(table.6.9$Treatment,table.6.9$Center), FUN=sum)$x 
table.6.9$n<-rep(n,rep(2,16)) 

 
Now, we fit model (6.4).  Because of the alphabetical ordering of levels of factors, the coefficient is 
negative.  This can be changed by redoing the factor definition above. 
 
options(contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only 
res<-glm(Freq/n~Center+Treatment, family=binomial, data=table.6.9,  weights=n, subset= 

Response=="Success") # model 6.4 
summary(res, cor=F) 

 
Call: glm(formula = Freq/n ~ Center + Treatment, family = binomial, data = table.6.9, 

weights = n, subset = Response == "Success") 
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept) -0.5450944  0.2929052 -1.8609927 
    Centerb  2.0554344  0.4200885  4.8928604 
    Centerc  1.1529027  0.4245668  2.7154802 
    Centerd -1.4184537  0.6635739 -2.1375972 
    Centere -0.5198903  0.5337883 -0.9739635 
    Centerf -2.1469176  1.0603341 -2.0247558 
    Centerg -0.7977076  0.8149166 -0.9788824 
    Centerh  2.2079143  0.7195076  3.0686463 
  Treatment -0.7769203  0.3066807 -2.5333195 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 93.5545 on 15 degrees of freedom 
 
Residual Deviance: 9.746317 on 7 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
The LRT is given by anova. 
 
anova(res) 
 
Analysis of Deviance Table 
 
Binomial model 
 
Response: Freq/n 
 
Terms added sequentially (first to last) 
          Df Deviance Resid. Df Resid. Dev     Pr(Chi)  
     NULL                    15   93.55450             
   Center  7 77.13937         8   16.41513 0.000000000 
Treatment  1  6.66882         7    9.74632 0.009811426 

 
And, we reject the hypothesis of conditional independence.  We can also use the CMH statistic, but 
compare it to the exact null distribution.  The p-value for this test is available in the R version of the 
mantelhaen.test function, with argument exact. 
 
mantelhaen.test(table.6.9.array, exact=T) 
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        Exact conditional test of independence in 2 x 2 x k tables 
 
data:  table.6.9.array  
S = 55, p-value = 0.01336 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 1.137370 4.079523  
sample estimates: 
common odds ratio  
         2.130304  
 
If we assume that the log odds ratios have different directions across strata, we can test conditional 
independence using a logit model fit.  The test is a likelihood-ratio test of model (6.5) in Agresti (only a 
Center effect) compared with a saturated model (Center, Treatment and Center:Treatment).  With this 
test, we also reject the null hypothesis. 
 
res2<-update(res, .~.-Treatment)    # model (6.5) 
res3<-update(res, .~.+Center:Treatment)  # saturated model  
 
anova(res2,res3,test="Chisq") 
 
Analysis of Deviance Table 
 
Response: Freq/n 
 
                              Terms  Df   Res. Dev                      Test   Df   Dev.  Pr(Chi)  
1                            Center   8   16.41513                                                    
2 Center+Treatment+Center:Treatment   0    0.00060 +Treatment+Center:Treatment  8 16.41  0.037 
 
 
F. Estimation/Testing of Common Odds Ratio 
 
If we decide that the conditional odds ratios across strata are similar enough to be combined, we can get 
an estimate of the common odds ratio using either the ML estimate of the Treatment coefficient in logit 
model (6.4, p. 231 in Agresti) or the Mantel-Haenszel estimate (p. 234 in Agresti).  The latter is given by 
mantelhaen.test in R, under common odds ratio, along with an approximate 95% confidence interval 
(95 percent confidence interval).   The ML estimate is the exponent of the Treatment coefficient 
from fitting logit model (6.4).  Thus, the MLE of the common odds ratio is 
 
# Recall p. 101:  res<-glm(Freq/n~Center+Treatment, family=binomial, data=table.6.9,  

weights=n, subset= Response=="Success")  
exp(-res$coefficient[9]) # the negative relates to how factor levels are coded 
 
 Treatment  
  2.174764 
 
To help us make a decision about whether to combine the odds ratios, we can perform a test of the 
homogeneity of odds ratios across strata.  As stated in Agresti, this is a test of the goodness-of-fit of 
model (6.4).  Thus, the test is 
 
anova(res, test="Chisq") 
 
Analysis of Deviance Table 
 
Binomial model 
 
Response: Freq/n 
 
Terms added sequentially (first to last) 
          Df Deviance Resid. Df Resid. Dev     Pr(Chi)  
     NULL                    15   93.55450             
   Center  7 77.13937         8   16.41513 0.000000000 
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Treatment  1  6.66882         7    9.74632 0.009811426 

 
Alternatively, the Woolf test is available in the R package vcd, under woolf.test.  The null hypothesis is 
no three-way (XYZ) interaction, or homogeneous odds ratios across Centers.   The function can also be 
used within S-PLUS with no modification. 
 
library(vcd) 
woolf.test(table.6.9.array) 
 
        Woolf-test on Homogeneity of Odds Ratios (no 3-Way assoc.) 
 
data:  table.6.9.array  
X-squared = 5.818, df = 7, p-value = 0.5612 
 
 
G. Using Models to Improve Inferential Power 
 
As Agresti says, ordinal test statistics in categorical data analysis usually refer to narrower, more relevant 
alternatives than do nominal test statistics.  They also usually have more power when an approximate 
linear trend actually exists between the response and a predictor variable.  A linear trend model (e.g., 
linear logit model) has fewer parameters to estimate than does a nominal model with a separate 
parameter for each level of the ordinal variable.  The LR or Pearson goodness-of-fit statistic used to test 
the linear trend parameter of a linear logit model has only 1 degree of freedom associated with it, 
whereas the test of the corresponding nominal model against an independence model has degrees of 
freedom equal to one less than the number of levels of the variable.  Thus, the observed value of the test 
statistic in the former case does not have to be as large (compared to the chi-squared distribution) as that 
in the second case in order to reject the independence model over the linear logit model . 
 
Agresti uses an example on the treatment of leprosy by sulfones and streptomycin drugs to illustrate the 
difference in power to detect a suspected association (Table 6.11, p. 239).  The degree of infiltration 
measures the amount of skin damage (High, Low).  The response, the amount of clinical change in 
condition after 48 weeks, is ordinal with five categories (Worse, …, Marked Improvement).  The response 
scores are {-1, 0, 1, 2, 3}.  Agresti compares the mean change for the two infiltration levels, and notes 
that this analysis is identical to a trend test treating degree of infiltration as the response and clinical 
change as the predictor.  Thus, a linear logit model has the logit of the probability of high filtration linearly 
related to the change in clinical condition. 
 
In S, first we set up the data, then fit a model with a separate parameter for each change category. 
 
table.6.11<-data.frame(change=factor(c("worse","stationary","slight improvement", 

"moderate improvement", "marked improvement"), 
levels=c("worse","stationary","slight improvement", "moderate improvement", "marked 
improvement")), high=c(1,13,16,15,7),  n=c(12, 66, 58, 42, 18)) 

 
res.leprosy<-glm(high/n~change, weights=n, family=binomial, data=table.6.11) 

 
The test statistic for testing the null hypothesis of all change coefficients equal to zero is obtained by 
anova. 
 
anova(res.leprosy, test="Chisq") 
 
Analysis of Deviance Table 
 
Binomial model 
 
Response: high/n 
 
Terms added sequentially (first to last) 
       Df Deviance Resid. Df Resid. Dev   Pr(Chi)  
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  NULL                     4   7.277707           
change  4 7.277707         0   0.000000 0.1219205 
 
With p = 0.12, this test does not reject an independence model.  Now, we fit a linear logit model using 
scores c(-1, 0, 1, 2, 3), and test it against an independence model. 
 
resLL.leprosy<-glm(high/n~c(-1,0,1,2,3), weights=n, family=binomial,data=table.6.11) 
 
anova(resLL.leprosy, test="Chisq") 
 
Analysis of Deviance Table 
 
Binomial model 
 
Response: high/n 
 
Terms added sequentially (first to last) 
                  Df Deviance Resid. Df Resid. Dev     Pr(Chi)  
             NULL                     4   7.277707             
c(-1, 0, 1, 2, 3)  1 6.651426         3   0.626282 0.009907651 

 
We do reject the independence model here, in favor of the linear logit model that hypothesizes more 
positive change with higher filtration. 
 
H. Sample Size and Power Considerations 
 
The power of a two-sample binomial test of two proportions and the sample sizes needed to attain a 
particular power for this test can be computed using built-in functions in S-PLUS.  The same functions are 
not available in R, but Harrell’s Hmisc library has similar functions.  The functions do compute power for 
unequal sample sizes.     
 
To compute the power of a two-sided 0.05-level test comparing two proportions, where the sample sizes 
are both 25, and the expected absolute difference in proportions is 0.10, we can use the functions 
binomial.sample.size (S-PLUS) or bpower (R and S-PLUS).  We use the former first. 
 
binomial.sample.size(n1=25, n2=25, p=.6, p2=.7, alpha=.05, alternative="two.sided") 
 
   p1  p2 delta alpha      power n1 n2 prop.n2  
1 0.6 0.7   0.1  0.05 0.06137109 25 25       1 
 
The argument p2 in binomial.sample.size is the proportion for the second group.  The argument p is 
the proportion for the first group (it is not p1, in case there is only one sample). 
 
With different sample sizes, 20 and 25, we expect the power to decrease. 
 
binomial.sample.size(n1=20, n2=25, p=.6, p2=.7, alpha=.05,alternative="two.sided") 
 
   p1  p2 delta alpha      power n1 n2 prop.n2  
1 0.6 0.7   0.1  0.05 0.05610319 20 25    1.25 
 
The formulae used by binomial.sample.size come from Fleiss (1981), and even with equal sample 
sizes, they are not exactly the same as those appearing in Agresti p. 240-242.   bpower more closely 
matches Agresti (and the function contains less overhead). 
 
With equal sample sizes, bpower gives 
 
bpower(n=50, p1=.6, p2=.7, alpha=0.05) 
 
     Power  
 0.1135017 
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bpower(n=200, p1=.6, p2=.7, alpha=0.05) 
 
     Power  
 0.3158429 
 
where we assume the 0.10 difference is divided as p1 = 0.6 and p2 = 0.7, and n is the sum of n1 and n2 
(with n1 = n2).  bpower only computes power for a two-sided alternative. 
 
With n1 = 20 and n2 = 25, we get slightly lower power 
 
bpower(n1=20,n2=25,p1=.6,p2=.7) 
 
     Power  
 0.1084922 
 
binomial.sample.size also computes sample size needed to achieve a given power.  The function 
bsamsize in package Hmisc does as well.  Again, the latter is closer to Agresti’s formula on p. 242, which 
he says is an underestimate of the sample size. 
 
To compute sample size required to achieve 90% power with p1 = 0.6 and p2 = 0.7, and an 0.05-level 
test, we need close to 500 subjects for each group. 
 
binomial.sample.size(p=.6, p2=.7, alpha=.05,alternative="two.sided", power=.9) 
 
   p1  p2 delta alpha power  n1  n2 prop.n2  
1 0.6 0.7   0.1  0.05   0.9 497 497       1 
 
bsamsize(power=.9, p1=.6, p2=.7, alpha=0.05) 
 
       n1       n2  
 476.0072 476.0072 
 
Sample size calculations for logistic regression can easily be programmed into a simple S function, 
following the formulas on p. 242 in Agresti. 
 
Power for a chi-squared test can be computed using the following function in S-PLUS: 
 
chipower.f<-function(p=NULL,pm=NULL,n,alpha,df, pearson=T, fit=NULL) 
{ 
 # S-PLUS only 
 if(pearson) nc<-n*.pearson.x2(observed=p,expected=pm)$X2 
  else nc<-n*fit$deviance 
 1-pchisq(qchisq(1-alpha,df),df=df,ncp=nc) 
} 

 
where p is a matrix or vector of true proportions, pm are the expected probabilities under the null 
hypothesis, and fit is a glm fit (only used for LR chi-squared).  In R, we use 
 
chipower.f<-function(x=NULL, pm=NULL, n=NULL, alpha, df, pearson=T, fit=NULL) 
{ 

# R only 
    if(pearson) nc<-chisq.test(x=x,p=pm)$statistic 
        else nc<-n*fit$deviance 
    1-pchisq(qchisq(1-alpha,df),df=df,ncp=nc) 
} 

 
where x is a matrix or vector of true counts, and the remaining arguments have the same definitions. 
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As a first example, I use Table 6.13 in Agresti.  This table and its “true” joint probabilities from the 
physician are input below.  Then I fit two models, one with the standard and new therapies independently 
influencing the response, and one model with standard therapy alone influencing the response.  We will 
compute the power for detecting an independent effect of the new therapy on response, over and above 
that from the standard therapy. 
 
table.6.13<-data.frame(expand.grid(New = c("very worry", "somewhat", 

"reassuring"),Standard=c("worry", "reassure")),  
prop=10000*c(.04*.4, .08*.32,.04*.27,.02*.3,.18*.22,.64*.15)) 
 
weight<-10000*c(0.04,0.08,0.04,0.02,0.18,0.64) 
 
fit1<-glm(prop/weight~Standard, data=table.6.13, family="binomial",weights=weight) 
fit2<-glm(prop/weight~Standard+New, data=table.6.13, family="binomial", 

weights=weight) 

 
Now, I compute power for n = 400, 600, and 1000 with alpha = 0.05.  First, I compute the difference in 
residual deviances between the two models using the anova function. 
 
res<-list(deviance=anova(fit1,fit2)$Deviance[2]/10000) 
chipower.f(fit=res, alpha=.05, df=2, pearson=F, n=c(400,600,1000)) 

 
[1] 0.3466997 0.4948408 0.7266697 
 
As a second example of power computations, I use the data in Table 2.5 as though they were the true 
cell probabilities and compute power for a test of independence between smoking and lung cancer. 
 
table.2.5<-data.frame(expand.grid(Smoker=c("yes","no"), 

Lung.Cancer=c("Cases","Controls")),count=c(688,21,650,59)) 

 
The expected probabilities under independence can be computed using formula in Section 3.2 of Agresti 
or found in R using the function expected from library vcd, which computes expected counts.  Actually, 
the expected function can be sourced into S-PLUS with no modification.  To use it, we need an array, 
however.  So, we first change the data frame into an array. 
 
table.2.5.array<-design.table(table.2.5) 
#R: table.2.5.array<-xtabs(count~Smoker+Lung.Cancer,data=table.2.5) 
 
Then, we apply expected, and get the power for a Pearson chi-square test assuming a total sample size 
of 1,418, which happens to be the same as the observed sample size. 
 
fit<-expected(table.2.5.array) 
chipower.f(p=table.2.5.array/1418, pm=fit/1418, n=1418, alpha=.05, df=1) # S-PLUS 
[1] 0.992105 
 
# R: chipower.f(x=table.2.5.array, pm=fit, alpha=.05,df=1) 
[1] 0.9892372 
 
In this case, the noncentrality parameter is about 19.  So, according to Table 6.12 in Agresti, the power 
should be between 0.972 and 0.998. 
 
For other sample sizes, in S-PLUS we just change the n argument to chipower.f.  In R, for the Pearson 
chi-squared test power we must specify the true cell counts using the true cell probabilities and our 
specified sample size. 
 
I. Probit and Complementary Log-Log Models  
 
1. Probit Models 
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As described in Section 6.6 in Agresti, the idea behind probit models is that there is a latent tolerance 
value underlying each binary response.  The tolerance is subject-specific.  When a linear combination of 
the predictor variables is high enough to exceed an individual’s tolerance, the binary response becomes 1 
and remains there.  Otherwise, it remains at zero.  The tolerance is a continuous random variable.  When 
it has a normal distribution, we get a probit model. Probit models are used in toxicological experiments 
where the predictor is dosage.  So, when the dosage exceeds a threshold (tolerance), the response is 
death. 
In GLIM terminology, the probit link function is the inverse CDF of the standard normal distribution 
(equation 6.11 in Agresti).  Agresti gives some differences between probit link and logit link for binomial 
regression.  Fitting the probit model is fitting a GLIM, so no new estimation procedures are introduced.  
Estimates from Newton-Raphson and Fisher scoring will have slightly different estimated standard errors 
because observed and expected information differ in the probit model.  The probit is not the canonical link 
for a binomial model. 
 
Agresti fits a probit model to the beetle mortality data in Table 6.14. 
 
table.6.14<-data.frame(log.dose=c(1.691,1.724,1.755,1.784,1.811,1.837,1.861,1.884), 
n=c(59,60,62,56,63,59,62,60), 
y=c(6,13,18,28,52,53,61,60)) 

 
Here, we use Fisher scoring to fit the probit model.  If we wanted to use Newton-Raphson, we could use 
the function probitreg, defined earlier.  The two methods give different standard errors. 
 
options(contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only 
(res.probit<-glm(y/n~log.dose,weights=n,family=binomial(link=probit), 

data=table.6.14)) 

 
Coefficients: 
 (Intercept) log.dose  
   -34.95563 19.74073 
 
Degrees of Freedom: 8 Total; 6 Residual 
Residual Deviance: 9.986957  
 
2. Complementary Log-Log Models 
 
The logit and probit links are symmetric about 0.5, meaning that the probability of success approaches 0 
at the same rate as it approaches 1.  The complementary log-log link is asymmetric.  Its probability of 
success approaches 0 slowly but approaches 1 sharply. 
 
For the beetle mortality data, we can see from the observed proportions that they quickly increase to 1 
after a dosage of 1.784.  Thus, the complementary log-log should be a better fit than a probit. 
 
(res.cloglog <- glm(y/n ~ log.dose, weights = n, family = binomial(link = cloglog), 

data = table.6.14)) 
 
Coefficients: 
 (Intercept) log.dose  
   -39.52232 22.01478 
 
Degrees of Freedom: 8 Total; 6 Residual 
Residual Deviance: 3.514334  
 
The LR statistic is much lower for complementary log-log link.  Here are the fitted values and Figure 6.6. 
 
data.frame(table.6.14, fitted.probit = round(n * fitted(res.probit), 1), 
fitted.cloglog = round(n * fitted(res.cloglog),1)) 
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  log.dose  n  y fitted.probit fitted.cloglog  
1    1.691 59  6           3.4            5.7 
2    1.724 60 13          10.7           11.3 
3    1.755 62 18          23.4           20.9 
4    1.784 56 28          33.8           30.3 
5    1.811 63 52          49.6           47.7 
6    1.837 59 53          53.4           54.2 
7    1.861 62 61          59.7           61.1 
8    1.884 60 60          59.2           59.9 
 
plot(table.6.14$log.dose,table.6.14$y/table.6.14$n, pch=16, xlab="Log dosage", 

ylab="Proportion Killed", bty="L", axes=F) 
axis(1, at=seq(1.7, 1.9, .05)) 
axis(2, at=seq(0,1,.2)) 
lines(table.6.14$log.dose, fitted(res.probit), lty=2) 
lines(table.6.14$log.dose, fitted(res.cloglog), lty=1) 
key(x=1.8, y=.4, text=list(c("Complementary log-log", "Probit")), 

lines=list(type=c("l", "l"), lty=c(1,2)), border=F,text.width.multiplier=.8) 
# R: legend(x=1.8,y=.4,legend=c("Complementary log-log", "Probit"),lty=c(1,2), 

cex=.85, text.width=1) 
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J. Conditional Logistic Regression and Exact Distributions 
  
1. Small-sample Conditonal Inference for 2x2 Contingency tables 
 
Small-sample conditional tests for 2 x 2 tables use Fisher’s Exact test.  See the discussion in Chapter 3. 
 
 
2. Small-sample Conditonal Inference for Linear Logit Models 
 
Small-sample conditional inference for the linear logit model is an exact conditional trend test, and the 
conditional distribution of the cell counts under the null hypothesis of 0β =  is multiple hypergeometric.  
Agresti applies an exact test to Table 5.3 on maternal alcohol consumption and infant malformation.  This 
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data set has a lot of cases, but the table is sparse in that there are few successes or cases.  Thus, 
ordinary maxmimum likelihood inference (with its asymptotic basis) breaks down. 
 
To do conditional logistic regression in S, one can use the coxph function (or the clogit function in R, 
which is just a wrapper for coxph).  However, with more than about 500 cases (in my experience), the 
function hangs “forever”.  Thus, we turn to approximations to conditional logistic regression for large 
samples.  There are S functions available for doing approximate conditional logistic regression on a 
scalar parameter of interest.  One is cond.glm (normal approximation) from Alessandra Brazzale (see 
http://www.ladseb.pd.cnr.it/~brazzale/lib.html#ins).  Another is cox.test (for a normal approximation) 
and cpvalue.saddle and cl.saddle (for a saddle-point approximation) from Chris Lloyd (Lloyd, 1999).  
These latter functions are apparently available on the Wiley website (http://www.wiley.com), but I have 
not been able to locate them yet.  I contacted Professor Lloyd, via the Wiley website, for copies. 
 
First, I show how to use coxph and clogit for an exact conditional test.  However, the problem is much 
too large to use this method.  So, I do not give results.  The response value must be binary (“cases” 
indicate successes).  Here I create a data frame with case as the response, and alcohol as a numeric 
explanatory variable. 
 
# recall from chapter 5 
malformed<-c(48,38,5,1,1) 
n<-c(17066,14464,788,126,37)+malformed 
 
temp<-length(10) 
temp[rep(c(T,F),5)]<-malformed 
temp[rep(c(F,T),5)]<-n-malformed 
table.5.3<-data.frame(Alcohol=rep(c(0,.5,1.5,4,7), n), case=rep(rep(c(1,0),5),temp)) 

 
Now, we use coxph.  The “time” argument for the function Surv is just a vector of ones with as many 
values as persons.  case is the status (whether success or failure) for the Surv object. 
 
fit<-coxph(Surv(rep(1,sum(temp)),case)~Alcohol, table.5.3, method="exact") 
#R: library(survival) 
#R: fit<-clogit(case~Alcohol, data=table.5.3, method="exact") 
 
However, the computation time is excessive.  clogit offers a test that uses an approximate conditional 
likelihood.  Here the conditioning is on the sufficient statistic for the intercept, in order to remove that 
parameter, and therefore get an exact test for the alcohol coefficient. 
 
# R only 
fit<-clogit(case~Alcohol, data=table.5.3, method="approximate") 

 
Call: 
clogit(case ~ Alcohol, data = table.5.3, method = "approximate") 
 
 
         coef exp(coef) se(coef)    z     p 
Alcohol 0.315      1.37    0.124 2.54 0.011 
 
Likelihood ratio test=4.23  on 1 df, p=0.0397  n= 32574  
 
Alessandra Brazzale’s original S-PLUS function cond.glm was written for S-PLUS 4.5 and 2000 (as well 
as for unix), but it can be modified for sourcing into S-PLUS 6.0. On my website, I have one method for 
doing so.  However, it is very quick and dirty.  So, you probably should make changes if you seriously 
want to use this function in S-PLUS 6.x.  In addition, she has recently provided an R package called 
cond, that contains the function cond.glm. 
 
The cond.glm function takes a glm.object and an offset that gives the name of the object that is the 
explanatory variable of interest (for which you want the inference).  The function returns the approximate 



 

 

113

conditional estimate of the coefficient and its standard error.  A summary function gives hypothesis tests 
about this coefficient. 
 
# R: library(cond) 
(fit<-cond(glm(formula=case~Alcohol, family=binomial, data=table.5.3), 

offset=Alcohol)) 

 
summary(fit, test=T) # R output 
 
Formula:  case ~ Alcohol 
 Family:  binomial 
 Offset:  Alcohol 
 
          Estimate   Std. Error  
uncond.      0.3166       0.1254 
cond.        0.3165       0.1253 
 
Confidence intervals 
-------------------- 
 level = 95 % 
                                            lower two-sided  upper 
MLE normal approx.                        0.07069           0.5624 
Cond. MLE normal approx.                  0.07095           0.5621 
Directed deviance                         0.01870           0.5236 
Modified directed deviance                0.03626           0.5312 
Modif. direct. deviance (cont. corr.)     0.02301           0.5357 
 
Diagnostics: 
-----------  
     INF       NP  
0.097872 0.003178  
 
 Approximation based on 20 points 
 
 
The p-values for the normal approximations are distinctly smaller than the exact p-values in Agresti. 
 
Lloyd’s (1999) function cl.saddle computes a saddlepoint approximation to the conditional log-likelihood 
for any parameter in a GLIM, given a range of values for the parameter.  The function cpvalue.saddle 
computes an approximation to the conditional p-value in testing that the parameter is zero.  The 
approximations are based on a saddlepoint approximation to the conditional density of the sufficient 
statistic for the parameter of interest. 
 
To use the functions in S-PLUS 6.x, we must make the following two modifications.  The first modification 
changes the function for computing the log of the determinant.  The second changes the way a very large 
diagonal matrix is handled in a matrix multiplication.  So, in cpvalue.saddle, change 
 
 ldv.null <-  - log.determinant(t(X.null) %*% diag(null$weights) %*% X.null) 
 to 
 ldv.null <-  - log(det((t(X.null) * null$weights) %*% X.null)) 
 
and change 
 
 ldv <-  - sum(log(eigen(t(X) %*% diag(fit$weights) %*% X)$value)) 
to 
 ldv <-  - sum(log(eigen((t(X) * fit$weights) %*% X)$value)) 
 
In cl.saddle, change 
 
  ldv.null[i] <- - sum(log(eigen(t(X.null)%*%diag(null$weights)%*% X.null)$values)) 

to 
  ldv.null[i] <- - sum(log(eigen((t(X.null)*null$weights)%*%X.null)$values)) 
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Modifications within R would be similar. 
 
To use cl.saddle on table.5.3, which is quite large, we type the following.  I choose to compute B=20 
points of the conditional log-likelihood, within the range –1 to 1 of the parameter value.  The term 
argument specifies the parameter of interest. 
 
attach(table.5.3) 
(approx.points<-cl.saddle(y=case, formula=case~Alcohol, term="Alcohol", family= 

binomial, u=1, l=-1, B=20)) 

 
$x: 
 [1] 0.009 0.114 0.220 0.325 0.430 0.535 0.641 0.746 0.851 0.956 1.062 1.167 1.272 1.377 1.483 

1.588 1.693 1.798 1.904 2.009 
 
$y: 
 [1]   -2.0245273   -0.9880964   -0.2555597    0.0000000   -0.4881732   -2.1817449   -5.8389314  

-12.3404829  -22.6823900 
[10]  -37.5292684  -57.2109348  -80.9817436 -108.3950206 -138.8544144 -172.2877420 -207.6226743 -

244.9780080 -284.1413107 
[19] -325.2938305 -367.4350287 

 
Although the x values are not in the range we specified, we can see that the maximum of the conditional 
log-likelihood is attained at around 0.325 or so, which coincides with previous analyses.  We can plot 
these, if we like. 
 
Now, to get the p-value, we use cpvalue.saddle, and take the complement of its approximation to the 
CDF. 
 
1-cpvalue.saddle(y=case, formula=case~Alcohol, term="Alcohol",family=binomial, H0=0) 
detach(table.5.3) 

 
    Alcohol  
 0.02273689 
 
 
3. Small-sample Conditonal Inference for 2 x 2 x K Tables 
 
For 2 x 2 x K tables, where the separate 2 x 2 tables belong to K different strata, an exact test of the 
coefficient on the risk factor conditions on the row and column totals within each table.  Then, within each 
table, the null distribution of the test statistic (the count in the first cell) is hypergeometric.  In this case, 
the null hypothesis is conditional independence of X and Y given Z (strata).  The product of the 
hypergeometric mass functions from the separate strata gives the joint null distribution of the cell counts.  
Agresti gives more details on p. 254-255 (see also Chapter 3 in Agresti). 
 
Agresti uses a data set on promotion decisions for similarly tenured government computer specialists for 
three different months (strata).  Conditional independence of promotion decision and race is equivalent to 
a test of the race coefficient in a logistic regression model that includes month and race.  However, ML 
estimation is not recommended due to the prescense of three zero-count cells.  Exact conditional tests of 
independence for these tables can be carried out using mantelhaen.test in R, with argument exact=T.  
In S-PLUS, the exact test is not an option. 
 
table.6.15<-
data.frame(expand.grid(race=c("black","white"),promote=c("yes","no"),month=c("july","a
ugust","september")), count=c(0,4,7,16,0,4,7,13,0,2,8,13)) 

 
Recall that we need to have a three-dimensional array for mantelhaen.test. 
 
# R only (one-sided test; use alternative=”two.sided” for two-sided test) 
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mantelhaen.test(xtabs(count~month+race, data=table.6.15), exact=T, alternative= 
”less”) 
 
        Exact conditional test of independence in 2 x 2 x k tables 
 
data:  xtabs(count ~ race + promote + month, data = table.6.15)  
S = 0, p-value = 0.02566 
alternative hypothesis: true common odds ratio is less than 1  
95 percent confidence interval: 
 0.0000000 0.7795136  
sample estimates: 
common odds ratio  
                0 
 
The result using S-PLUS and the correct=F argument is 
 
mantelhaen.test(design.table(table.6.15), correct=F) 

 
 Mantel-Haenszel chi-square test without continuity correction 
 
data:  design.table(table.6.15)  
Mantel-Haenszel chi-square = 4.5906, df = 1, p-value = 0.0321  
 
A 95% two-sided confidence interval on the odds ratio is printed automatically. 
 
# R only 
mantelhaen.test(xtabs(count~race+promote+month, data=table.6.15), exact=T, alternative 
= "two.sided")  
 
        Exact conditional test of independence in 2 x 2 x k tables 
 
data:  xtabs(count ~ race + promote + month, data = table.6.15)  
S = 0, p-value = 0.05625 
alternative hypothesis: true common odds ratio is not equal to 1  
95 percent confidence interval: 
 0.000000 1.009031  
sample estimates: 
common odds ratio  
                0  
 
A final example is given where the table displays “separation”.  That is, the cases all correspond to one 
level of the risk factor.  In these situations, as Agresti says, maximum likelihood estimation gives infinite 
estimates.  Thus, exact inference is needed.  Since the number of observations is quite large, we can’t 
use coxph.  Even if we take advantage of the fact that we really have a 2x2 table in Cephalexin and 
Diarrhea (as mentioned by Agresti, bottom of p. 256), we still have over 1,000 observations.  However, 
with the 2x2 table, we can use Fisher’s Exact Test.  Note that S-PLUS won’t handle this data set because 
it is too large (> 200 counts total).  However, R handles it. 
 
table.6.16<-expand.grid(Ceph=factor(c(0,1)), Age=factor(c(0,1)),  

Stay= factor(c(0,1)), case=factor(c(0,1))) 
table.6.16$count<-c(385,0,789-3,0,233-5,0,1081-47,0,0,0,3,0,5,0,47,5) 
 
# R only 
fisher.test(xtabs(count~Ceph+case,data=table.6.16,subset=(Age==1 & Stay==1))) 
 
        Fisher's Exact Test for Count Data 
 
data:   
p-value = 2.084e-07 
alternative hypothesis: true odds ratio is not equal to 1  
95 percent confidence interval: 
 19.30481      Inf  
sample estimates: 
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odds ratio  
       Inf 
 
Note that we get the confidence interval as well. 
 
K. Bias-reduced Logistic Regression 
 
In cases of quasi or complete separation, a different kind of estimation can be done instead of ordinary 
maximization.  Bias-reduced logistic regression (Firth, 1993, as cited in R help file for package brlr) 
maximizes a penalized likelihood with penalty function, Jeffreys invariant prior.  This leads to less biased 
estimates that are always finite.  According to Firth, the bias reduction (toward zero) can be quite 
noticeable for problems that display separation.  Here, we fit the main-effects only logistic regression 
model from subsection J to the diarrhea data, using glm (ML) and brlr (penalized ML). Note the 
difference in the coefficient estimate for Cephalexin, as well as its smaller standard error from the 
penalized estimation.  The large magnitude of the Ceph estimate and its corresponding large standard 
error from the glm fit indicate an infinite maximizer. 
 
library(brlr) 
fit<-glm(case~Ceph+Age+Stay, family=binomial,data=table.6.16) 
fit2<-brlr(case~Ceph+Age+Stay, data=table.6.16) 
 
summary(fit) 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -6.6100     0.6928  -9.541  < 2e-16 *** 
Ceph         11.6454    19.6574   0.592   0.5536     
Age           0.8519     0.4741   1.797   0.0723 .   
Stay          2.6785     0.5898   4.541 5.59e-06 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 565.77  on 2492  degrees of freedom 
Residual deviance: 475.60  on 2489  degrees of freedom 
AIC: 483.6 
 
Number of Fisher Scoring iterations: 7 
 
summary(fit2) 
 
Coefficients: 
            Value   Std. Error t value 
(Intercept) -6.3793  0.6480    -9.8444 
Ceph         5.2749  1.5041     3.5071 
Age          0.7716  0.4527     1.7045 
Stay         2.5403  0.5523     4.5994 
 
Deviance: 476.7722  
Penalized deviance: 470.8072  
Residual df: 2489  
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Chapter 7 – Logit Models for Multinomial Responses 
 
A.  Summary of Chapter 7, Agresti   
 
 In Chapter 7, Agresti discusses logit models for multinomial responses, both nominal responses 
and ordered responses.  Multinomial logit models for nomial responses use a separate binary logit model 
for each pair of response categories (some of which are redundant), and are fit using maximum likelihood 
estimation subject to the individual response probabilities simultaneously satisfying their separate logit 
models.    
 There are several types of models for ordinal response categories.  Section 7.2 discusses 
cumulative logit models, which use the logits of the cumulative probabilities ( | )P Y j≤ =x  

1( ) ... ( )jπ π+ +x x , j = 1,…,J.   So, the cumulative logit is the log of the odds of responding in category up 
to j.  A cumulative logit model models all J – 1 cumulative logits simulataneously.  A popular cumulative 
logit model is a proportional odds model.  This model assumes the J – 1 logits have different intercepts, 
increasing in j, but otherwise the coefficients are identical.  Thus, the J – 1 response curves have the 
same shape, but are shifted horizontally from one another.  The term proportional odds applies because 
the log of the odds ratio of cumulative probabilities (comparing the conditions in one covariate vector to 
another) is proportional to the distance between the covariate vector.  The same proportionality constant 
applies to each logit.  Proportional odds models are fit using maximum likelihood estimation.  
 A latent variable interpretation of the proportional odds model assumes an underlying 
(unobserved) continuous response variable that has a logistic distribution.  When this response falls 
between the (j – 1)th and jth cutpoints on the response scale, the observed discrete response value is j.  
Effects of explanatory variables are invariant to the choice of cutpoints for the response so that the 
coefficients are identical across logits. 
 Section 7.3 discusses cumulative link models for ordinal response categories.  Here, we use a 
link function that relates the cumulative probabilities to a linear predictor involving the covariates.  The 
use of the logit link is the cumulative logit model.  The probit link gives the cumulative probit model.  
These models assume that the ordinal response categories have an underlying continuous distribution 
that is related to the particular link function.  They also assume that the distributions of each covariate 
setting are stochastically ordered, so that the cumulative probabilities given one covariate setting are 
always at least as great or at least as less as the cumulative probabilities of another covariate setting.  If 
this is not so, then one covariate setting may differ in dispersion of responses than another covariate 
setting. 
 Other models for ordinal responses are discussed in Section 7.4.  These include adjacent-
categories logit models, continuation-ratio logit models, and mean response models.  The adjacent-
categories logits are the J – 1 logits formed by the log odds of the probability of response falling in 
category j given that the response falls within either category j or j + 1, j = 1,…,J – 1.  Adjacent-categories 
logit models differ from cumulative logit models in that effects of explanatory variables refer to individual 
response categories and not cumulative groups.  They also do not assume an underlying latent 
continuous response. 
 Continuation-ratio logits, as given in Agresti, are the logits of the conditional probabilities that the 
response falls in the jth category given that it falls at least in the jth category for j = 1,…,J – 1.  The full 
likelihood is the product of multinomial mass functions, which can each be represented as a product of 
binomial mass functions, leading to an easy way to estimate these models. 
 Finally, mean response models for ordered responses are linear regression models for ordinal 
responses, represented by numerical scores.  The linear probability model is a special case.  They can 
be fit using maximum likelihood estimation, where the sampling model is product multinomial. 
 To test conditional independence in I x J x K tables, where one factor Z is conditioned, one can 
use multinomial models such as cumulative logit models or baseline-category logit models depending on 
whether the response Y is ordinal or nominal, respectively.  The test of homogenous XY association 
across levels of Z is then a test of the inclusion of a term or terms involving X. 
 Generalized Cochran-Mantel Haenszel (CMH) tests can be used to test conditional 
independence for I x J x K  tables with possibly ordered categories.  With both X and Y ordinal, the 
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generalization is Mantel’s M2 statistic.  Some versions of the generalized CMH statistic correspond to 
score tests for various multinomial logit models. 
 Discrete-choice multinomial logit models use a different set of values for a categorical 
explanatory variable for different response choices.  Conditional on the choice set (e.g., choosing which 
type of transportation one prefers), the probability of selecting option j is a logistic function of the 
explanatory variables.  The model can also incorporate explanatory variables that are characteristic of the 
person doing the choosing.  Fitting these models using maximum likelihood can be done using the coxph 
function in R or S-PLUS, as the likelihood has the same form as the Cox partial likelihood.  This can be 
seen from equation (7.22) in Agresti. 
 
 
B.  Nominal Responses: Baseline-Category Logit Models   
 
 When responses are nominal, for a given covariate pattern, x, the vector of counts at the J 
response categories is assumed multinomial with probability vector 1{ ( ),..., ( )}Jπ πx x .  The J – 1 unique 
logits pair each of  J – 1 response categories with a baseline category (say, the Jth category).  As shown 
on p. 268 of Agresti, from these J – 1 logits that compare each category with a baseline, we can estimate 
logits comparing any two categories. 
 Agresti uses the Alligator Food Choice data set to fit a multinomial logit model.  The measured 
response is the category of primary food choice of 219 alligators caught in four Florida lakes (fish, 
invertebrate, reptile, bird, other).  The explanatory variables are all categorical: L = lake of capture, G = 
gender, S = size ( ≤  2.3 m, > 2.3 m).  The data can be entered into S using the following commands.  The 
levels argument codes the first level indicated as the baseline category. 
 
food.labs<-factor(c("fish","invert","rep","bird","other"),levels=c("fish","invert", 

"rep", "bird","other")) 
size.labs<-factor(c("<2.3",">2.3"),levels=c(">2.3","<2.3")) 
gender.labs<-factor(c("m","f"),levels=c("m","f")) 
lake.labs<-factor(c("hancock","oklawaha","trafford","george"),levels=c("george", 

"hancock", "oklawaha","trafford")) 
 
table.7.1<-expand.grid(food=food.labs,size=size.labs,gender=gender.labs, 

lake=lake.labs) 
temp<-

c(7,1,0,0,5,4,0,0,1,2,16,3,2,2,3,3,0,1,2,3,2,2,0,0,1,13,7,6,0,0,3,9,1,0,2,0,1,0,1,0
,3,7,1,0,1,8,6,6,3,5,2,4,1,1,4,0,1,0,0,0,13,10,0,2,2,9,0,0,1,2,3,9,1,0,1,8,1,0,0,1) 

 
table.7.1<-structure(.Data=table.7.1[rep(1:nrow(table.7.1),temp),], row.names=1:219) # 

structure gives back the row names 
 
We fit the models from Table 7.2 using, first, the multinom function from library nnet in both S-PLUS and 
R.  This function fits multinomial logit models with nominal response categories. 
 
library(nnet) 
options(contrasts=c("contr.treatment","contr.poly")) 
fitS<-multinom(food~lake*size*gender,data=table.7.1)  # saturated model 
fit0<-multinom(food~1,data=table.7.1)      # null 
fit1<-multinom(food~gender,data=table.7.1)     # G 
fit2<-multinom(food~size,data=table.7.1)     # S 
fit3<-multinom(food~lake,data=table.7.1)     # L 
fit4<-multinom(food~size+lake,data=table.7.1)    # L + S 
fit5<-multinom(food~size+lake+gender,data=table.7.1)  # L + S + G 

 
The following give the LR chi-squared statistics for each model.   
 
deviance(fit1)-deviance(fitS)  # or fit1@deviance - fitS@deviance (S-PLUS only) 
deviance(fit2)-deviance(fitS)  
deviance(fit3)-deviance(fitS) 
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deviance(fit4)-deviance(fitS)  
deviance(fit5)-deviance(fitS) 
deviance(fit0)-deviance(fitS) 
 
Collapsing over gender gives 
 
# options(contrasts=c("contr.treatment","contr.poly")) 
fitS<-multinom(food~lake*size,data=table.7.1)  # saturated model 
fit0<-multinom(food~1,data=table.7.1)    # null 
fit1<-multinom(food~size,data=table.7.1)   # S 
fit2<-multinom(food~lake,data=table.7.1)   # L 
fit3<-multinom(food~size+lake,data=table.7.1)  # L + S 
 
deviance(fit1)-deviance(fitS)  # or fit1@deviance - fitS@deviance (S-PLUS only) 
deviance(fit2)-deviance(fitS)  
deviance(fit3)-deviance(fitS) 
deviance(fit0)-deviance(fitS) 

 
 [1] 66.2129 
 [1] 38.16723 
 [1] 17.07983 
 [1] 81.36247 
 
The fitted values in Table 7.3 from the L+S model can be found using the fitted response probabilities, 
which are given in a slot (attribute in R) from the appropriate object of class nnet (here, fit3).  The 
correct counts to multiply by the probabilities are the row counts from Table 7.3.  Thus, first, we get these 
row counts using tapply.  (I use factor on the necessary variables from table.7.1 in order to reorder 
the levels so that they are in the same order as Table 7.3.) 
 
marg.counts <- tapply(table.7.1$food, list(factor(table.7.1$size, levels = c("<2.3", 

">2.3")),factor(table.7.1$lake,  
 levels =c("hancock", "oklawaha", "trafford", "george"))), length) 

 
The row names of the fitted table of counts will come from the dimension names of marg.counts.  We 
start by using expand.grid on the dimnames of marg.counts.  However, we will soon concatenate 
across rows to get row names. 
 
row.names.71 <- rev(expand.grid(dimnames(marg.counts))) 

 
Here are the fitted counts, rounded to 1 decimal place.  In S-PLUS, we extract the fitted slot (which is a 
matrix) from the fit3 object of class nnet, using @ along with the name of the slot (In R, we can use 
fitted().  Actually, in S-PLUS you can as well.).  The resulting matrix has duplicated rows, which we 
eliminate using the duplicated method for data frames.  Note that I had to coerce fit3@fitted to a 
data frame in order to do this. 
 
fitted.counts <- round(as.vector(marg.counts)* 

fit3@fitted[!duplicated(as.data.frame(fit3@fitted)),  ], 1) # S-PLUS only 

 
# Both R and S-PLUS:  
fitted.counts<-round(as.vector(marg.counts)* fitted(fit3)[!duplicated(as.data.frame( 

fitted(fit3))),],1) 

 
Now, we can print the table of fitted counts.  I used the apply function to concatenate rows of 
row.names.71, using paste.  Also, to have the row names put to correct use, we must have a data frame 
as our .Data argument. 
 
structure(.Data = as.data.frame(fitted.counts), row.names = apply(row.names.71, 1, 

paste, collapse = " ")) 
 
              fish invert rep bird other  
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 hancock <2.3 20.9    3.6 1.9  2.7   9.9 
 hancock >2.3  9.1    0.4 1.1  2.3   3.1 
oklawaha <2.3  5.2   12.0 1.5  0.2   1.1 
oklawaha >2.3 12.8    7.0 5.5  0.8   1.9 
trafford <2.3  4.4   12.4 2.1  0.9   4.2 
trafford >2.3  8.6    5.6 5.9  3.1   5.8 
  george <2.3 18.5   16.9 0.5  1.2   3.8 
  george >2.3 14.5    3.1 0.5  1.8   2.2 
 
Each of the 4 binary logit models has a set of estimated effects or coefficients.  These can be extracted 
using the summary function, as here.  Based on the way the factor levels were given in the definition of 
table.7.1, the category fish is the baseline category, and each logit model compares the odds of 
selecting another food to the odds of selecting fish. 
 
library(MASS)  # needed for vcov function 
summary(fit3, cor = F) 
 
Coefficients: 
       (Intercept)       size lakehancock lakeoklawaha laketrafford  
invert   -1.549021  1.4581457  -1.6581178  0.937237973     1.122002 
   rep   -3.314512 -0.3512702   1.2428408  2.458913302     2.935262 
  bird   -2.093358 -0.6306329   0.6954256 -0.652622721     1.088098 
 other   -1.904343  0.3315514   0.8263115  0.005792737     1.516461 
 
Std. Errors: 
       (Intercept)      size lakehancock lakeoklawaha laketrafford  
invert   0.4249185 0.3959418   0.6128465    0.4719035    0.4905122 
   rep   1.0530583 0.5800207   1.1854035    1.1181005    1.1163849 
  bird   0.6622971 0.6424863   0.7813123    1.2020025    0.8417085 
 other   0.5258313 0.4482504   0.5575446    0.7765655    0.6214372 
 
To estimate response probabilities using values on the explanatory variables that (together) did not 
appear as a data record, you can use predict, with newdata, a data frame containing the labeled 
explanatory values.  In S-PLUS (but not R), when we have categorical variables entered as factors in the 
original fit, we have to specify the prediction values as being levels of those factors.  This can be done by 
using factor along with the original levels.  So, to estimate the probability that a large alligator in Lake 
Hancock has invertebrates as the primary food choice, we use in S-PLUS 
 
# S-PLUS: options(contrasts=c("contr.treatment", "contr.poly")) 
predict(fit3, type="probs", newdata=data.frame(size=factor(">2.3", levels=c(">2.3", 

"<2.3")), lake=factor("hancock",levels=c("george", "hancock", "oklawaha", 
"trafford")))) # S-PLUS or R 

 
      fish     invert        rep      bird     other  
 0.5701841 0.02307664 0.07182898 0.1408967 0.1940136 
 
and in R, we can use 
 
# R only 
predict(fit3, type="probs", newdata=data.frame(size=">2.3", lake="hancock")) 
 
      fish     invert        rep       bird      other  
0.57018414 0.02307664 0.07182898 0.14089666 0.19401358 
 
Obviously, the specification in R is how we would want to do it! 
 
To get the estimated response probabilities for all combinations of levels of the predictors, use a call to 
expand.grid as the newdata.  For example, 
 
predictions<-predict(fit3, type = "probs", newdata = expand.grid(size = size.labs, 
lake = lake.labs)) 
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cbind(expand.grid(size = size.labs, lake = lake.labs), predictions) 
 
  size     lake      fish     invert        rep        bird      other  
1 <2.3  hancock 0.5352844 0.09311222 0.04745855 0.070402771 0.25374210 
2 >2.3  hancock 0.5701841 0.02307664 0.07182898 0.140896663 0.19401358 
3 <2.3 oklawaha 0.2581899 0.60188001 0.07723295 0.008820525 0.05387662 
4 >2.3 oklawaha 0.4584248 0.24864188 0.19484366 0.029424140 0.06866547 
5 <2.3 trafford 0.1843017 0.51682299 0.08877041 0.035897985 0.17420697 
6 >2.3 trafford 0.2957470 0.19296047 0.20240167 0.108228505 0.20066230 
7 <2.3   george 0.4521217 0.41284674 0.01156715 0.029664777 0.09379957 
8 >2.3   george 0.6574619 0.13968168 0.02389991 0.081046954 0.09790956 
 
The same multinomial model can be fit using lcr in R package ordinal from P. Lindsey.  However, that 
function is much more complicated to use than multinom because it fits more flexible models.  We will 
see it in the next sections for ordinal responses. 
 
Another function that is as easy to use as multinom is vglm from R package VGAM (and soon to be 
package for S-PLUS 6.X, although it exists for the Unix versions).  The commands for fitting the main 
effects model above is 
 
library(vgam) 
fit.vglm<-vglm(food~size+lake, multinomial, data=table.7.1) 
-coef(fit.vglm, matrix=T) # need to negate coefficients to match those of Agresti 

 
 
C.  Ordinal Responses: Cumulative Logit Models   
 
This section covers fitting models to data with ordinal responses using cumulative logits.  Cumulative 
logits are logits of cumulative probabilities.  Since the responses are ordinal, a cumulative probability that 
the response is less than a certain category has meaning.  Cumulative logit models simultaneously fit all 
J – 1 logit models for the J categories of the response. The individual category probabilities are found by 
subtracting adjacent cumulative probabilities. 
 A proportional odds model assumes the same covariate effects for each logit, but different intercepts.  
Thus, it has fewer parameters than an analogous multinomial logit model.  There are many S-PLUS and 
R functions to fit these models.  We will use the Mental Impairment example to illustrate each one.  This 
data set has ordinal response categories (well, mild symptoms, moderate symptoms, impaired) to 
indicate the state of each human adult subject.  Explanatory variables are a score on the Life Events 
Index and SES (1 = high, 0 = low).  As the data set is available on Agresti’s web site, we can just copy it 
to a text file and read it in. 
 
table.7.5<-read.table("mental.ssc",col.names=c("mental", "ses", "life")) 

 
We will illustrate using the functions polr (library MASS), lrm (library Desing), lcr (library ordinal), and 
nordr (library gnlm).  The first two are in both R and S-PLUS.  The last three are in R packages. 
 
Function polr 
 
As polr requires an ordered factor as a response, it is convenient for us to do the ordering within the 
data set (but, we could have done it within the model formula).  So, 
 
table.7.5$mental<-ordered(table.7.5$mentalC, levels=1:4, labels=c("well", "mild", 

"moderate","impaired")) 
 

Also, as polr uses the parameterization mentioned on pp. 278-279 of Agresti (with the negative of the 
effect vector), we negate the explanatory variables.   
 
table.7.5$ses<- -table.7.5$ses 
table.7.5$life<- -table.7.5$life 
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Now, we fit the main effects model  
 
library(MASS) 
fit.polr <- polr(mental ~ ses + life, data = table.7.5) 
summary(fit.polr) 
 
Coefficients: 
          Value Std. Error   t value  
 ses  1.1112339  0.6108799  1.819071 
life -0.3188611  0.1210038 -2.635134 
 
Intercepts: 
                    Value Std. Error t value  
        well|mild -0.2819  0.6423    -0.4389 
    mild|moderate  1.2128  0.6607     1.8357 
moderate|impaired  2.2094  0.7210     3.0644 
 
Residual Deviance: 99.0979  
AIC: 109.0979  
 

 
Function lrm 
 
The function lrm in library Design uses the parameterization in equation (7.6) of Agresti.  Thus, prior to 
using it, we re-negate the columns ses and life, returning them to their original values. 
 
table.7.5$ses <-  - table.7.5$ses 
table.7.5$life <-  - table.7.5$life 

 
 We also must reorder the levels of the mental variable, having “well” be the highest rating. 
 
table.7.5$mental.rev<-ordered(table.7.5$mentalC, levels=4:1, labels=c("impaired", 

"moderate","mild","well")) 

… 
impaired < moderate < mild < well  
 
The fit is as easy as using polr. 
 
 (fit.lrm <- lrm(mental.rev ~ ses + life, data = table.7.5)) 
 
Logistic Regression Model 
 
Frequencies of Responses 
 impaired moderate mild well  
        9        7   12   12 
 
 Obs Max Deriv Model L.R. d.f.      P     C   Dxy Gamma Tau-a    R2 Brier  
  40    8e-010       9.94    2 0.0069 0.705 0.409 0.425  0.31 0.236 0.146 
 
               Coef   S.E. Wald Z      P  
y>=moderate  2.2094 0.7210  3.06  0.0022 
    y>=mild  1.2128 0.6607  1.84  0.0664 
    y>=well -0.2819 0.6423 -0.44  0.6607 
        ses  1.1112 0.6109  1.82  0.0689 
       life -0.3189 0.1210 -2.64  0.0084 
 

 
Function lcr 
 
The function lcr in library ordinal for R is nowhere near as transparent to use as the above two 
functions.  However, it will fit proportional odds models and is flexible enough to allow repeated 
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measurements and time-varying covariates.  To use the function, we have to set up the response and 
covariate objects, then put them within a repeated object.  These additional functions come from the 
rmutil library, which is loaded with ordinal. 
 
library(ordinal) 

 
First, we must have a numeric response, as well as numeric covariates.  So, we use the mentalC variable 
of table.7.5.  It also must begin at 0, not 1.  (Factor covariates must be transformed to dummy coding or 
another numeric coding scheme.  One can do this using the function wr, in the rmutil library.) 
 
# set up response vector 
y <- restovec(table.7.5$mentalC-1,weights=rep(1,40),type="ordinal")  
 
# create covariat object 
tcc <- tcctomat(table.7.5$ses,name="ses")    
tcc <- tcctomat(table.7.5$life,name="life",oldccov=tcc) 
 
# create a repeated object, but with no repeats here 
w <- rmna(response=y,ccov=tcc)    

 
Once the repeated object is created, the fit is easy to specify.  The distribution “prop” means fit a 
proportional odds model. 
 
fit.lcr<-lcr(w,distribution="prop",mu=~ses+life) 
 
Call: 
lcr(w, distribution = "prop", mu = ~ses + life) 
 
Individual data. 
Total number of individuals: 40 
Number of observations:      40 
 
Proportional odds distribution. 
Transformation: identity. 
Link:           logit. 
 
Regression coefficients 
              estimate    s.e. 
(Intercept0)   -0.2819  0.6423 
(Intercept1)    1.2128  0.6607 
(Intercept2)    2.2094  0.7210 
ses             1.1112  0.6109 
life           -0.3189  0.1210 
 
 

Function nordr 
 
The function nordr in library gnlm also fits proportional odds models.  It uses the function nlm for the 
maximum likelihood estimation.  And, you must supply starting values.  Also, it can take a repeated 
object as input for the response and environment. We use the same one created above. 
 
library(gnlm) 
attach(table.7.5) 
 
Starting values are specified in the pmu and pintercept arguments.  The mu argument specifies how the 
covariates enter into the model.  It also fits an intercept as the first coefficient.  So, the pintercept 
argument includes one value less than the number of intercepts fit.  The intercept estimates below are a 
little off those estimated above. 
 
nordr(w, dist="prop",mu=~ses+life,pmu=c(-.2,1,-.3), pintercept=c(1,2)) # see above 
for definition of w 
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Call: 
nordr(w, dist = "prop", mu = ~ses + life, pmu = c(-0.5, 1, -0.3),  
    pintercept = c(1, 2)) 
 
proportional odds model 
 
-Log likelihood    49.54895  
AIC                54.54895  
Iterations         17  
 
Location coefficients 
Location function: 
~ses + life 
             estimate    s.e. 
(Intercept)   -0.2817  0.6423 
ses[.i]        1.1111  0.6109 
life[.i]      -0.3189  0.1210 
 
Intercept contrasts 
      estimate    s.e. 
b[2]     1.495  0.3898 
b[3]     2.491  0.5012 
 
Correlation matrix 
        1       2       3       4       5 
1  1.0000 -0.4449 -0.5924 -0.2557 -0.2229 
2 -0.4449  1.0000 -0.1859  0.1885  0.2363 
3 -0.5924 -0.1859  1.0000 -0.2312 -0.3003 
4 -0.2557  0.1885 -0.2312  1.0000  0.7168 
5 -0.2229  0.2363 -0.3003  0.7168  1.0000 
 
detach("table.7.5") 

 
To obtain a score test, we extract the likelihood attribute from the fitted object fit.lcr, and compare it to 
the likelihood from fitting a model with separate sets of coefficients per response.  This latter model can 
be conveniently fitted using lcr as well. 
 
fit<-lcr(w,mu=~ses+life) # no dist argument implies multinomial 

 
2*(fit$likelihood-fit.lcr$likelihood) # score test 
[1] 2.399634 
  
1-pchisq(2*(fit$likelihood-fit.lcr$likelihood),4) 
[1] 0.6626934 
 
To create Figure 7.6, we use the predicted probabilities from the polr object. 
 
plot(0:9,rowSums(predict(fit.polr, newdata=data.frame(ses=rep(-1,10), life=-c(0:9)), 

type="probs")[,3:4]), axes=F,lty=2, type="l",ylim=c(0,1),bty="L",ylab="P(Y > 2)", 
xlab="Life Events Index") 

axis(2) 
axis(1, at=0:9) 
lines(0:9,rowSums(predict(fit.polr, newdata=data.frame(ses=rep(0,10), life=-c(0:9)), 

type="probs")[,3:4]), lty=1) 
text(2.5, .5, "SES=0") 
arrows(2.5,.48,2.75,.42, open=T)  
# R: arrows(2.5,.48,2.75,.42, length=.1) 
text(3.5, .33, "SES=1") 
arrows(3.5,.31,3.75,.25, open=T) 
# R: arrows(3.5,.31,3.75,.25, length=.1) 
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We see that the probability of moderate or impaired mental health, P(Y > 2), is predicted to be greater 
with a higher life events index, and furthermore that a low SES has a higher predicted probability than 
higher SES. 
 
Fitting interaction models is straightforward.  Different link functions other than the logit link can be used 
in the function lcr and the function vglm, which is from the R package VGAM (coming soon to S-PLUS 6.x, 
but available for S-PLUS under L/Unix).  This is illustrated in the next section.  The function vglm can also 
fit partial proportional odds models mentioned on page 282 of Agresti.  This is done by setting the zero 
argument of the family function, cumulative.  See the help file for details. 
 
 
D.  Ordinal Responses: Cumulative Link Models   
 
To illustrate the use of different link functions within an ordinal categorical model, Agresti uses a life table 
by race and sex (Table 7.7).  The percentages within the four populations indicate that the underlying 
continuous cdf of life length increases slowly at low to moderate ages, then increases sharply at older 
ages.  This pattern suggests a complementary log-log link function.   
 
Several different link functions can be used within a proportional odds model.  The function lcr in the R 
package ordinal fits a cumulative complementary log-log link model (as well as many other link 
functions).   
 
First, we set up the data.  I created a numeric response, LifeC, as well as a categorical one.  lcr 
requires a numerical response. 
 
table.7.7<-data.frame(expand.grid(Race=c(0,1),Sex=c(0,1), Life=ordered(c("0-20","20-

40","40-50","50-60","over 65"))), LifeC=rep(0:4, each=4), 
percent=c(2.4,3.6,1.6,2.7, 3.4,7.5,1.4,2.9,3.8,8.3, 2.2,4.4,17.5,25,9.9, 16.3, 
72.9,55.6,84.9,73.7)) 

 
Then, we can use the utility functions mentioned above to allow easier fitting of the model. 
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library(ordinal) 
y <- restovec(table.7.7$LifeC,weights=table.7.7$percent,type="ordinal") # response 

vector 
tcc <- tcctomat(table.7.7$Race,name="Race")   # create covariate object 
tcc <- tcctomat(table.7.7$Sex,name="Sex",oldccov=tcc) 
w <- rmna(y,ccov=tcc)   # create a repeated object, with no repeats here 

 
Finally, we attempt to use lcr.  The argument pcoef gives starting values. 
 
fit.lcr<-lcr(w,distribution="prop",mu=~Sex+Race,link="cloglog", pcoef=c(-3.7,-2.8,-

2.2,-1.2,.658,-.626)) 

 
I have not been able to get convergence with this function. 
 
The function vglm fits several multinomial models (including proportional odds and baseline-category) 
using IRLS.  In fact, it is much easier to use than lcr for the purpose of fitting a proportional odds model.  
Here, we use it to fit the cumulative complementary log-log link model.  If you don’t use an ordered factor 
as the response, the function apparently assumes that the response categories appear consecutively in 
order.   
 
library(vgam) 
fit.vlgm<-vglm(Life~Sex+Race,family=cumulative(link=cloglog, parallel=T), 
weights=percent, data=table.7.7) 

 
In the above call we use the cumulative family with link cloglog and proportional odds (parallel=T). 
 
summary(fit.vlgm) 
 
Coefficients: 
                 Value Std. Error  t value 
(Intercept):1 -3.73044    0.34277 -10.8832 
(Intercept):2 -2.79987    0.24392 -11.4788 
(Intercept):3 -2.21826    0.20688 -10.7227 
(Intercept):4 -1.15449    0.16960  -6.8072 
Sex           -0.65771    0.19566  -3.3614 
Race           0.62641    0.19498   3.2127 
 
Number of linear predictors:  4  
 
Names of linear predictors:  
cloglog(P[Y<=1]), cloglog(P[Y<=2]), cloglog(P[Y<=3]), cloglog(P[Y<=4]) 
 
Dispersion Parameter for cumulative family:   1 
 
Residual Deviance: 699.7168 on 74 degrees of freedom 
 
Log-likelihood: -349.8584 on 74 degrees of freedom 
 
Number of Iterations: 6 
 
 
Predictions are easy to get using the predict method.  These are multiplied by 100 and rounded to the 
first decimal place. 
 
t(round(predict(fit.vglm, type="response")[1:4,]*100,1)) 
 
           1    2    3    4 
0-20     2.4  4.4  1.2  2.3 
20-40    3.5  6.4  1.9  3.4 
40-50    4.4  7.7  2.4  4.3 
50-60   16.7 26.1  9.6 16.3 
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over 65 73.0 55.4 84.9 73.7 
 
The function vglm will support dispersion effects, but it requires some work.  In theory, it is possible to 
write your own family function to do this, by modifying the cumulative family.   
 
 
E.  Ordinal Responses: Adjacent-Categories Logit Models 
 
Adjacent-categories logit models fit J – 1 logits involving the log odds of the probability that a response 
falls in category j given that it falls in either category j or j + 1, j = 1,…,J.  These logits are modeled as 
linear functions of explanatory variables as 
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Library functions exist for directly fitting these models in R.  However, as Agresti shows on p. 287, they 
can also be fit using the equivalent baseline-category logit model.  Thus, they can be fit in S-PLUS as 
well.   
 
Agresti uses the Job Satisfaction Example to illustrate adjacent-categories logit models.  The response 
variable is job satisfaction in categories (Very Dissatisfied, Little Satisfied, Moderately Satisfied, Very 
Satisfied).  The explanatory variables are gender (1 = females)  and income (< $5,000, $5,000 – $15,000, 
$15,000 – $25,000, > $25,000).  Scores of 1 to 4 are used for income.  The data set is available on 
Agresti’s web site.  Here we read it into R/S-PLUS and create an ordered factor out of the response. 
 
table.7.8<-read.table("jobsat.r", col.names=c("gender","income","jobsat","freq")) 
table.7.8$jobsatf<-ordered(table.7.8$jobsat, labels=c("very diss","little sat","mod 
sat","very sat")) 

 
To use vglm and the acat family (for adjacent categories), we need to modify the data set so that the 
responses are “unstacked”.  This is achieved as follows using the unstack function in R. (The weights 
argument for vglm is for inputting prior weights, not frequencies.) 
 
table.7.8a<-
data.frame(expand.grid(income=1:4,gender=c(1,0)),unstack(table.7.8,freq~jobsatf)) 
# S-PLUS: table.7.8a<-data.frame(expand.grid(income=1:4,gender=c(1,0)), 
menuUnstackColumns(source=table.7.8, source.col.spec=c(“freq”), 
group=c(“jobsatf”),show.p=F) 
 
  income gender very.diss little.sat mod.sat very.sat 
1      1      1         1          3      11        2 
2      2      1         2          3      17        3 
3      3      1         0          1       8        5 
4      4      1         0          2       4        2 
5      1      0         1          1       2        1 
6      2      0         0          3       5        1 
7      3      0         0          0       7        3 
8      4      0         0          1       9        6 
 
 
Now, we fit the model using the cbinded responses on the left hand side.  Note that the fit uses a model 
with negative the linear predictor ′xβ  in (7.1).  So, the signs are different from Agresti’s.  To fix that, we 
could have negated gender and income prior to using them in the model.  The acat family function has a 
parallel argument, which if true, fits proportional odds type model. 
 
library(vgam) 
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fit.vglm<-vglm(cbind(very.diss,little.sat,mod.sat,very.sat)~gender+income, family= 
acat(link="loge",parallel=T), data=table.7.8a) 

summary(fit.vglm) 
 
Coefficients: 
                  Value Std. Error  t value 
(Intercept):1  0.550668    0.67945  0.81046 
(Intercept):2  0.655007    0.52527  1.24700 
(Intercept):3 -2.025934    0.57581 -3.51842 
gender        -0.044694    0.31444 -0.14214 
income         0.388757    0.15465  2.51372 
 
Number of linear predictors:  3  
 
Names of linear predictors:  
log(P[Y=2]/P[Y=1]), log(P[Y=3]/P[Y=2]), log(P[Y=4]/P[Y=3]) 
 
Dispersion Parameter for acat family:   1 
 
Residual Deviance: 12.55018 on 19 degrees of freedom 
 
Log-likelihood: -103.3293 on 19 degrees of freedom 
 
Number of Iterations: 4  
 
Because the coefficient on income is positive here, the odds of lower job satisfaction decrease as income 
increases. 
 
F.  Ordinal Responses: Continuation-Ratio Logit Models 
 
Continuation-ratio logits are the logits of the probabilities ( | )P Y j Y j= ≥  for response Y, j = 1,…,J – 1.  
These equal equation (7.12) in Agresti.  Agresti shows that the likelihood of n is a product of multinomial 
mass functions which can in turn be factorized into products of binomial mass functions, using the 
equivalence between a joint probability mass function and the products of conditional probability mass 
functions.  With different sets of parameters describing each of the J – 1 logits, maximization of the full 
likelihood can be done by maximizing each of the terms involving one of the continuation-ratio logits.  
These terms are products of binomial mass functions.  Thus, maximum likelihood estimation can be 
carried out by fitting binomial logit models.  However, using specialized software can make the estimation 
more efficient in practitioner-time. 
 
Continuation-ratio logit models in R/S-PLUS can be fit using the function glm, lrm (in Design library), 
nordr (package gnlm), and vglm (package vgam).  The last two are only present in R. 
 
For this model, Agresti uses the data in Table 7.9 (p. 290).  They come from a developmental toxicity 
study in pregnant mice.  There were five concentration levels of the toxic substance (diEGdiME), one 
being a control.  The response to the fetus was measured two days later and recorded as Nonlive, 
Malformed, or Normal.  Continuation-ratio logits are used to model the probability of a nonlive fetus and 
the conditional probability of a malformed fetus, given that the fetus was live. 
 
1.  Using lrm from library Design 
 
First, a continuation-ratio model is fit using cr.setup and lrm from the Design library. 
 
It is important to add the libraries in this order: 
 
library(Hmisc,T) 
library(Design,T) 
 

Now, we set up the data.  I create two different data frames because we will use both later. 
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y<-ordered(c("non-live","malformed","normal"),levels=c("non-live","malformed", 
"normal")) 

x<-c(0, 62.5, 125, 250, 500) 
table.7.9<-data.frame(expand.grid(y=y, x=x), freq= c(15,1,281,17,0,225, 

22,7,283,38,59,202,144,132,9)) 
table.7.9a<-structure(.Data=menuUnstackColumns(source=table.7.9, source.col.spec= 

c("freq"), group=c("y"), show.p=F), row.names=x, names=unique(levels(y))) 
# R: table.7.9a<-structure(.Data=unstack(table.7.9, freq~y),row.names=x) 
 
     non-live malformed normal  
   0       15         1    281 
62.5       17         0    225 
 125       22         7    283 
 250       38        59    202 
 500      144       132      9 
 

To use cr.setup, we expand the response and x vectors according to their frequencies. 
 
y<-rep(rep(y,5),table.7.9$freq) 
x<-rep(x,tapply(table.7.9$freq, table.7.9$x, sum)) 

 
cr.setup will transform the response variable so that it can be used for a continuation-ratio model.  In 
particular, it will create the new variables, y and cohort. The newly created variables are longer (have 
more observations) than the old response variable.  Cohort defines the denominator categories for each 
logit (see equation (7.12) in Agresti).  y is the transformed response variable taking on values 0 or 1 
depending on whether the observation is a success or not within its cohort.   
 
For example, for the data in Table 7.9, there are two cohorts. The first cohort (j = 1) is the set of all three 
categories: non-live, malformation, and normal, where an observation is considered a success if it falls in 
non-live versus either of the other two categories.  The second cohort (j = 2) is the set of the last two 
categories, malformed and normal, where an observation is considered a success if it falls in malformed 
over normal. 
 
Here is how to fit the model: 
 
First set up the response: 
 
u<-cr.setup(y) 
y.u<-u$y 
x.u<-x[u$subs] # this ensures that the covariate is the correct length 
 
I will do separate fits first before showing how to fit both models (j = 1 and j = 2) together.  After the fit of 
the j = 1 model, I will discuss some of the output from lrm and compare it to Agresti's results and to 
results using glm and the other functions. 
 
To fit the j = 1 model: 
 
fit1<-lrm(y.u[u$cohort=="all"]~x.u[u$cohort=="all"]) 
 
Logistic Regression Model 
 
Frequencies of Responses 
    0   1  
 1199 236 
 
  Obs Max Deriv Model L.R. d.f. P     C   Dxy Gamma Tau-a    R2 Brier  
 1435    2e-009     253.33    1 0 0.781 0.561 0.667 0.154 0.274 0.108 
 
               Coef      S.E. Wald Z P  
Intercept -3.247934 0.1576602 -20.6  0 
      x.u  0.006389 0.0004348  14.7  0 
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The "Model L.R." given above is supposed to be the model likelihood ratio chisquare according to Harrell 
(1998). However, if you examine what glm gives, you can see that model L.R. is actually equal to –
2LogLH(model with intercept + x).  The d.f. above gives the number of d.f. used with the addition of x in 
the model (i.e., 1). What Agresti gives (p. 291) is the model residual deviance.  That is, he gives –
2LogLH(model with intercept only) – (–2LogLH(model with intercept + x).  His d.f. correspond to the 
resulting d.f. when going from an intercept model (df = 4) to a model with x (df = 3).  These are the df and 
LR statistic given directly by glm when modeling a linear logit, as shown later. 
 
To fit the j = 2 model: 
 
fit<-lrm(y.u[u$cohort=="y>=malformed"]~x.u[u$cohort=="y>=malformed"]) 
 
Logistic Regression Model 
 
Frequencies of Responses 
    0   1  
 1000 199 
 
  Obs Max Deriv Model L.R. d.f. P     C   Dxy Gamma Tau-a    R2 Brier  
 1199    5e-006     646.52    1 0 0.948 0.895  0.97 0.248 0.703 0.052 
 
              Coef     S.E. Wald Z P  
Intercept -5.70190 0.332249 -17.16 0 
      x.u  0.01737 0.001227  14.16 0 
 
See Harrell (1998) or the help file for the library for a full discussion of the other statistics produced by 
lrm. 
 
 
To fit both models together (j = 1 and j = 2), fit an interaction term, as in the following. 
  
fit<-lrm(y.u~u$cohort*x.u) 
 
Logistic Regression Model 
 
Frequencies of Responses 
    0   1  
 2199 435 
 
  Obs Max Deriv Model L.R. d.f. P     C   Dxy Gamma Tau-a    R2 Brier  
 2634    4e-006     899.86    3 0 0.884 0.768 0.819 0.212 0.489 0.083 
 
                             Coef      S.E. Wald Z P  
              Intercept -3.247934 0.1576602 -20.60 0 
    cohort=y>=malformed -2.453968 0.3677581  -6.67 0 
                      x  0.006389 0.0004348  14.70 0 
cohort=y>=malformed * x  0.010986 0.0013020   8.44 0 
 
 
Thus, when y>=malformed (j = 2), the linear logit is –5.70 + .017x.  When y=all (j = 1), the linear logit is –
3.247 + .0064x.  The less desirable outcome is more likely as the concentration increases. 
 
Notice that the values for model L.R. in the individual model sum to the model L.R. for the interaction 
model above.  However, the d.f. do not add. 
 
1. Odds Ratios 
 
To get selected odds ratios for the j = 2 model, first issue the datadist command and reissue the lrm 
call, as follows: 
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x.u<-x.u[u$cohort=="y>=malformed"] 
dd<-datadist(x.u) 
options(datadist='dd') 
fit<-lrm(y.u[u$cohort=="y>=malformed"]~x.u) 
 
Using summary(fit) will give odds ratios comparing the default levels of x.u (the lowest and highest 
nonzero values) 
 
summary(fit) 
             Effects              Response : y.u[u$cohort == "y>=malformed"]  
 
      Factor  Low High Diff. Effect S.E. Lower 0.95 Upper 0.95  
 x.u         62.5 250  187.5  3.26  0.23  2.81       3.71      
  Odds Ratio 62.5 250  187.5 25.99    NA 16.56      40.80      
 
Thus, given that a fetus was alive, the estimated odds of it being malformed versus normal is 26 times 
higher when a mouse is exposed to 500 mg/kg per day of the toxic substance than when it is exposed to 
62.5 mg/kg per day.  The NA for SE is apparently not a mistake.  Also the value 3.26 = (.0174)*(250-62.5) 
is the log odds. 
 
To get an odds ratio comparing specific levels of x, for example comparing levels x=125 and x=250: 
 
summary(fit,x=c(125,250)) 
 
             Effects              Response : y.u[u$cohort == "y>=malformed"]  
 
      Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95  
 x.u         125 250  125   2.17   0.15 1.87        2.47      
  Odds Ratio 125 250  125   8.77     NA 6.50       11.85      
 
 
Or, levels x=250 and x=500 
 
summary(fit,x=c(250,500)) 
 
             Effects              Response : y.u[u$cohort == "y>=malformed"]  
 
      Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95  
 x.u         250 500  250    4.34  0.31  3.74        4.95     
  Odds Ratio 250 500  250   76.99    NA 42.20      140.48     
 
 

2. Using glm 
 
We can instead estimate the continuation-ratio logit model using glm, as we did the linear logit model. 
 
First, set x (the covariate)  and the weights for the first linear logit model.  Here, we use the table.7.9a 
version of the data. 
 
x<-c(0,62.5,125,250,500) 
n1<-rowSums(table.7.9a) # use the whole table 
 
For model j = 1, take the first column of table.7.9a as the “success” , as follows: 
 
(fit<-glm(table.7.9a[,1]/n1~x, family=binomial,weights=n1)) 
 
Coefficients: 
 (Intercept)           x  
   -3.247934 0.006389069 
 
Degrees of Freedom: 5 Total; 3 Residual 
Residual Deviance: 5.777478  
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fit$null.deviance 
[1] 259.1073 
 
fit$null.deviance-fit$deviance # this is what lrm gave us as model L.R. 
[1] 253.3298 
 
summary(fit) 
 
    Null Deviance: 259.1073 on 4 degrees of freedom 
 
Residual Deviance: 5.777478 on 3 degrees of freedom 
 
The difference of the above sets of values gives Null Deviance-Residual Deviance = 253.3298 and df=1.  
These are the Model L.R. and Model df reported by lrm. 
 
For the j = 2 model, take the second and third columns of table.7.9a, and use the second column as 
the success: 
 
n2<-rowSums(table.7.9a[,c(2,3)]) 
 
glm(table.7.9a[,2]/n2~x, family=binomial,weights=n2) 
 
Coefficients: 
 (Intercept)          x  
   -5.701891 0.01737464 
 
Degrees of Freedom: 5 Total; 3 Residual 
Residual Deviance: 6.060908  
 
glm can also fit proportional odds models. However, there are advantages to using lrm or other 
functions for these types of models because of the built-in features, like the odds ratios above.  See 
Harrell(1998) or the associated web site http://hesweb1.med.virginia.edu/biostat (under Statistical 
Computing Tools) for more information. 
 
3. Using nordr from library gnlm and lcr from library ordinal 
 
These two functions are very similar.  However, they assume a common concentration slope across 
continuation-ratio logits.  I will illustrate lcr.  First, it becomes easier to use the function if we create a 
repeated object as follows.  The response factor must be transformed to a numeric vector, starting with 
response 0.  Then, we create response and covariate objects, followed by a repeated object using rmna. 
 
table.7.9$yC<-codes(table.7.9$y)-1 # must transform to 0:2 categories 
y <- restovec(table.7.9$yC,times=F,weights=table.7.9$freq,type="ordinal") # response 
vector 
tcc <- tcctomat(table.7.9$x,name="Concen")   # create covariate object 
w <- rmna(y,ccov=tcc)   # create a repeated object, with no repeats here 

 
The model is fit by 
 
library(ordinal) 
lcr(w,distribution="cont",direc="up",mu=~Concen) 

 
Frequency table. 
Number of non-empty cells: 15 
Total number of events:    1435 
 
Continuation-ratio distribution (upwards). 
Transformation: identity. 
 
Regression coefficients 
               estimate       s.e. 
(Intercept0)  -2.632877  0.1825725 
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(Intercept1)  -2.404463  0.1078119 
Concen         0.007184  0.0003578 
 
Correlation matrix 
         1        2        3 
1   1.0000   0.6162  -0.7963 
2   0.6162   1.0000  -0.7738 
3  -0.7963  -0.7738   1.0000 
 
Note the different estimated concentraton effect. 
 
4. Using vglm from library VGAM 
 
Using vglm for continuation-ratio models is similar to using it for adjacent-categories logit models. We just 
change the family function to sratio (or cratio).  First, I illustrate sratio, as this matches Agresti’s 
definition of continuation-ratio logit. Both sratio and cratio have an argument, reverse, which fits the 
corresponding logits in reverse order (see the help files). 
 
For the data, we use the contingency table format (table.7.9a), and cbind the response columns. 
 
x<-c(0,62.5,125,250,500) 
fit.vglm<-vglm(cbind( non.live, malformed,normal )~x,family=sratio(link ="logit", 
parallel = F), data=table.7.9a) 
summary(fit.vglm) 

 
Coefficients: 
                   Value Std. Error t value 
(Intercept):1 -3.2479337 0.15766019 -20.601 
(Intercept):2 -5.7018965 0.33062798 -17.246 
x:1            0.0063891 0.00043476  14.695 
x:2            0.0173747 0.00121260  14.328 
 
Number of linear predictors:  2  
 
Names of linear predictors: logit(P[Y=1|Y>=1]), logit(P[Y=2|Y>=2]) 
 
Dispersion Parameter for sratio family:   1 
 
Residual Deviance: 11.83839 on 6 degrees of freedom 
 
Log-likelihood: -730.3872 on 6 degrees of freedom 
 
Number of Iterations: 4 
 
Note that the Residual Deviance reported is the sum of the individual Residual Deviances (the likelihood-
ratio fit statistics) reported by glm. 
 
Now, the family function cratio fits the logits, logit(P(y > j | y ≥  j), which is not the same as logit(P(y = j | y 
≥  j).  In fact it is the logit of the complement, under the conditioning.  Here is that fit. 
 
x<-c(0,62.5,125,250,500) # this is the form of the covariate we use 
fit.vglm<-vglm(cbind(non.live, malformed, normal)~x, family=cratio(link ="logit", 
parallel = F), data=table.7.9a) 
summary(fit.vglm) 
  
Log-likelihood: -730.3871 
Coefficients: 
                   Value Std. Error t value 
(Intercept):1  3.2479337 0.15766019  20.601 
(Intercept):2  5.7018965 0.33062798  17.246 
x:1           -0.0063891 0.00043476 -14.695 
x:2           -0.0173747 0.00121260 -14.328 
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Number of linear predictors:  2  
 
Names of linear predictors: logit(P[Y>1|Y>=1]), logit(P[Y>2|Y>=2]) 
 
Dispersion Parameter for cratio family:   1 
 
Residual Deviance: 11.83839 on 6 degrees of freedom 
 
Log-likelihood: -730.3872 on 6 degrees of freedom 
 
Number of Iterations: 4  
 
It is not surprising to see that the estimates are all negated, as we are fitting the logits of the 
complementary probabilities. 
 
As a side note, as mentioned in Harrell (1998) as well as Agresti (Chapter 7 notes), the continuation-ratio 
model is a discrete version of the Cox proportional hazards model.  Thus, one could probably fit these 
models using either coxph or cph, which is in the Design library. It is left to the reader to make the 
connection. 
 
 
G.  Ordinal Responses: Mean Response Models 
 
A mean response model for ordinal responses is a linear regression model with ordinal responses 
represented by numerical scores.  As in ordinary linear regression with continuous response, the 
conditional mean is assumed linearly related to the explanatory variables.  The response distribution is 
assumed product multinomial (i.e., independent multinomial at each fixed set of covariates). 
 
This type of model can be fit using something like the lpmreg function of Chapter 4. 
 
Also, using the Poisson/multinomial connection, we might try glm with a poisson(identity) family.  Or, 
we might try aov, as we are fitting a linear regression model.  The functions glm and aov give similar 
coefficient estimates.  However, they are not exactly the same as those assuming the product-
multinomial model.  Also, the standard errors are wrong. 
 
fit.aov<-aov(jobsat ~ gender + income, data = table.7.8, weights = freq) 
fit.aov$coefficients 
 
(Intercept)      gender      income  
 2.57391211 -0.01703921  0.17985911 
 
fit.glm<-glm(jobsat~gender+income, weights=freq, family=poisson(identity), data= 
table.7.8) 
summary(fit.glm) 
 
Coefficients: 
             Estimate Std. Error z value Pr(>|z|)     
(Intercept)  2.561845   0.557081   4.599 4.25e-06 *** 
gender      -0.007199   0.370796  -0.019    0.985     
income       0.182282   0.169106   1.078    0.281     
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 19.435  on 25  degrees of freedom 
Residual deviance: 18.124  on 23  degrees of freedom 
AIC: 332.31 
 
Number of Fisher Scoring iterations: 3 
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Multinomial-Poisson Homogeneous Model 
 
A better alternative for fitting mean response models using ML estimation is to use J. Lang’s mph.fit 
function for R, which fits Multinomial-Poisson Homogenous models.   For the mean response model, we 
assume product-multinomial sampling, given the totals from the eight populations. 
 
To use the function mph.fit, we need Table 7.8 in the follow form, as a 8 x 4 matrix of counts. 
 
table.7.8a<-data.frame(expand.grid(income=1:4,gender=c(1,0)), 

unstack(table.7.8,freq~jobsatf)) 
table.7.8a<-structure(.Data=table.7.8a[,-(1:2)], row.names= apply(expand.grid( 

income=1:4, gender=c(1,0)), 1, paste,collapse=" "), names= 
levels(table.7.8$jobsatf) ) 

 
Because this manual was originally written when version 1.0 of mph.fit was available, I give a 
description of its use, along with the most recent version 3.1.  If a command is specific to a particular 
version, I note that. 
 
For version 1.0 of mph.fit, we define two sampling matrices, Z and ZF.  Z is a 32 x 8 matrix, where 
each column corresponds to a stratum or population (of which we have 8).  If each response is possible 
within each stratum, then the Z matrix (which is called a population matrix) can be generated using the 
function pop, which creates a block diagonal matrix 
 
Z<-pop(npop=8, nlev=4) # 8 populations, 4 levels of response 
# same as Z<-kronecker(diag(8), matrix(1,4,1)) 
 
ZF is a sampling constraint matrix, whose columns tell whether each of the row totals is fixed or random 
(Poisson distributed).  If the jth column of Z is included in ZF, then the jth population total is fixed. 
 
ZF<-Z 

 
Next, we need the vector of table counts and the design matrix, X 
 
# vector of table counts 
Y<-c(t(as.matrix(table.7.8a))) 
 
# design matrix 
X<-cbind(1,unique(as.matrix(table.7.8[,1:2]))) 
X<-as.data.frame(X) 
 
model.matrix(~gender+income,data=X) 
 
   (Intercept) gender income 
1            1      1      1 
5            1      1      2 
9            1      1      3 
13           1      1      4 
17           1      0      1 
21           1      0      2 
25           1      0      3 
29           1      0      4 
attr(,"assign") 
[1] 0 1 2 
 
Next, the matrix A and the result of the function L.fct together define the formula that describes the 
dependence of the mean response on the covariates.  See the mph documentation for an explanation of 
L.fct. 
 
scores<-1:4 
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A<-kronecker(diag(8),matrix(scores,1,4)) 
 
L.fct <- function(m) { 
  p <- diag(c(1/(Z%*%t(Z)%*%m)))%*%m 
  A<-kronecker(diag(8),matrix(scores,1,4)) 
  A%*%p 
} 
  
Finally, we fit a mean response model.  For version 3.1, the argument L.mean=T indicates that L.fct is 
a function of the expected counts, and not of the table probabilities.  The argument strata indicates 
which count belongs to which of the eight strata, and fixed.strata=”all” indicates that all stratum 
totals are fixed.  These arguments help to create the Z and ZF matrices within version 3.1 of mph.fit.   
 
# fit<-mph.fit(y=Y,Z=Z,ZF=ZF,X=X,L.fct=L.fct) # version 1.0 
fit<-mph.fit(y=Y, X=model.matrix(~gender+income,data=X), L.fct=L.fct, L.mean=T,  
strata=rep(1:8, each=4), fixed.strata="all",  maxiter=500) 
mph.summary(fit) 

 
MODEL GOODNESS OF FIT:   Test of   Ho: h(m)=0 vs. Ha: not Ho... 
 
  Likelihood Ratio Stat (df= 5 ):  Gsq =  5.06161 (pval =  0.4084 ) 
  Pearson's Score Stat  (df= 5 ):  Xsq =  4.64931 (pval =  0.4602 ) 
  Generalized Wald Stat (df= 5 ):  Wsq =  5.16351 (pval =  0.3963 ) 
 
  WARNING: 78.125% of expected counts are less than 5.  
           Chi-square approximation may be questionable. 
 
  Adj Resids: -1.436 -1.355 ... 1.436 1.436 , Number |Adj Resid| > 2:  0 
 
SAMPLING PLAN INFORMATION... 
Number of strata:   8  
Strata identifiers: 1, 2, 3, 4, 5, 6, 7, 8 
Strata with fixed sample sizes: all 
Observed strata sample sizes:   17, 25, 14, 8, 5, 9, 10, 16 
 
LINEAR PREDICTOR MODEL RESULTS... 
               BETA StdErr(BETA) Z-ratio   p-value 
(Intercept)  2.5927       0.2408 10.7685 0.0000000 
gender      -0.0298       0.1449 -0.2056 0.8371200 
income       0.1807       0.0694  2.6027 0.0092496 
 
      OBS LINK ML LINK StdErr(L) LINK RESID 
link1   2.8235  2.7436    0.1237     0.6151 
link2   2.8400  2.9242    0.0882    -0.7813 
link3   3.2857  3.1049    0.0996     1.3546 
link4   3.0000  3.2856    0.1472    -1.4359 
link5   2.6000  2.7734    0.1798    -0.4259 
link6   2.7778  2.9540    0.1278    -0.9911 
link7   3.3000  3.1347    0.0999     1.0393 
link8   3.3125  3.3154    0.1152    -0.0320 
 
CONVERGENCE INFORMATION... 
  Original counts used.  
  iterations = 288 ,  time elapsed = 9.03 
  norm.diff  = 3.15141 = dist between last and second last iterates. 
               Did NOT meet norm diff convergence criterion [1e-06]! 
  norm.score = 8.22404e-07 = norm of score at last iteration. 
               Norm score convergence criterion [1e-06] was met. 
 
FITTING PROGRAM USED:  mph.fit, version 3.1, 5/20/09  
 
Note that only one of the convergence criteria was met. 
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One can modify the mph.fit function to work with S-PLUS.  To do so, one must take account of the 
differences within the scoping rules of the two implementations. 
 
Weighted Least Squares 
 
It is possible to work through a WLS estimation in either S-PLUS or R using the formula on p. 600 – 604 
of Agresti.  We do this for the job satisfaction data. 
 
First, I reorganize the table of data by unstacking the jobsat variable.  The menuUnstackColumns 
function in S-PLUS unstacks jobsat and creates a new data frame called table.7.8a.  The unstack 
function in R works similarly, but is easier to use. 
 
menuUnstackColumns(source=as.data.frame(table.7.8), target=table.7.8a, 

source.col.spec= c("freq"), group=c("jobsat"), show.p=F) 
# R: table.7.8a<-data.frame(expand.grid(income=1:4,gender=c(1,0)), 

unstack(table.7.8,freq~jobsatf)) 
structure(.Data=table.7.8a,row.names=apply(expand.grid(income=1:4,gender=c(1,0)),1, 

paste,collapse=" "), names=levels(table.7.8$jobsatf) ) 
# R: structure(.Data=table.7.8a[,-(1:2)],row.names=apply(expand.grid(income=1:4, 

gender=c(1,0)),1, paste,collapse=" "), names=levels(table.7.8$jobsatf) ) 
 
    very diss little sat mod sat very sat  
1 1         1          3      11        2 
2 1         2          3      17        3 
3 1         0          1       8        5 
4 1         0          2       4        2 
1 0         1          1       2        1 
2 0         0          3       5        1 
3 0         0          0       7        3 
4 0         0          1       9        6 
 
Next, we need the sample size for each population (income x gender combination), and the sample 
proportions for each population. 
 
n<-rowSums(table.7.8a) 
 
p<-sweep(table.7.8a,1,n,FUN="/") 
p1<-p[1,] # R: as.numeric(p[1,]) 
p2<-p[2,] 
p3<-p[3,] 
p4<-p[4,] 
p5<-p[5,] 
p6<-p[6,] 
p7<-p[7,] 
p8<-p[8,] 

 
J<-4 # number of response categories 
I<-8 # number of populations 
 

Now, I compute the block diagonal variance-covariance matrix, V, using V1 through V8 (the population 
specific covariance matrices).  For the for-loop below, the object Vnames stores the names of the objects 
V1 through V8, and the object pnames stores the names of the vectors of sample proportions for each 
group.  First I calculate each Vi, then I calculate V. 
 
Vnames<-sapply(1:I,function(x) paste("V", x, collapse = " ", sep = "")) 
pnames<-sapply(1:I,function(x) paste("p",x,collapse=" ",sep="")) 
V<-matrix(0,nc=J,nr=J) 
 
for(i in 1:I) 
{ 
 p<-as.numeric(eval(parse(text = pnames[i]))) 
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 diag(V)<-p*(1-p) 
 p<-as.matrix(p) 
 junk<-matrix(-kronecker(p,p),nc=J,nr=J,byrow=T) 
 V[lower.tri(diag(J))]<-junk[lower.tri(junk)] 
 V<-t(V) 
 V[lower.tri(V)]<-junk[lower.tri(junk,diag=F)] 
 assign(Vnames[i], matrix(V/n[i], ncol = J, byrow = T)) 
} 
 

I construct V using V1 through V8 
 
zero<-matrix(0,J,J) 
V<-rbind( 
cbind(V1, zero, zero, zero, zero, zero, zero, zero), 
cbind(zero, V2, zero, zero, zero, zero, zero, zero), 
cbind(zero, zero, V3, zero, zero, zero, zero, zero),  # block-diagonal matrix, V 
cbind(zero, zero, zero, V4, zero, zero, zero, zero),   
cbind(zero, zero, zero, zero, V5, zero, zero, zero), 
cbind(zero, zero, zero, zero, zero, V6, zero, zero), 
cbind(zero, zero, zero, zero, zero, zero ,V7, zero), 
cbind(zero, zero, zero, zero, zero, zero, zero, V8) 
) 

 
Now, the model for this example has form ( )F π β= X , where π  is a 4 x 8 matrix of response probability 

distributions for each population, T( ,  ,  )x gα β ββ = , and ( )F π  is a 8 x 1 vector of the 8 response 
functions 
 

T
1 1(1,1) 4(1,1)( ) 0 1 ( ,..., )g xF α β β π ππ = + ⋅ + ⋅ =ν  

 
T

8 1(2,4) 4(2,4)( ) 4 ( ,..., )g xF α β β π ππ = + + ⋅ =ν  
 

representing the 2 x 4 combinations of Gender and Income.  The 4 x 1 vector ν  contains the scores for 
the 4 job satisfaction categories.   
 
Now, note that the matrix 

|

( )k

j i

F∂
∂ π

π⎡ ⎤= ⎣ ⎦Q  on p. 602 contains the 1 x 32 row vectors  

 

|

( )
1 ( 1)4 1 4 32(0 ,...,0 , ,..., ,0,...,0 )k

j i

F
k

∂
∂ π ν νπ

−= , 

 
and the design matrix is  
 
   ..1 gender income  
    1      1      1 
    1      1      2 
    1      1      3 
    1      1      4 
    1      0      1 
    1      0      2 
    1      0      3 
    1      0      4 
All of the above is input into S via the following commands.  For the F( ) functions, we use the sample 
proportions instead of the probabilities, π . 
 
js<-1:4 # the vector nu 
 
Q<-rbind( 
 c(js,rep(0,28)), 
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 c(rep(0,4),js,rep(0,24)), 
 c(rep(0,8),js,rep(0,20)), 
 c(rep(0,12),js,rep(0,16)),  # derivatives of F 
 c(rep(0,16),js,rep(0,12)), 
 c(rep(0,20),js, rep(0,8)), 
 c(rep(0,24),js, rep(0,4)), 
 c(rep(0,28),js) 
) 
 
 
VF<-Q%*%V%*%t(Q)  # transformed covariance matrix (p. 602 in Agresti) 
 
# Design matrix: 
X<-as.matrix(cbind(rep(1,I),unique(table.7.8[,1:2]))) 
 
# Functions 
Fp<-c(js%*%p1, js%*%p2, js%*%p3, js%*%p4, js%*%p5, js%*%p6, js%*%p7, js%*%p8) 
 

Now, I estimate beta using the formula in Section 15.1.2, the weighted least squares estimator. 
 
InvVF<-solve(VF) 
Covb<-solve(t(X)%*%InvVF%*%X) 
b<-as.numeric(Covb%*%t(X)%*%InvVF%*%Fp) 
[1]  2.61328732 -0.04155966  0.18163655 
 
The asymptotic standard errors: 
 
sqrt(diag(Covb)) 
[1] 0.2311374 0.1369473 0.0681758 
 
I compute a Wald statistic for entire model using the formula on p. 603 in Agresti. 
 
as.numeric(t(Fp-X%*%b)%*%InvVF%*%(Fp-X%*%b)) 
 5.242789 
 
 
H.  Generalized Cochran-Mantel Haenszel Statistic for Ordinal Categories 
 
The mantelhaen.test function in the R package ctest, which comes with R, can handle I x J x K tables, 
but does not take special advantage of ordinal categories (The same built-in function in S-PLUS can only 
handle 2 x 2 x 2 tables, but the statistic itself is easily calculable using formula that is already 
programmed into the R function.  A calculation is available in the S-PLUS scripts for this manual).  To test 
for conditional independence of job satisfaction and income given gender, treating job satisfaction and 
income with scores {1, 3, 4, 5} and {3, 10, 20, 35}, respectively, we need to use equation (7.21) in Agresti.  
This statistic has an approximate chi-squared distribution with 1 df. 
 
With nominal categories for job satisfaction and income, mantelhaen.test calculates (7.20) in Agresti 
using input from xtabs.   
 
mantelhaen.test(xtabs(freq~jobsatf+income+gender, data=table.7.8)) 
 
        Cochran-Mantel-Haenszel test 
 
data:  xtabs(freq ~ jobsatf + income + gender, data = table.7.8)  
Cochran-Mantel-Haenszel M^2 = 12.5314, df = 9, p-value = 0.185 
 
But, this gives a different answer than that given by SAS in Table 7.12 of Agresti.  I don’t know why, as it 
is clear from the R code that it is computing (7.20). 
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The test of nonzero correlation uses the ordinal scores for both row and column variables and computes 
(7.21).  This computation is easy in either R or S-PLUS. 
 
First, we add the scores to the data frame 
 
table.7.8$jobsatS<-ifelse(table.7.8$jobsat==4,5,table.7.8$jobsat) 
table.7.8$jobsatS<-ifelse(table.7.8$jobsat==3,4,table.7.8$jobsatS) 
table.7.8$jobsatS<-ifelse(table.7.8$jobsat==2,3,table.7.8$jobsatS) 
 
table.7.8$incomeS<-ifelse(table.7.8$income==4,35,table.7.8$income) 
table.7.8$incomeS<-ifelse(table.7.8$income==3,20,table.7.8$incomeS) 
table.7.8$incomeS<-ifelse(table.7.8$income==2,10,table.7.8$incomeS) 
table.7.8$incomeS<-ifelse(table.7.8$income==1,3,table.7.8$incomeS) 

 
Then, we compute Tk, its expected value under no correlation and its variance. 
 
table.7.8.array<-xtabs(freq~jobsatf+income+gender, data=table.7.8) 
Tk<-apply(table.7.8.array,3,function(x,u,v) sum(outer(u,v)*x), u=c(1,3,4,5), 

v=c(3,10,20,35)) 
ETk<-apply(table.7.8.array,3,function(x,u,v) 

sum(rowSums(x)*u)*sum(colSums(x)*v)/sum(x), u=c(1,3,4,5), v=c(3,10,20,35)) 
 
varTk<-apply(table.7.8.array,3,function(x,u,v) { 
    n<-sum(x) 
    rowsums<-rowSums(x) 
    colsums<-colSums(x) 
    (sum(rowsums*u^2) - (sum(rowsums*u)^2)/n)*(sum(colsums*v^2) - 

(sum(colsums*v)^2)/n)/(n-1) 
}, u=c(1,3,4,5), v=c(3,10,20,35)) 

 
The statistic is 
 
(sum(Tk-ETk)^2)/sum(varTk) 
[1] 6.156301 
 
with p-value 
 
1-pchisq((sum(Tk-ETk)^2)/sum(varTk),df=1) 
[1] 0.01309447 
 
The row mean scores differ association treats rows as nominal and columns as ordinal.  The test statistic 
can be computed in R or S-PLUS using the formula in the notes for Chapter 7 (p. 302, Agresti).  
However, the matrices in this formula do not have the appropriate dimensions for multiplication.  So, one 
may have to check the original paper.  In any case, the mantelhaen.test function can be modified easily 
to incorporate the B matrix given on p. 302, to get the new statistic. 
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Chapter 8 –Loglinear Models for Contingency Tables 
 
A.  Summary of Chapter 8, Agresti   
 
 Loglinear models are used for modeling cell counts in a contingency table.  As Agresti notes, these 
models are usually used when we have a multivariate response, not a univariate response, as the model 
treats all classification factors as responses.  With a univariate response, methods such as logit models 
or multinomial logit models are better alternatives, and there is a correspondence between logit models 
with categorical explanatory variables and loglinear models (Section 8.5, Agresti).  Loglinear models 
model the expected cell frequencies as log linear combinations of effects (model parameters) due to each 
classification factor by itself and possibly due to interactions among classification factors.  Certain 
contrasts involving parameters (such as differences between parameters for a given factor) are 
interpreted as log odds of making one response on that variable, relative to another response.  Contrasts 
involving interaction parameters can have interpretations in terms of log odds ratios. Interaction 
parameters by themselves are most useful in an association interpretation.  That is, a three-factor 
interaction parameter is zero if there is no three-factor association.  For identifiability of all parameters, 
arbitrary constraints are made.  This makes the individual parameter estimates not unique across 
constraints, but estimated contrasts that encode log odds ratios are the same across constraints. 
 A generalized linear model interpretation of loglinear models treats the N = IJ cell counts of an I x J 
table as independent observations from a Poisson random component with corresponding means equal 
to the expected cell counts.  The same model can have a multinomial interpretation with two categorical 
responses and N total observations.  These statements also apply to three-way tables. 
 In a three-way table with response variables X, Y, and Z, several types of potential independence can 
be present. Mutual independence of all three variables results in all interaction parameters in the loglinear 
model being zero.  In a multinomial interpretation, this means all joint cell probabilities equal the products 
of the corresponding marginal probabilities.  Joint independence of one variable, Y, and the combined 
classifications of the other two (X and Z) results in a loglinear model with only one possible nonzero 
interaction parameter, that between X and Z.  Finally, variables X and Y are conditionally independent of 
variable Z if independence holds within each partial table conditional on a given value of Z.  This would 
result in a loglinear model with two possible nonzero interaction parameters: that describing association 
between X and Z and that describing association between Y and Z.  Relationships among the types of 
independence appear in Table 8.1. in Agresti. 
 A loglinear model for no three-factor interaction in a three-way table is called a homogenous 
association model.  This means that the conditional odds ratios between any two variables are identical at 
each category of the third variable.  Its parameters have interpretations in terms of conditional odds 
ratios.  Of the 2 2I JP P×  possible odds ratios, there are (I – 1)(J – 1) nonredundant odds ratios describing 
the association between variables X and Y, at each of K levels of a third conditioning variable.  
Conditional independence of X and Y (i.e., no three-factor interaction) means that all of the odds ratios 
are equal to 1.0.  The logs of these odd ratios are functions of the parameters of the homogeneous 
association model, as shown in equation (8.14) in Agresti, and the functions do not depend on the level of 
the conditioning variable.   
 Higher dimensional tables have straightforward extensions from the three-way table. 
 Chi-squared goodness-of-fit tests can be used to compare nested models.  This usually means using 
the likelihood ratio chi-squared statistic, which has an asymptotic chi-squared distribution when the 
expected frequencies are large (with fixed number of cells).  The degrees of freedom equal the difference 
in dimension between the null and alternative hypothesis. 
 Loglinear models can be fit using one of two methods for doing maximum likelihood estimation, 
Newton-Raphson or Iterative proportional fitting (IPF).  Newton-Raphson is an iterative procedure that 
solves a weighted least squares equation at each iteration.  At each iteration of the IPF algorithm, the 
fitted values satisfy the model and eventually converge to match the sufficient statistics (leading to 
MLEs).  However, IPF does not automatically produce the estimated covariance matrix of the parameters 
as a byproduct.  ML parameter estimates have asymptotic normal distributions and asymptotic standard 
errors estimated by the inverse of the Information matrix of the log likelihood. 
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 A generalized loglinear model generalizes mean modeling for loglinear models such as Poisson 
GLIMs.  Specifically, the link function relating the response mean to the linear predictor is not strictly 
logarithmic and not necessarily invertible, and takes the form 
 

 (log ) =C A Xμ β  
 
for matrices C and A, which are not necessarily invertible.  With A and C identity matrices, we get 
ordinary loglinear models.  For example, the logit model for a three-way table that postulates 
independence of the response and the two explanatory variables, each with two levels (i.e., the logit 
model only has an intercept) has A equal to an 8 x 8 identity matrix so that  =μ  111 112 222( , ,..., )μ μ μ and  
 

 

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

C  

 
With X a vector of four ones, and α=β , we get four row logits (two per each level of the second 
explanatory variable) that are all equal. 
  
   
B.  Loglinear Models for Three-way Tables    
 
 With a three-way table, there are three response variables for a loglinear model.   We can test the fit 
of a saturated model (three-way interaction) against a homogeneous association model (all pairwise 
associations) or that of homogeneous association versus conditional independence of two variables 
given a third.  Agresti uses a data set on alcohol, cigarette, and marijuana use to fit these various models.  
We can set up the data as 
 
table.8.3<-data.frame(expand.grid( 
 marijuana=factor(c("Yes","No"),levels=c("No","Yes")), 

cigarette=factor(c("Yes","No"),levels=c("No","Yes")),  
 alcohol=factor(c("Yes","No"),levels=c("No","Yes"))), 

count=c(911,538,44,456,3,43,2,279)) 
 

Fitting a loglinear model can be done using Iterative Proportional Fitting (loglin, loglm) or Newton 
Raphson (glm with poisson family).   The former uses loglin, or loglm from MASS.  The function loglm 
is a front-end for loglin, and has a much more flexible input allowance.  loglin requires input in the 
form of output from table() or as an array.  loglm accepts table output, crosstabs output (xtabs in R), 
or a formula using variables from a data frame.  As we have a data frame, we start with loglm.  We fit the 
saturated model, homogeneous association model, etc down to the marginal independence model. 
 
Here are the fits.  I set the arguments fit and param to T so that I can get fitted values and parameter 
estimates, as we see later. 
 
library(MASS) 
 
fitACM<-loglm(count~alcohol*cigarette*marijuana,data=table.8.3,param=T,fit=T)   # ACM 
fitAC.AM.CM<-update(fitACM, .~. - alcohol:cigarette:marijuana)       # AC, AM, CM 
fitAM.CM<-update(fitAC.AM.CM, .~. - alcohol:cigarette)          # AM, CM 
fitAC.M<-update(fitAC.AM.CM, .~. - alcohol:marijuana - cigarette:marijuana)  # AC, M 
fitA.C.M<-update(fitAC.M, .~. - alcohol:cigarette)         # A, C, M 

 
We can get the fitted counts using fitted on the loglm objects.  fitted returns an array of expect 
counts, but here we want a vector.  I needed to transpose before concatenation so that the expected 
counts followed that in the data frame.  
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data.frame(table.8.3[,-4], ACM=c(aperm(fitted(fitACM))), 

AC.AM.CM=c(aperm(fitted(fitAC.AM.CM))), AM.CM=c(aperm(fitted(fitAM.CM))), 
AC.M=c(aperm(fitted(fitAC.M))), A.C.M=c(aperm(fitted(fitA.C.M)))) 

 
  marijuana cigarette alcohol ACM   AC.AM.CM       AM.CM      AC.M     A.C.M  
1       Yes       Yes     Yes 911 910.383057 909.2395630 611.17749 539.98254 
2        No       Yes     Yes 538 538.616089 438.8404236 837.82251 740.22607 
3       Yes        No     Yes  44  44.616840  45.7604179 210.89632 282.09125 
4        No        No     Yes 456 455.385590 555.1595459 289.10370 386.70007 
5       Yes       Yes      No   3   3.616919   4.7604165  19.40246  90.59739 
6        No       Yes      No  43  42.383881 142.1595764  26.59754 124.19392 
7       Yes        No      No   2   1.383159   0.2395833 118.52373  47.32881 
8        No        No      No 279 279.614380 179.8404236 162.47627  64.87991 
 
Because we set param = T, we can get estimates of the model parameters (the lambdas), using 
fit$param.  These can be used to get estimates of conditonal odds ratios, as per equation (8.14) in 
Agresti (see Thompson (1999, p. 27)).  However, it may be simpler to just compute the odds ratios from 
the array of fitted values.  To do this, we use the apply function on the array.  For example, for the 
homogeneous association model (AC, AM, CM), which has fitted counts close to the observed counts, we 
have the following conditional odds ratios: 
 
fit.array<-fitted(fitAC.AM.CM) 
 
odds.ratio<-function(x) x[1,1]*x[2,2]/(x[2,1]*x[1,2]) 

 
apply(fit.array,1,odds.ratio)   # CM (given level of A) 
     Yes       No  
17.25144 17.25144  # these should be the same according to the model 
 
apply(fit.array,2, odds.ratio)    # AM 
     Yes       No  
19.80646 19.80646  
 
apply(fit.array,3, odds.ratio)    # AC 
    Yes      No  
7.80295 7.80295 
 
To determine which dimension to apply the function odds.ratio over, I strongly recommend using R’s 
version of fitted, which includes helpful variable labels instead of just levels (which are all the same, 
here). 
 
To get marginal odds ratios, we just need to sum the array over the dimension we are excluding in the 
odds ratio.  Here is a function that will sum the columns across an array. 
 
sum.array<-function(array, perm=c(3,2,1)){   
    res<-aperm(array,perm) 
    colSums(res) 
} 
 
The perm argument is used to put the summed-over dimension in the rows place (place #1).  In this way, 
when we do column sums, we sum over the rows.  Had I used rowSums in the function, we would need to 
put the summed-over dimension in the columns place (place #2).  The default is c(3,2,1), which causes 
the matrices in the array to be summed, resulting in a single matrix which represents the sum.  For 
example, 
 
junk<-array(c(matrix(1:4,2,2)), dim=c(2,2,2)) 
 
, , 1 
 
     [,1] [,2] 
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[1,]    1    3 
[2,]    2    4 
 
, , 2 
 
     [,1] [,2] 
[1,]    1    3 
[2,]    2    4 
 
sum.array(junk) 
 
     [,1] [,2] 
[1,]    2    4 
[2,]    6    8 
 
Now, we compute the marginal odds ratios.  The current dimensions of fit.array are A,C,M.   
 
 
odds.ratio(sum.array(fit.array))  # AC (sum over M, so 3 needs to be listed first) 
[1] 17.70244 
 
odds.ratio(sum.array(fit.array, perm=c(1,2,3)))  # CM (sum over A, so 1 is first) 
[1] 25.13620 
 
odds.ratio(sum.array(fit.array, perm=c(2,1,3))) # AM (sum over C, so 2 is first) 
[1] 61.87182 
 
As loglm is a front-end to loglin, there is no need to show the results from loglin.  loglin requires 
input of a table in the form of an array and also has an argument margin, where the model is specified 
using a list of numeric vectors.  As an example, to fit the homogeneous association model, we do 
 
loglin(fitted(fitACM), margin=list(c(1,2), c(2,3), c(1,3)), param=T,fit=T) 
 
$lrt: 
[1] 0.3738868 
 
$pearson: 
[1] 0.4011037 
 
$df: 
[1] 1 
 
$margin: 
$margin[[1]]: 
[1] "alcohol"   "cigarette" 
 
$margin[[2]]: 
[1] "cigarette" "marijuana" 
 
$margin[[3]]: 
[1] "alcohol"   "marijuana" 
 
 
$fit: 
 
, , Yes 
           Yes        No  
Yes 910.382996 44.617058 
 No   3.616851  1.383149 
 
, , No 
          Yes       No  
Yes 538.61639 455.3836 
 No  42.38408 279.6159 
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The margin argument gives the associations allowed for the model.  Here, we choose all pairwise 
associations.  lrt and pearson give the associated goodness-of-fit statistics, and fit gives the fitted 
counts. 
 
The same model can be fit using glm with a poisson family.  Here, the fit algorithm is Newton-Raphson. 
 
options(contrasts=c("contr.treatment","contr.poly"))  # dummy coding for factors 
(fit.glm<-glm(count~.^2, data=table.8.3, family=poisson)) 
 
Coefficients: 
 (Intercept) marijuana cigarette  alcohol marijuana:cigarette marijuana:alcohol  
     5.63342 -5.309042 -1.886669 0.487719            2.847889          2.986014 
 
 cigarette:alcohol  
          2.054534 
 
Degrees of Freedom: 8 Total; 1 Residual 
Residual Deviance: 0.3739859  
 
 
The residual deviance is the likelihood ratio statistic.  The sum of the squared pearson residuals gives the 
Pearson chi-squared statistic. 
 
sum(resid(fit, type="pearson")^2) 
[1] 0.4011004 
 
 
C.  Inference for Loglinear Models 
 
Likelihood ratio chi-squared test statistics are output using the summary methods for loglm and glm and 
the print method for loglin.  For example, the summary method for loglm gives the statistics and p-
values as compared to a chi-squared distribution with the appropriate degrees of freedom. 
 
summary(fitAC.AM.CM) # homogeneous association model 
 
Formula: 
count ~ alcohol + cigarette + marijuana + alcohol:cigarette + alcohol:marijuana + 

cigarette:marijuana 
 
Statistics: 
                       X^2 df  P(> X^2)  
Likelihood Ratio 0.3742223  1 0.5407117 
         Pearson 0.4011002  1 0.5265216 
 
Comparison of nested models can be done using the anova method.  For example,  
 
anova(fitAC.M, fitAC.AM.CM, fitAM.CM, fitA.C.M) 
 
LR tests for hierarchical log-linear models 
 
Model 1: 
 count  ~  alcohol + cigarette + marijuana  
Model 2: 
 count  ~  alcohol + cigarette + marijuana + alcohol:cigarette  
Model 3: 
 count  ~  alcohol + cigarette + marijuana + alcohol:marijuana + cigarette:marijuana  
Model 4: 
 count  ~  alcohol + cigarette + marijuana + alcohol:cigarette + alcohol:marijuana + 

cigarette:marijuana  
 
              Deviance df  Delta(Dev) Delta(df) P(> Delta(Dev)  
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  Model 1 1286.0200195  4                                      
  Model 2  843.8267822  3 442.1932373         1        0.00000 
  Model 3  187.7544556  2 656.0723267         1        0.00000 
  Model 4    0.3742223  1 187.3802338         1        0.00000 
Saturated    0.0000000  0   0.3742223         1        0.54071 
 
gives the likelihood ratio tests comparing hierarchical loglinear models given in the list of arguments.  
Each item in the Delta(Dev) column compares Deviances between the current row and the previous 
row.  So, the test of conditional independence between A and C, which compares models AM.CM and 
AM.CM.AC is 187.75 – 0.37 = 187.38.  According to the output, the only model that fits well among the 
four is the homogeneous association model (Model 4).  It’s deviance is close enough to the deviance for 
the saturated model (zero) to give a nonsignificant p-value. 
 
The parameter estimates returned by loglin and loglm (fit$param) come from a parameterization such 
that the constant component describes the overall mean, each single factor sums to zero, each two 
factor parameter sums to zero both by rows and columns, etc.  Thus, the parameterization is not such 
that the parameters in the last row and the last column are zero, and will not match those from SAS on p. 
325 in Agresti.  To obtain parameter estimates and standard errors from loglm matching those from SAS, 
we can use plug-in calculations, as mentioned by Agresti.  That is, take the fitted expected counts from 
loglm output and plug them into the formula (8.25) on p. 339 in Agresti.  (This is illustrated below) 
 
However, we can get the parameter estimates and standard errors directly from the glm fit.  In order that 
our estimates match the SAS results given by Agresti on p. 325,  we must first issue the command  
options(contrasts= c("contr.treatment", "contr.poly")), and then ensure that our factor levels 
match those of SAS.  An inspection of the model.matrix from fit.glm shows the dummy coding used 
by contr.treatment 
 
model.matrix(fit.glm) 
 
  (Intercept) marijuana cigarette alcohol marijuana:cigarette marijuana:alcohol cigarette:alcohol  
1           1         0         0       0                   0                 0                 0 
2           1         1         0       0                   0                 0                 0 
3           1         0         1       0                   0                 0                 0 
4           1         1         1       0                   1                 0                 0 
5           1         0         0       1                   0                 0                 0 
6           1         1         0       1                   0                 1                 0 
7           1         0         1       1                   0                 0                 1 
8           1         1         1       1                   1                 1                 1 

 
By the manner in which table.8.3 was set up, we see that the coding is 0 = Yes and 1 = No.  We want 1 
= Yes and 0 = No.  Fortunately, we don’t have to redefine the factors in table.8.3.  We just need to use 
the contrasts argument of glm, as follows. 
 
fit.glm2 <- update(fit.glm, contrasts = list(alcohol = as.matrix(c(1, 0)), marijuana = 

as.matrix(c(1, 0)), cigarette = as.matrix(c(1, 0)))) 

 
In the above, I reset the dummy coding to be 1 = Yes, 0 = No.  In general, contrasts argument is a list 
with each element matching the name of a variable in the model.  The value of an element in the list is a 
matrix of contrasts with number of rows equal to the number of levels of the variable. 
 
Now, we can get estimates and ASEs to match those of SAS. 
 
summary(fit.glm2, cor = F) 
 
Coefficients: 
                        Value Std. Error    t value  
        (Intercept)  5.633420 0.05970077  94.360930 
          marijuana -5.309042 0.47506865 -11.175316 
          cigarette -1.886669 0.16269584 -11.596294 
            alcohol  0.487719 0.07576708   6.437083 
marijuana:cigarette  2.847889 0.16383796  17.382353 
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  marijuana:alcohol  2.986014 0.46454749   6.427791 
  cigarette:alcohol  2.054534 0.17406289  11.803401 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 2851.461 on 7 degrees of freedom 
 
Residual Deviance: 0.3739859 on 1 degrees of freedom 
 
Number of Fisher Scoring Iterations: 3  
 
For loglm, we compute equation (8.25) using the model.matrix function to get X.  Note that we still need 
to modify the 0/1 coding using contrasts argument to match the coding in Agresti. 
 
options(contrasts=c("contr.treatment","contr.poly"))   # ensure we have treatment 

contrasts 
 
X<-model.matrix(count~(alcohol+cigarette+marijuana)^2,data=table.8.3, 

contrasts=list(alcohol=as.matrix(c(1,0)), marijuana=as.matrix(c(1,0)), 
cigarette=as.matrix(c(1,0)))) 

 
sqrt(diag(solve(t(X)%*%diag(c(fitAC.AM.CM$fitted))%*%X))) 
# R output 
          (Intercept)              alcohol1            cigarette1  
           0.05970110            0.47519394            0.16269591  
 
           marijuana1   alcohol1:cigarette1   alcohol1:marijuana1  
           0.07576733            0.16383935            0.46467452  
 
cigarette1:marijuana1  
           0.17406330 
 
As a side note, we in fact do not have to use the contrasts argument to model.matrix or to glm if we 
specify the levels of the variables in table.8.3 at the outset using the factor function.  For example, we 
did 
 
table.8.3<-data.frame(expand.grid(marijuana=factor(c("Yes","No"), levels=c(“No”, 

“Yes”)), cigarette=factor(c("Yes","No"),levels=c(“No”, “Yes”)), 
alcohol=factor(c("Yes","No"),levels=c(“No”,”Yes”))), 
count=c(911,538,44,456,3,43,2,279)) 

 
which gives the coding we want: 1=Yes, 0=No.  However, it is instructive to see the contrasts argument 
in its own right. 
 
D.  Loglinear Models for Higher Dimensions 
 
Fitting of loglinear models with more than three dimensions is straightforward.  Agresti uses a four-way 
table displaying counts of accidents that either did or did not involve injury, and whether the driver wore a 
seat belt, their gender, and location (rural, urban).  We can fit several loglinear models specifying different 
degrees of conditional independence using loglm. 
 
table.8.8<-data.frame(expand.grid(belt=c("No","Yes"), location=c("Urban","Rural"), 

gender=c("Female","Male"), injury=c("No","Yes")), 
count=c(7287,11587,3246,6134,10381,10969,6123, 6693,996, 759, 973, 757, 812, 380, 
1084, 513)) 

 
We fit mutual independence model, a model with all pairwise interactions and no higher association (i.e., 
each pair of variables has the same odds ratio at each combination of the other two variables), and the 
homogeneous three-way association model (i.e., no four-way interaction). 
 
library(MASS) 
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fitG.I.L.S<-loglm(count~., data=table.8.8, fit=T, param=T) # mutual independence 
fitGI.GL.GS.IL.IS.LS<-update(fitG.I.L.S, .~.^2, data=table.8.8, fit=T, param=T) # all 

pairwise associations 
fitGIL.GIS.GLS.ILS<-update(fitG.I.L.S, .~.^3, data=table.8.8, fit=T, param=T) # all 

three-way associations 
 
A comparison of likelihood ratio statistics (next) tells us that the three-way association model fits best, 
and is the only one to have a nonsignificant p-value. 
 
anova(fitG.I.L.S, fitGI.GL.GS.IL.IS.LS, fitGIL.GIS.GLS.ILS) 
 
LR tests for hierarchical log-linear models 
 
Model 1: 
 count  ~  belt + location + gender + injury  
Model 2: 
 count  ~  belt + location + gender + injury + belt:location + belt:gender + 

belt:injury + location:gender + location:injury + gender:injury  
Model 3: 
 count  ~  belt + location + gender + injury + belt:location + belt:gender + 

belt:injury + location:gender + location:injury + gender:injury + 
 belt:location:gender + belt:location:injury + belt:gender:injury + 

location:gender:injury  
 
            Deviance df Delta(Dev) Delta(df) P(> Delta(Dev)  
  Model 1 2792.76245 11                                     
  Model 2   23.35137  5 2769.41113         6        0.00000 
  Model 3    1.32489  1   22.02648         4        0.00020 
Saturated    0.00000  0    1.32489         1        0.24972 
 
 
However, we would like a simpler model than all three-way interactions.  Here is a fit of the all-pairwise 
model plus the three-way interaction GLS. 
 
(fitGI.IL.IS.GLS <- update(fitGI.GL.GS.IL.IS.LS, . ~ . + gender:location:belt)) 
 
Statistics: 
                      X^2 df  P(> X^2)  
Likelihood Ratio 7.462791  4 0.1133613 
         Pearson 7.487374  4 0.1122673 
 
The p-value is not significant, and this model is simpler to interpret than all three-way interactions.  This 
model says that whether or not injury occurred, the association between any two of the remaining 
variables changes at each level of the third variable.  For example, the association between gender and 
seat belt use is not the same across urban and rural locations.  However, any conditional odds ratio 
between injury and another variable is the same at the combinations of the other two variables (because 
injury does not appear in the three-way interaction).  So, for example, GI is the same no matter what the 
levels of L and S. 
 
Here are the fitted counts from this model. 
 
fitted(fitGI.IL.IS.GLS) # output is from R 
 
Re-fitting to get fitted values 
 
, , gender = Female, injury = No 
 
     location 
belt      Urban    Rural 
  No   7273.214 3254.662 
  Yes 11632.622 6093.502 
 
, , gender = Male, injury = No 
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     location 
belt     Urban    Rural 
  No  10358.93 6150.193 
  Yes 10959.23 6697.643 
 
, , gender = Female, injury = Yes 
 
     location 
belt      Urban    Rural 
  No  1009.7857 964.3376 
  Yes  713.3783 797.4979 
 
, , gender = Male, injury = Yes 
 
     location 
belt     Urban     Rural 
  No  834.0684 1056.8071 
  Yes 389.7681  508.3566 
 
We can examine the three-way interaction by seeing how the conditional odds ratios of any two variables 
of the trio (gender, location, belt use) change at the levels of the third variable.  But, they are the same 
regardless of injury status.  (Output is given from R) 
 
fit.array<-fitted(fitGI.IL.IS.GLS) 
odds.ratio<-function(x) x[1,1]*x[2,2]/(x[2,1]*x[1,2]) 

 
apply(fit.array,c(1,4),odds.ratio)    # GL S (same for I = yes or no - column) 
 
     injury 
belt        No      Yes 
  No  1.326766 1.326766 
  Yes 1.166682 1.166682 
 
apply(fit.array,c(2,4),odds.ratio)    # GS L (same for I = yes or no - column) 
 
        injury 
location        No       Yes 
   Urban 0.6614758 0.6614758 
   Rural 0.5816641 0.5816641 
 
apply(fit.array,c(3,4),odds.ratio)    # LS G (same for I = yes or no - column) 
 
        injury 
gender         No      Yes 
  Female 1.170603 1.170603 
  Male   1.029362 1.029362 
 
For interpretation, we take the GS L = urban odds ratio, which is 0.66.  This is the estimated odds that 
males used seat belts over females when accidents occurred in urban locations.  Thus, females are 
about 1.0/0.66 = 1.5 times more likely to have used a seat belt when an accident occurred in an urban 
area, regardless of whether there was an injury.  The analogous odds ratio at rural locations is quite 
similar (0.58), however.  As this similarity between Urban and Rural carries over to other odds ratio 
comparisons (i.e., the GL S and LS G comparisons), the three-way interaction may not be necessary in 
this loglinear model. 
 
We can also see that the conditional odds ratio between injury and any other variable are the same at the 
combinations of the remaining two. 
 
apply(fit.array,c(1,2),odds.ratio)    # GI (same for each combination of LS) 
 
        Urban     Rural  
 No 0.5799410 0.5799411 



 

 

150

Yes 0.5799411 0.5799412 
 
apply(fit.array,c(1,3),odds.ratio)    # IL (same for each combination of GS) 
 
      Female     Male  
 No 2.134127 2.134127 
Yes 2.134127 2.134127 
 
apply(fit.array,c(2,3),odds.ratio)    # IS (same for each combination of GL) 
 
         Female      Male  
Urban 0.4417123 0.4417123 
Rural 0.4417122 0.4417123 
 
Computing the dissimilarity matrix to check goodness-of-fit of this model to the data is simple in S. 
 
Fitted.values <- c(fit.array) 
sum(abs(table.8.8$count - Fitted.values))/(2 * sum(table.8.8$count)) 
 
[1] 0.002507361 
 
Approximate standard errors for these models can be obtained using the “brute force” calculations 
mentioned above (see pp. 338-339 of Agresti and pp. 28-29 of Thompson, 1999) or by using glm with 
poisson family to fit the model (see previous section B, above). 
 
E.  Loglinear-Logit Model Connection  
 
The correspondence between a loglinear model with three variables and a logit model with one of those 
variables a response is shown in equation (8.15) of Agresti.  The four-way loglinear model that was fit to 
the auto accident data (GI, LI, IS, GLS) is equivalent to the logit model (G +  L + S) with response I.  This 
is because any term in the logit model that does not have the symbol I disappears.  Thus, GLS 
disappears, leaving the symbols (GI, LI, IS), which together specify that given injury, G, L, and S are 
independent.  The equivalent logit model is then that G, L, and S are independent in their effects on I.  To 
get the connections between the parameter estimates, we can fit both models using glm.  We use 
treatment contrasts. 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
 
fit.loglinear <- glm(count ~ .^2 + gender:location:belt, data = table.8.8, family = 

poisson) 
 
fit.logit <- glm(injury ~ gender + belt + location, data = table.8.8, family = 

binomial, weight = count) 

 
fit.loglinear$coefficients 
 
 (Intercept)      belt   location    gender   injury belt:location belt:gender belt:injury  
    8.891954 0.4696151 -0.8041099 0.3536508 -1.97446     0.1575195   -0.413282  -0.8170974  
 
location:gender location:injury  
      0.2827442       0.7580583 
 
 gender:injury gender:location:belt  
    -0.5448292           -0.1285802 
 
fit.logit$coefficients 
 
 (Intercept)    gender       belt location  
    -1.97446 -0.544829 -0.8170971 0.758058 
 
Note that for the logit model, all terms in the loglinear fit that did not have injury (I) are removed.  The 
remaining coefficients become the coefficients for the logit model.  The exact correspondence among 
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these remaining coefficients is a consequence of having only two levels per variable and also of using 
treatment contrasts.  To see that this is so, read subsection 8.5.2 in Agresti, and recall that we set the last 
coefficient in each row and column of a pairwise interaction to zero for constraints. 
 
The fact that there is a correspondence between estimates from the two models, which assume two 
different sampling distributions for responses, follows from the correspondence of the likelihoods with 
respect to the parameters in question. 
 
 
F.  Contingency Table Standardization  
 
Table standardization is useful for comparing tables with different marginal totals or matching sample 
table data to standardized marginal distributions.  Next, we show how to “rake” Table 8.15 by forcing all 
row and column totals to equal 100.  This is done using the tip on p. 346 of Agresti.  We make the log of 
the observed count an offset in a glm and create a pseudo response that satisfies the model and the 
marginal totals. 
 
First I input the data, coding factors with levels in the order most natural. 
 
table.8.15<-data.frame(expand.grid(Attitude=factor(c("Disapprove","Middle","Approve"), 

levels=c("Disapprove","Middle","Approve")), 
Education=factor(c("<HS","HS",">HS"), levels=c("<HS","HS",">HS"))), 
count=c(209,101,237,151,126,426,16,21,138)) 

 
Then, we fit an independence model using pseudo-values 100/3 for each cell. 
 
fit <- glm(I(rep(100/3, 9)) ~ Attitude + Education + offset(log(count)), family = 

poisson, data = table.8.15) 
cbind(table.8.15, std = fitted(fit)) 
 
    Attitude Education count      std  
1 Disapprove       <HS   209 49.42773 
2     Middle       <HS   101 32.01875 
3    Approve       <HS   237 18.55352 
4 Disapprove        HS   151 32.76098 
5     Middle        HS   126 36.64454 
6    Approve        HS   426 30.59448 
7 Disapprove       >HS    16 17.81129 
8     Middle       >HS    21 31.33671 
9    Approve       >HS   138 50.85200 
 
In R, using 100/3 as a count gives a warning because it is not an integer.  However, the estimation 
continues, apparently still using 100/3.
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Chapter 9 –Building and Extending Loglinear Models  
 
A.  Summary of Chapter 9, Agresti   
  
 This chapter extends loglinear models to ordinal variables and correlated variables, and also deals 
with special issues like collapsibility and empty cells. 
 With higher order tables, the analysis is easier if we can collapse over some dimensions (variables).  
Collapsibility describes the conditions under which a variable can be collapse over (i.e., ignored).  For 
three-way tables with variables X, Y, and Z, we can collapse over Z while keeping the XY association the 
same for the marginal table as well as the conditional table (on levels of Z) if either Z and X are 
conditionally independent given Y or Z and Y are conditionally independent given X.  For four-way tables 
with variables W, X, Y, and Z, if we collapse over Y, and association terms involving XY and WY are zero, 
then the partial WX odds ratios, conditioning on Y, are the same as the marginal WX odds ratios after 
collapsing. The general principle describing these examples is on p. 360 of Agresti. 
 Loglinear models treat all variables as responses.  However, sometimes certain marginal totals are 
fixed by sampling design.  If the corresponding loglinear terms are not included in the model, then the 
fitted marginal totals will not necessarily match the observed totals for these combinations.  This is 
because the likelihood will not match the observed total to the fitted total in the likelihood equation 
(equation 8.22 in Agresti).  In sum, the highest interaction term containing all explanatory variables should 
be included in a loglinear model. 
 Nested loglinear models can be compared using the likelihood ratio statistic in equation (9.3) in 
Agresti, or using the Pearson statistic in equation (9.4).  These have asymptotic chi-squared distributions, 
and are used to test the significance of an additional term or variable in the model.  To check the fit of a 
given model, one can examine cell residuals. 
 Just as with logit models, if there are ordinal responses, then greater power results from fitting 
specific ordinal trends than either ignoring ordinality or fitting general association terms.  The latter 
situation may not even be possible without fitting a saturated model.  The linear-by-linear association (L x 
L) model assigns ordered row scores to rows and ordered column scores to columns, and includes, in 
addition to main effect terms for the rows and columns, an interaction term in the row and column scores.  
The interaction term has a single unknown parameter which represents positive or negative linear 
association, depending on the sign of the parameter.  Odds ratios are a function of the distance between 
corresponding rows and columns and the magnitude of the interaction parameter. 
 L x L models are best fit when the observed counts show a linear trend in the rows at each column 
and a linear trend in the columns for each row.  The model is fit using ML estimation, and the correlation 
between rows and columns is the same in both the observed and fitted counts. 
 Association models generalize loglinear models for ordinal responses to multi-way tables and to 
mixed ordinal and nominal responses.  The row effects model and column effects model have either rows 
or columns as nominal responses, respectively, and the other as ordinal.  The nominal variable has 
parameter scores instead of fixed scores.  Ordinal responses within multi-way tables are straightforward 
generalizations of their two-way table analogs.   
 Other types of models that emphasize the estimation of association are Multiplicative Row and 
Column effects models (RC Models), correlation models, and correspondence analysis.  The RC model 
modifies the L x L model by replacing the scores with parameters.  Correlation models are similar to RC 
models.  In these models, each cell probability is augmented with an association term, dependent on row 
and column scores.  Correlation models can have either fixed or parameter scores.  Correspondence 
analysis is mostly a graphical technique to represent associations in contingency tables. 
 The Poisson loglinear model can also be used to model the rate of occurrence of an event over an 
exposure time or space, dependent on covariates.  The exposure is treated as an offset.  Also, due to the 
connection between ML estimation using a Poisson likelihood for numbers of events and a negative 
exponential likelihood for survival time, one can model survival times using a Poisson loglinear model. 
 Sparse tables have many empty cells where there are no observations.  A sampling zero occurs in a 
cell when the data do not contain observations corresponding to that cell.  A structural zero occurs when 
it is impossible for the data to have an observation for the cell.   For unsaturated models, MLEs exist 
when all cell counts are positive, but do not exist when some counts in the sufficient marginal tables are 
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zero.  They also may not exist when all sufficient counts are positive, but at least one cell is zero.  
However, even if a point estimate is infinite, one endpoint of a likelihood-ratio confidence interval is 
usually finite.  Adding a constant like 0.5 to each cell to prevent sampling zeroes for fitting an unsaturated 
model is not recommended, especially for large numbers of cells, because it influences estimates and 
test statistics conservatively.   
 As an alternative to large-sample goodness-of-fit tests (which may not apply when a table is sparse), 
one can use exact tests or Monte Carlo approximations to exact tests.   
 
 
B.  Model Selection and Comparison 
 
Agresti uses the Student Survey example to illustrate model selection and comparison.  We will use a 
backwards stepwise procedure to help in comparing models by comparing likelihood ratio chi-square 
statistics. 
 
We start by inputing the data 
 
table.9.1<-data.frame(expand.grid(cigarette=c("Yes","No"), 

alcohol=c("Yes","No"),marijuana=c("Yes","No"), sex=c("female","male"),  
race=c("white","other")),count=c(405,13,1,1,268,218,17,117,453,28,1,1,228,201,17,133,2

3,2,0, 0,23, 19,1,12,30,1,1,0,19,18,8,17)) 

 
Now, we fit some loglinear models using glm and the poisson family.  Note that we must include the 
highest interaction involving explanatory variables.  Thus, sex:race is always included.  The next two 
models fit mutual independence + GR (Agresti uses G for gender and R for race) and homogeneous 
association. 
 
fit.GR<-glm(count~ . + sex*race,data=table.9.1,family=poisson) # mutual independence + 

GR 
fit.homog.assoc<-glm(count~ .^2,data=table.9.1,family=poisson) # homogeneous 

association 
 
To reproduce Table 9.2 in Agresti, we can start by eliminating each two-way interaction in turn (with 
exception of sex:race) and comparing likelihood ratio statistics with and without these terms.  I use 
stepAIC, which is part of library MASS in both R and S-PLUS.  This will remove terms based on AIC, 
which is a function of both the residual deviance (likelihood-ratio chi-square) and number of terms in the 
model.  Thus, it does not quite select the “best” model that Agresti’s Table 9.2 does. 
 
library(MASS) 
 
summary(res<-stepAIC(fit.homog.assoc, scope= list(lower = ~ + cigarette + alcohol + 

marijuana + sex*race), direction="backward")) # note that I have saved the final 
model in an object called “res” 

 
 
Start:  AIC= 47.34  
 count ~ (cigarette + alcohol + marijuana + sex + race)^2  
 
                    Df  Deviance       AIC  
   - cigarette:race  1  15.78347  45.78347 
    - cigarette:sex  1  16.31718  46.31718 
             <none> NA  15.34034  47.34034 
      - alcohol:sex  1  18.71695  48.71695 
   - marijuana:race  1  18.92894  48.92894 
     - alcohol:race  1  20.32086  50.32086 
    - marijuana:sex  1  25.16101  55.16101 
- alcohol:marijuana  1 106.95800 136.95800 
- cigarette:alcohol  1 201.19931 231.19931 
- cigarette:marijuana  1 513.47218 543.47218 
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Step:  AIC= 45.78  
 count ~ cigarette + alcohol + marijuana + sex + race + cigarette:alcohol + 

cigarette:marijuana + cigarette:sex + alcohol:marijuana +  
 alcohol:sex + alcohol:race + marijuana:sex + marijuana:race + sex:race  
 
                      Df  Deviance       AIC  
      - cigarette:sex  1  16.73504  44.73504 
               <none> NA  15.78347  45.78347 
     - marijuana:race  1  18.95695  46.95695 
        - alcohol:sex  1  19.18046  47.18046 
       - alcohol:race  1  20.33869  48.33869 
      - marijuana:sex  1  25.56924  53.56924 
  - alcohol:marijuana  1 107.79480 135.79480 
  - cigarette:alcohol  1 201.21688 229.21688 
- cigarette:marijuana  1 513.50057 541.50057 
 
Step:  AIC= 44.74  
 count ~ cigarette + alcohol + marijuana + sex + race + cigarette:alcohol + 

cigarette:marijuana + alcohol:marijuana + alcohol:sex +  
 alcohol:race + marijuana:sex + marijuana:race + sex:race  
 
                      Df  Deviance       AIC  
               <none> NA  16.73504  44.73504 
     - marijuana:race  1  19.90859  45.90859 
       - alcohol:race  1  21.29033  47.29033 
        - alcohol:sex  1  22.02148  48.02148 
      - marijuana:sex  1  25.81125  51.81125 
  - alcohol:marijuana  1 108.77579 134.77579 
  - cigarette:alcohol  1 204.11536 230.11536 
- cigarette:marijuana  1 513.73033 539.73033 
 
Call: glm(formula = count ~ cigarette + alcohol + marijuana + sex + race + 

cigarette:alcohol + cigarette:marijuana + alcohol:marijuana + 
 alcohol:sex + alcohol:race + marijuana:sex + marijuana:race + sex:race, family = 

poisson, data = table.9.1) 
 
Coefficients: 
                         Value Std. Error    t value  
        (Intercept)  2.2651798 0.12467553  18.168600 
          cigarette -0.2822714 0.05491143  -5.140485 
            alcohol -1.4163287 0.12121797 -11.684149 
          marijuana  1.2671910 0.12443051  10.183925 
                sex  0.1090531 0.04581267   2.380413 
               race -1.1940934 0.05467500 -21.839842 
  cigarette:alcohol  0.5136335 0.04351564  11.803423 
cigarette:marijuana  0.7119723 0.04095963  17.382295 
  alcohol:marijuana  0.7486558 0.11619789   6.442938 
 
                     Value Std. Error    t value  
   alcohol:sex  0.07321130 0.03190131  2.2949310 
  alcohol:race  0.11284083 0.05166169  2.1842266 
 marijuana:sex -0.06805431 0.02261757 -3.0089132 
marijuana:race  0.07958278 0.04495553  1.7702554 
      sex:race  0.03582621 0.03976789  0.9008829 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 4818.051 on 31 degrees of freedom 
 
Residual Deviance: 16.73504 on 18 degrees of freedom 
 
The output is lengthy, but it indicates the eliminated coefficient (which I’ve bolded) at each step.  Note 
that we don’t quite get to Agresti’s Model 6, but stop at Model 5.  Model 6 would correspond to the 
removal: 
 
                      Df  Deviance       AIC  
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     - marijuana:race  1  19.90859  45.90859 
 
We now rename the result of the stepwise search: 
 
fit.AC.AM.CM.AG.AR.GM.GR<-res  # Agresti’s Model 5 

 
The update method for glm can be used to remove additional specified terms.  For example, to fit 
Agresti’s Model 6, 
 
fit.AC.AM.CM.AG.AR.GM.GR<-update(fit.AC.AM.CM.AG.AR.GM.GR.MR, ~. - marijuana:race) 

 
According the conditional associations that Model 6 implies, cigarette use is independent of both gender 
and race, given alcohol and marijuana use.  Thus, according to this model, we don’t need to consider the 
association between cigarette use and both gender and race if alcohol and marijuana use are already 
considered.  Furthermore, if we collapse over gender and race, the conditional associations between 
cigarette use and alcohol and between cigarette use and marijuana are the same as in the homogeneous 
association model (AC, AM, CM) that was fit in Chapter 8 (i.e., fitAC.AM.CM in section C). 
 
 
C.  Diagnostics for Checking Models 
 
Pearson residuals for loglinear models use an estimate of the Poisson standard error in the denominator.  
Thus, they differ from Pearson residuals for logit models, which use an estimate of a binomial standard 
error in the denominator.  As in Chapter 4, standardized versions of the residuals multiply the 
denominator by a function of the leverages from the hat matrix.  This results in the variance of the 
residual being 1.0, and an asymptotic normal distribution.  Thus, residuals greater than about 3 in 
magnitude are considered large. 
 
To get standardized Pearson residuals for Model 6 from the Student Survey Example above, we use the 
resid function.  The only large residual is highlighted. 
 
res.model6<-resid(fit.AC.AM.CM.AG.AR.GM.GR, type="pearson")/sqrt(1-

lm.influence(fit.AC.AM.CM.AG.AR.GM.GR.MR)$hat) 
fit.model6<-fitted(fit.AC.AM.CM.AG.AR.GM.GR) 
 
data.frame(table.9.1, fitted=fit.model6, residuals=res.model6) 
 
  cigarette alcohol marijuana    sex  race count       fitted   residuals  
1       Yes     Yes       Yes female white   405 394.81378138  2.31218352 
2        No     Yes       Yes female white    13  19.34936858 -1.95386309 
3       Yes      No       Yes female white     1   1.25568751 -0.26793681 
4        No      No       Yes female white     1   0.48020744  0.79799852 
5       Yes     Yes        No female white   268 267.43245628  0.07000670 
6        No     Yes        No female white   218 226.10552205 -1.00689966 
7       Yes      No        No female white    17  17.18531924 -0.06124557 
8        No      No        No female white   117 113.37765755  0.94414973 
9       Yes     Yes       Yes   male white   453 452.25694845  0.16765462 
10        No     Yes       Yes   male white    28  22.16459202  1.77790180 
11       Yes      No       Yes   male white     1   1.92669440 -0.87173015 
12        No      No       Yes   male white     1   0.73681787  0.33769336 
13       Yes     Yes        No   male white   228 234.02052238 -0.74906553 
14        No     Yes        No   male white   201 197.85680885  0.39389108 
15       Yes      No        No   male white    17  20.14353803 -1.01794011 
16        No      No        No   male white   133 132.89407806  0.02722599 
17       Yes     Yes       Yes female other    23  27.53248411 -1.38158402 
18        No     Yes       Yes female other     2   1.34933533  0.57577121 
19       Yes      No       Yes female other     0   0.15851532 -0.40463832 
20        No      No       Yes female other     0   0.06062037 -0.24784091 
21       Yes     Yes        No female other    23  18.64950060  1.32549550 
22        No     Yes        No female other    19  15.76755166  1.02007047 
23       Yes      No        No female other     1   2.16943817 -0.84701196 
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24        No      No        No female other    12  14.31255445 -0.88482760 
25       Yes     Yes       Yes   male other    30  35.77995571 -1.74121619 
26        No     Yes       Yes   male other     1   1.75353441 -0.58857418 
27       Yes      No       Yes   male other     1   0.27593320  1.41736166 
28        No      No       Yes   male other     0   0.10552401 -0.32855531 
29       Yes     Yes        No   male other    19  18.51435109  0.14864501 
30        No     Yes        No   male other    18  15.65328710  0.74381812 
31       Yes      No        No   male other     8   2.88487421  3.26629667 
32        No      No        No   male other    17  19.03254028 -0.74988607 
 
  

D.  Modeling Ordinal Associations 
 
When both responses in a loglinear model are ordinal, a linear-by-linear association model can be used 
to fit a linear trend in ordered row and column scores.  These scores may be assumed to represent an 
underlying continuous distribution.  For an I x J table, the loglinear model adds an interaction term in the 
scores, as follows 

 log X Y
ij i j i ju vμ λ λ λ β= + + + ,  1,..., ; 1,...,i I j J= =  

 
The parameter, β , describes the linear association.  It is positive or negative with the sign of β .  Odds 
ratios depend on β , as well as the score distance between the corresponding rows and columns.  When 
{ }iu i=  and { }jv j= , the local odds ratios for adjacent rows and columns are uniform, and equal 

exp( )β .  This is called the uniform association model. 
 
Agresti fits a uniform association (UA) model to data from the 1991 General Social Survey on opinions 
about premarital sex and birth control for teenagers.  The four categories for opinions about premarital 
sex range from “Always wrong” to “Not wrong at all”.  The four categories for opinions about teenage birth 
control sex range from “Strongly disagree” to “Strongly agree”.  The scores used are {1, 2, 3, 4} for both 
rows and columns, initially. 
 
The data are available from Agresti’s web site.  I have copied the data into a text file called sex.txt.   We 
first read in the data, and give the columns names. 
 
table.9.3<-read.table("c:/program files/r/rw1070/cda/sex.txt", 

col.names=c("premar","birth","u","v","count")) 

 
Then, I noticed that “birth” is recorded so that the 1,1 cell corresponds to the upper right hand corner 
instead of upper left (as might seem more natural), so I perform a transformation of the birth column. 
 
table.9.3$birth<-5-table.9.3$birth # rearrange scores so that table starts at 1,1 in 

the upper left corner 
 
I also noticed that the u and v scores in the data file are not uniform scores, but scores used later in the 
section.  So, I next create uniform scores: u1 and v1. 
 
table.9.3$u1<-table.9.3$premar  
table.9.3$v1<-table.9.3$birth  

 
Also, premar and birth need to be factors for the model fitting.  I have coded the levels of the factors so 
that the 4th level is set to zero, as in the SAS analysis in Table 9.4 in Agresti. 
 
table.9.3$premar<-factor(table.9.3$premar, levels=4:1) 
table.9.3$birth<-factor(table.9.3$birth, levels=4:1) 
 
Now, we fit the uniform association model.  Note the use of the “:” term for the interaction between u1 and 
v1, which not factors. 
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options(contrasts=c("contr.treatment","contr.poly")) 
(fit.ua<- glm(count ~ premar + birth + u1:v1, data=table.9.3, family=poisson)) 

 
Coefficients: 
 (Intercept)     premar3   premar2  premar1   birth3   birth2   birth1     u1:v1  
   0.4734922 -0.01633777 0.1077209 1.753685 1.155142 1.415559 1.879664 0.2858355 
 
Degrees of Freedom: 16 Total; 8 Residual 
Residual Deviance: 11.53369  
 
The estimated local odds ratio for the UA model is  
 
exp(coef(fit.ua)["u1:v1"]) 
 
    u1:v1  
 1.330873 
 
and a Wald 95% CI is obtained from the ASEs from the summary output. 
 
exp(summary(fit.ua)$coef["u1:v1", 1] +  
 1.96*c(-1,1)*summary(fit.ua)$coef["u1:v1", 2]) 
[1] 1.259221 1.406603 
 
According to the estimate, the association is positive, implying that subjects with more favorable attitudes 
about teenage birth control also tended to have more tolerant attitudes about premarital sex.  But, the 
assocation is rather weak.  The odds of responding in the adjacent higher category on one variable are 
1.33 times more likely if the subject responded in the higher category of the other variable (versus the 
lower category). 
 
However, with distance in categories, the odds ratios are larger.  For example, the odds of responding 
“Strongly agree” to teen birth control over “Strongly disagree” are 13.1 times higher if the subject 
responded that premarital sex was “Not wrong at all”  versus responding that it was “Always wrong”. 
 
exp(coef(fit.ua)["u1:v1"] * (4 - 1) * (4 - 1)) 
 
    u1:v1  
 13.09878 
 
Fitted counts for the UA model are obtained using fitted.  Note that since we reversed the “birth” 
variable, we must also reverse the fitted values.  Thus, I have labeled the columns of the matrix from 
“Strongly Agree” to “Strongly Disagree” instead of the reverse labeling. 
 
matrix(fitted(fit.ua), byrow = T, ncol = 4, dimnames = list(PreMar = c("Always wrong", 

"Almost always wrong", "Wrong sometimes",  
 "Not wrong"), "TeenBirth" = c("SA", "A", "D", "SD"))) 
 
                           SA         A        D       SD  
       Always wrong  29.09363  69.39574 67.65406 80.85657 
Almost always wrong  17.59996  31.54350 23.10650 20.75004 
    Wrong sometimes  48.77315  65.68137 36.15178 24.39370 
          Not wrong 155.53326 157.37940 65.08766 32.99969 
 
Standardized Pearson residuals can be obtained using the code from Section C of this chapter. 
 
 
The deviance from a UA model is much smaller than that from an independence model: 
 
(fit.ind<-glm(count ~ premar + birth, data=table.9.3, family=poisson)) 

… 
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Degrees of Freedom: 16 Total; 9 Residual 
Residual Deviance: 127.6529  
 
A LR test of the null hypothesis of independence (i.e., 0 : 0H β = )  has df =1: 
 
anova(fit.ind, fit.ua, test = "Chi") # output from S-PLUS 
 
Analysis of Deviance Table 
 
Response: count 
 
                   Terms Resid. Df Resid. Dev   Test Df Deviance Pr(Chi)  
1         premar + birth         9   127.6529                            
2 premar + birth + u1:v1         8    11.5337 +u1:v1  1 116.1192       0 
 
 
E.  Association Models  
 
Association models generalize loglinear models to ordinal responses, and include the linear-by-linear 
association models.  The focus of these models is on estimating association.  Row and column effects 
models have rows or columns, respectively, as nominal responses, and model an ordinal effect at each of 
the rows or columns.  Multi-way tables with some ordinal responses generalize the two-way tables, 
adding three or higher way interactions. 
 
1. Row and Column Effects Models 
 
The row effect model treats rows (X) as nominal and columns (Y) as ordinal.  Each row has a parameter 
associated with it, called the row effect.  The model for the log expected count in cell ij is 
 

 log X Y
ij i j i jvμ λ λ λ μ= + + +  

 
where the iμ  are the unknown row effects (i = 1,…, I), and the jv  are known column scores.  Thus, the 

model has I – 1 more parameters than an independence model.  An independence model here would 
imply that all row effects are equal.  That is, the linear effect of the column variable on the log expected 
count is the same within each row.  The column effects model is defined similarly. 
 
For the row effects model, the distance between adjacent-categories logits is the same across rows.  
However, the level of the logit will differ between rows i and k by i kμ μ− .  Thus, this model is called the 
parallel odds model. 
 
The Political Ideology Example (Table 9.5 in Agresti) uses a table that cross-classifies Party Affiliation 
(Democrat, independent, Republican) and Political Ideology (Liberal, Moderate, Conservative) for a 
sample of voters in a Wisconsin primary. 
 
A row effects model is fit to Table 9.5, with rows as Party Affiliation. When we construct the table, the 
variable c.Ideo are the scores (1, 2, 3) for Political Ideology. 
 
table.9.5<-

data.frame(expand.grid(Affil=factor(c("Democrat","Independent","Republican"), 
 levels=c("Republican","Independent","Democrat")), 
    Ideology=factor(c("Liberal","Moderate","Conservative"), 

levels=c("Conservative","Moderate","Liberal"))),  
 c.Ideo=rep(1:3,each=3), count=c(143,119,15,156,210,72,100,141,127)) 
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I coded the levels of the factor variables so that the Republican and Conservative levels had zero-valued 
coefficients, for identifiability.  This is done to match the SAS results in Table 9.6 in Agresti. 
 
To fit a row effects model: 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
(fit.RE <- glm(count ~ Ideology + Affil * c.Ideo, family = poisson, data = table.9.5)) 
 
Coefficients: (1 not defined because of singularities) 
 (Intercept) Moderate Liberal  Indep  Demo  c.Ideo Indepc.Ideo  Demc.Ideo  
    4.856484  -0.6244464  -2.048811   2.953568   3.322995     NA     -0.9426178   -1.213361 
 
Degrees of Freedom: 9 Total; 2 Residual 
Residual Deviance: 2.814931  
 
The c.Ideo main effect is confounded with Ideology.  Thus, its coefficient is not estimable.  Since the 
Republican and Conservative category coefficients are set to zero, the two row effect estimates indicate 
deviation from Conservativism relative to Republicans.  The Republican row effect is thus at zero, and 
Democrats are 1.21 units in the Liberal direction.  Independents are 0.94 units in the Liberal direction.   
 
We can get predicted logits (equation 9.9 in Agresti) using fit.RE$linear.predictors and taking 
differences: 
 
res<-matrix(fit$linear.predictors,byrow=F,ncol=3) 
mat<-matrix(c(res[,2]-res[,1],res[,3]-res[,2]),byrow=T,ncol=3) 
 
           [,1]       [,2]      [,3]  
[1,]  0.2110031  0.4817465 1.4243643 
[2,] -0.5889149 -0.3181714 0.6244464 
 
 
Thus, the odds that Republicans are conservative instead of moderate (exp(1.424)), or moderate instead 
of liberal (exp(0.211)) are exp(1.424 – 0.211) = exp(1.213) = 3.36 times the corresponding estimated 
odds for Democrats, and exp(1.424 – 0.482) = exp(0.942) = 2.57 times the corresponding estimated odds 
for independents. 
 
The fitted values 
 
matrix(fitted(fit.RE), byrow = F, ncol = 3, dimnames = list(Affiliation = 

c("Democrat", "Independent", "Republican"), Ideology = c("Liberal", "Moderate", 
"Conservative"))) 

 
              Liberal  Moderate Conservative  
   Democrat 136.63414 168.73171     93.63414 
Independent 123.79454 200.41091    145.79454 
 Republican  16.57131  68.85738    128.57131 
 
To compare independence and row effects models, use anova: 
 
fit.ind<-glm(count~Affil+Ideology,family=poisson,data=table.9.5) 
anova(fit.ind,fit.RE) 
 
Analysis of Deviance Table 
 
Response: count 
 
                      Terms Resid. Df Resid. Dev          Test Df Deviance  
1          Affil + Ideology         4   105.6622                           
2 Ideology + Affil * c.Ideo         2     2.8149 +Affil:c.Ideo  2 102.8472 
 
 
2.  Ordinal Models in Multi-way Tables 
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An extension of association models to multi-way tables permits higher-order interaction models that are 
more parsimonious than their corresponding nominal models.  In particular, the three-way interaction 
model for a three-way table is not saturated.  For a three-way table, with X and Y ordinal, with scores 
{ }iu  and { }jv  respectively, we model heterogeneous linear-by-linear XY association as 
 

 log X Y Z XZ YZ
ijk i j k k i j ik jku vμ λ λ λ λ β λ λ= + + + + + +  

 
In this model, the log XY odds ratios are uniform within each level of Z, but differ across levels of Z.  If 

kβ β=  for all k, then the log odds ratios the same across k as well.  The model is then called the 
homogeneous linear-by-linear association model. 
 
The data in Table 9.7 in Agresti are used to fit these models.  The table cross-classifies smoking status 
(S), breathing test results (B) and age (A) for workers in industrial plants. 
 
The data are read in, and the levels are set so that the last category is zero.  I also define scores for all 
three variables.  These are denoted with a “c” prefix. 
 
table.9.7<-data.frame(expand.grid(Status=factor(c("Never","Former","Current"),

 levels=c("Current","Former","Never",)), 
 Breath=factor(c("Normal","Borderline","Abnormal"),

 levels=c("Abnormal","Borderline","Normal")),  
 Age=factor(c("< 40","40-50"), levels=c("40-50","< 40"))), 
 c.Status=rep(1:3, 6), c.Breath=rep(rep(1:3,each=3),2), c.Age=rep(1:3,each=6), 
 count=c(577,192,682,27,20,46,7,3,11,164,145,245,4,15,47,0,7,27) 
 ) 

 
The heterogeneous L x L model in SB is fit using 
 
options(contrasts=c("contr.treatment","contr.poly")) 
fit.hetero<-glm(count~Age*Breath + Status*Age + Age:c.Breath:c.Status, data=table.9.7, 

family=poisson) 
summary(fit.hetero, cor=F) 

 
Coefficients: 
                         Value Std. Error   t value  
        (Intercept) -3.6502502  1.2561249 -2.905961 
                Age  5.0922343  1.4323399  3.555186 
   BreathBorderline  2.8020966  0.4836257  5.793937 
       BreathNormal  6.8009953  0.8208205  8.285606 
       StatusFormer  0.2983005  0.1947371  1.531811 
        StatusNever  1.1478109  0.3266340  3.514058 
AgeBreathBorderline -1.0592502  0.5771326 -1.835367 
    AgeBreathNormal -2.0669718  0.9340887 -2.212822 
    AgeStatusFormer -1.4076770  0.2297316 -6.127485 
     AgeStatusNever -1.0888096  0.3799020 -2.866028 
                             Value Std. Error  t value  
Age40-50c.Breathc.Status 0.7810585 0.14300764 5.461655 
 Age< 40c.Breathc.Status 0.1148594 0.08593526 1.336580 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 4097.2 on 17 degrees of freedom 
 
Residual Deviance: 10.80173 on 6 degrees of freedom 
 
The last two coefficient estimates give the estimated local log odds ratios for the older and younger 
groups.  The odds ratios for adjacent Smoking and Breathing categories are the same within each age 
group. 



 

 

161

 
A homogeneous L x L model is fit using 
 
fit.homo<-glm(count~Age*(Breath + Status) + c.Breath:c.Status, data=table.9.7, 
family=poisson) 
 
If strata are ordered, and a linear trend in log odds ratios is suspected across levels of Z, Agresti fits a 
model that extends the homogeneous L x L model to include the term ( 1)kI i j δ= =  which adds a 
multiple of δ  to the (1, 1, k) cell.  The resulting XY log odds ratio at level k is then ( 1)kI i jβ δ+ = = . 
 
This model is fit to the famous Coal Miners Data, with Age group as strata.  We read in the data using 
 
table.9.8<-data.frame(expand.grid(Age=factor(c("20-24","25-29","30-34","35-39", 
"40-44","45-49","50-54","55-59","60-64"), 
levels=c("20-24","25-29","30-34","35-39","40-44","45-49","50-54","55-59","60-64")), 
Wheeze=factor(c("Yes","No"), levels=c("Yes", "No")), 
Breath=factor(c("Yes","No"), levels=c("Yes", "No")) ), 
c.Breath=rep(1:2, each=18), c.Wheeze=rep(rep(1:2,ea=9),2), 
extra.term=c(1:9,rep(0,27)), 
count=c(9,23,54,121,169,269,404,406,372,7,9,19,48,54,88,117,152,106,95,105,177,257, 
273,324,245,225,132,1841,1654,1863,2357,1778,1712,1324,967,526)) 

 
Note that this data set is available in the R package vcd.  Make it available by using 
 
library(vcd) 
data(CoalMiners) 

 
To fit the linear term, we use the following command.  I use the label, “extra.term” to stand for δ  
 
fit.ord.strata <- glm(count ~ Age * (Breath + Wheeze) + c.Breath:c.Wheeze + 

extra.term, data = table.9.8, family = poisson) 
summary(fit.ord.strata, cor = F) 
 
Coefficients: 
                 Value Std. Error    t value  
(Intercept) -1.2219654  0.2765376  -4.418804 
   Age25-29  0.8615296  0.3105417   2.774280 
   Age30-34  1.8983149  0.2809356   6.757117 
   Age35-39  2.8672944  0.2695779  10.636237 
   Age40-44  3.3305489  0.2713944  12.271990 
   Age45-49  3.9454944  0.2752234  14.335606 
   Age50-54  4.4348682  0.2829411  15.674175 
   Age55-59  4.6281967 0.29414802  15.734244 
   Age60-64  4.6227534 0.30864611  14.977520 
     Breath -1.5893957 0.39165235  -4.058180 
     Wheeze -4.3747047 0.40643062 -10.763718 
 extra.term -0.1306326 0.02948922  -4.429842 
 
Age25-29Breath -0.7317030 0.31974770  -2.288376 
Age30-34Breath -1.2547109 0.29009124  -4.325229 
Age35-39Breath -1.8607640  0.2779858  -6.693739 
Age40-44Breath -2.2631757  0.2794250  -8.099404 
Age45-49Breath -2.7237497  0.2816056  -9.672216 
Age50-54Breath -3.4320488  0.2866072 -11.974749 
Age55-59Breath -3.8116499  0.2929513 -13.011205 
Age60-64Breath -4.2329837  0.3017371 -14.028713 
Age25-29Wheeze -0.2386797  0.1416818  -1.684618 
Age30-34Wheeze -0.6331931  0.1280614  -4.944451 
Age35-39Wheeze -0.7599432  0.1206598  -6.298231 
Age40-44Wheeze -1.1026877  0.1200128  -9.188081 
Age45-49Wheeze -1.2916855  0.1177208 -10.972452 
Age50-54Wheeze -1.3412138  0.1197136 -11.203522 



 

 

162

Age55-59Wheeze -1.4479318  0.1233793 -11.735617 
Age60-64Wheeze -1.6556074  0.1337443 -12.378905 
 
c.Breath:c.Wheeze 3.676197  0.1998956 18.39058 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 25889.47 on 35 degrees of freedom 
 
Residual Deviance: 6.801743 on 7 degrees of freedom 
 

Thus, the estimated BW local odds ratio at level k of Age is 3.676 – 0.131k.  
 
 
3.  Conditional Tests for Ordinal Models in Multi-way Tables 
 
For small samples, the asymptotic chi-squared approximations to goodness-of-fit tests, such as the 
likelihood-ratio test, do not hold.  Instead, theoretically, the p-value for a test of the goodness of fit of a 
model can be computed from a conditional distribution of the test statistic, by conditioning on estimates of 
certain nuisance parameters.  Conditioning on these sufficient statistics leaves the conditional distribution 
free of these unknown parameters.  So, the p-value is the probability of the test statistic exceeding its 
observed value, conditional on the sufficient statistic taking on its observed value.   
 
The functions in exactLoglinTest give Monte Carlo estimates of conditional p-values for tests of 
Poisson log-linear models.  The function mcexact conditions on all sufficient statistics for parameters in a 
given model, and simulates multi-way tables from the conditional distribution satisfying the observed 
values of the sufficient statistics.  The function approximates the conditional distribution, which is a 
generalized hypergeometric by default, by sampling from it via either importance sampling (method = 
“bab”) or MCMC (method = “cab”).  The details of the procedures can found in the citations that are 
listed in the documentation. 
 
The default test statistics used are the LR test statistic of a model against the saturated model (model 
deviance) and the Pearson chi-squared statistic. 
 
For example, to fit model (9.12) in Agresti using a conditional test, we use mcexact with importance 
sampling. 
 
library(exactLoglinTest) 
set.seed(1) 
 
fit.mc<-mcexact(count~Age*(Breath + Wheeze) + c.Breath:c.Wheeze + extra.term, 
data=table.9.8, method="bab", nosim=10^4, maxiter = 10^4, savechain=T) 

 
The argument nosim is the number of simulations desired out of maxiter iterations.  The reason that 
nosim may not equal maxiter is because some simulations from the conditional distribution apparently 
can result in negative entries in the table.  The option savechain=T saves the chain of simulations, which 
can be used to evaluate the importance sampling or MCMC algorithm.  summary gives more results. 
 
summary(fit.mc) 

 
Number of iterations       =  9649  
T degrees of freedom       =  3  
Number of counts           =  36  
df                         =  7  
Next update has nosim      =  10000  
Next update has maxiter    =  10000  
Proportion of valid tables =  0.9649  
 
                deviance    Pearson 
observed.stat 6.80174259 6.80829750 
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pvalue        0.45862023 0.45123625 
mcse          0.01003939 0.00998465 
 
“Number of iterations” gives the number of simulations actually obtained.  “T degrees of freedom” is a 
tuning parameter, and df is the model df.  “Proportion of valid tables” here is just proportion of simulations 
done, out of maxiter. 
 
In the second half of the output, we have the estimated p-values.  We can compare these to their large-
sample versions 
 
pchisq(fit.mc$dobs, df=7, lower=F) 
 
[1] 0.4498103 0.4491093 
 
They are close, which is expected because of the large sample size. 
 
However, before we “believe” these estimates, we might examine the trace plots and the autocorrelation 
function of the iterations, as well as the logs of the importance weights (if we use importance sampling).  
We saved these results by specifying savechain=T. They are saved as the chain attribute of fit.mc. 
 
layout(matrix(c(1,1,2,3),2,2, byrow=T)) 
plot(fit.mc$chain[,1], type="l", xlab="iteration", ylab="deviance") 
acf(fit.mc$chain[,1]) 
library(MASS) 
truehist(fit.mc$chain[,3], xlab="log importance weight") 
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The trace plot shows good mixing (“randomness”), and the acf shows low autocorrelations.  Also, many of 
the logs of the importance weights are similar. 
 
To continue the sampling, we can use the update method for bab (update.bab).  However, based on the 
diagnostic plots, and the low Monte Carlo standard errors (in summary output) we probably have enough 
iterations.  Large, sparse tables may benefit most from these methods, and we will examine them later in 
this chapter. 
 
F.  Association Models, Correlation Models, and Correspondence Analysis  
  
1. Multiplicative Row and Column Effects Model 
 
The row effects model and the column effects model (as well as the L x L model) are special cases of the 
Row-and-column-effects model (Goodman’s RC model), which has parameter scores for both rows and 
columns.  The model multiplies the two sets of parameters in the model equation, 
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 log X Y
ij i j i jμ λ λ λ βμν= + + +  

 
where iμ  and jν  are parameter scores.  So, instead of having to fix arbitrary scores, we can estimate 
parameter scores.  Agresti notes that finding MLEs is not always easy because the likelihood is not 
always concave.  An iterative modeling fitting algorithm is suggested by Goodman, where one alternates 
between fitting row effects and column effects models, using the estimated scores from each in turn.  In 
this way, one can ideally get MLEs of the row and column scores.  Actually, if corner-point constraints are 
used for the parameter scores, then one gets the differences between each score and the last score (if 
the last parameter score is set to zero for identifiability).  Also, one set of either the row or column 
parameter score estimates is multiplied by the estimate for β .  Thus, the method does not appear to be 
useful as a way to estimate parameter scores. 
 
In the R package VGAM, there is a function grc, which is a front end for the function rrvglm (reduced-
rank vector generalized linear models), also in the same package.  This function will fit an RC model, but 
not estimate the scores as per Agresti’s (9.13) representation of the RC model.  Instead, it estimates a 
matrix of “interaction terms”, ijδ , i = 1,…, I – 1;  j = 1,…, J – 1, where ij i ja cδ = =  ( )( )i I j Jβ μ μ ν ν− − , in 

the language of model (9.13) in Agresti.  Separating ijδ  into these three components appears to be 
impossible.  However, we can still fit the model, and compare its deviance to that of an L x L model.  We 
will see later that correspondence analysis will give us MLEs of the row and column scores. 
 
When I prepare the data for grc, I use “reverse” levels for the factors so that the last category of the 
respective factor is zeroed out instead of the first category. 
 
table.9.9<-data.frame(expand.grid(MH=factor(c("well","mild","moderate","impaired"), 
levels=rev(c("well","mild","moderate","impaired"))), 
SES=factor(LETTERS[1:6], levels=LETTERS[6:1])),  
count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71)) 

 
grc requires the data to be in array or table format.  So, I transform it to a table. 
 
table.9.9.matrix<-t(xtabs(count~MH + SES ,data = table.9.9)) # R only 

 
Now, I fit the RC model.  The Rank is equivalent to Agresti’s M* on p. 380, and Rank = 1 will result in 
model (9.13).  (By the way, there is full documentation for VGAM on the author’s website and 
corresponding papers.  The remaining defaults are explained there.) 
 
library(vgam) 
options(contrasts=c("contr.treatment", "contr.poly")) 
(fit.rc<-grc(table.9.9.matrix, Rank=1)) 
 
Call: 
rrvglm(formula = as.formula(str2), family = poissonff, data = .grc.df,  
    control = myrrcontrol, constraints = cms) 
 
Coefficients: 
 (Intercept)         Row2         Row3         Row4         Row5         Row6  
 4.298506527  0.040277163  0.197234822 -0.193454278 -0.543859296 -0.474304500  
 
 
        Col2         Col3         Col4            E            D            C  
-0.432208305 -0.006267693 -1.184327467  0.172181348  0.376512091  0.467578503  
 
           B            A  
 0.628055583  0.626074261  
 
Residual Deviance: 3.480503 on 8 degrees of freedom 
Log-likelihood: -73.81976 on 8 degrees of freedom 
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In the output, the Row and Column coefficients refer to the X
iλ  and Y

jλ ’s.  Because we set the last 
category to zero, Row2 refers to SES E and Row6 refers to SES A.  Also, Col2 refers to Moderate, and 
Col4 refers to Well.  The coefficients labeled A through E refer to the first five jc  values (the last is 0).  A 
call to summary (i.e., summary(fit.rc)) gives some more information, as well as standard errors. 
 
To get the matrix of ijδ ’s, we first compute a biplot (without plotting it).  The use of biplot reflects the 

fact that the jc  values are involved in a latent variable interpretation in the rrvglm context.  However, we 
only use biplot here to get the interaction term estimates. 
 
res<-biplot(fit.rc, plot.it=F) 
res$Cmatrix 
res$Amatrix 

 
The matrix of ijδ ’s is then 
 
Delta<-structure(rbind(0,res$Cmatrix)%*%t(res$Amatrix), 
dimnames=list(c(LETTERS[6:1]),c(rev(c("well","mild","moderate","impaired")) ))) 
 
Delta 
 
  impaired  moderate      mild      well 
F        0 0.0000000 0.0000000 0.0000000 
E        0 0.1721813 0.2088179 0.4150163 
D        0 0.3765121 0.4566259 0.9075237 
C        0 0.4675785 0.5670694 1.1270250 
B        0 0.6280556 0.7616926 1.5138300 
A        0 0.6260743 0.7592897 1.5090543 
 
Now, I show that these values are the products ( )( )i I j Jβ μ μ ν ν− − , within some rounding error. 
 
mu<-c(-1.68, -.14, .14,1.41) # Agresti’s scores 
nu<-c(-1.11,-1.12,-.37,.03,1.01,1.82) 
mu<-mu-mu[4]  # take differences with last category 
nu<-nu-nu[6] 
 
structure(t(0.17*mu%*%t(nu)), 
dimnames=list(c(LETTERS[1:6]),c("well","mild","moderate","impaired") ) ) 
 
      well     mild moderate impaired 
A 1.539129 0.772055 0.632587        0 
B 1.544382 0.774690 0.634746        0 
C 1.150407 0.577065 0.472821        0 
D 0.940287 0.471665 0.386461        0 
E 0.425493 0.213435 0.174879        0 
F 0.000000 0.000000 0.000000        0 
 
However, working backwards from Delta to its component scores is what is desired. 
 
To compare with an L x L model with equal interval scores, we fit this model by adding fixed scores 
(c.SES and c.MH) to the data frame (you could also put them directly into the formula in glm). 
 
table.9.9a<-data.frame(expand.grid(MH=factor(c("well","mild","moderate","impaired"), 
levels=rev(c("well","mild","moderate","impaired"))), 
SES=factor(LETTERS[1:6], levels=LETTERS[6:1])),  
c.MH=rep(4:1,6), c.SES=rep(6:1,each=4), 
count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71)) 
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(fit.LL<-glm(count~MH + SES + c.MH:c.SES, family=poisson,data=table.9.9a)) 
 
Coefficients: 
(Intercept)   MHmoderate       MHmild       MHwell         SESE         SESD   
   4.141375    -0.370975    -0.182468    -1.200474    -0.009291     0.140934   
       SESC         SESB         SESA   c.MH:c.SES   
  -0.374645    -0.768734    -0.946158     0.090929   
 
Degrees of Freedom: 23 Total (i.e. Null);  14 Residual 
Null Deviance:      217.3  
Residual Deviance: 9.707        AIC: 173.9 
 
A LR test of the parameter scores versus equal interval scores is 
 
fit.LL$deviance-fit.rc@criterion$deviance 
 
[1] 6.226855 
 
with 14 – 8 = 6 df.  Since  
 
pchisq(6.226855,df=6, lower.tail=F) 
 
[1] 0.3982635 
 
the RC model does not provide a significantly better fit. 
 
 
2. Canonical Correlation Model 
 
A canonical correlation model is also an association model.  It fits the joint probabilities  
 

 
1

1
M

ij i j k ik jk
k

π π π λ μ ν+ +
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∑  (9.1) 

 
where M = min(I – 1, J – 1), kλ  is the correlation between scores { ikμ , i = 1,…, I} and { jkν ,  j = 1,…, J}, 

and the scores { ikμ , i = 1,…, I} and { jkν , j = 1,…, J} maximize the correlation kλ  (subject to ikμ  and 

1ikμ −  being uncorrelated, and jkν  and 1jkν −  being uncorrelated, if applicable).  If the kλ  are zero, the 
model reduces to the independence model. 
 
We can fit a one-dimensional (M = 1) canonical correlation model using the corresp function from the 
MASS library.  Agresti notes that when λ  in (9.1) is close to zero, the MLEs of λ  and the score 
parameters are similar to those of β  and the score parameters from the RC model.  In fact, we can 
check this because a one-dimensional fit shows that the MLE of λ  is small. 
 
First, I define a new data frame called table.9.9b to have only the MH and SES factors, and to put the 
levels back in “forward” order. 
 
table.9.9b<-data.frame(expand.grid(MH=factor(c("well","mild","moderate","impaired"), 

levels=(c("well","mild","moderate","impaired"))), 
SES=factor(LETTERS[1:6], levels=(LETTERS[1:6]))),  
count=c(64,94,58,46,57,94,54,40,57,105,65,60,71,141,77,94,36,97,54,78,21,71,54,71)) 

 
Now, I use corresp with number of factors, nf = 1. 
 
corresp(x=design.table(table.9.9b), nf=1) 
# R:  corresp(x=xtabs(count~MH+SES,data=table.9.9b)) 
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First canonical correlation(s): 0.1615119  
 
 MH scores: 
      well       mild   moderate impaired  
 -1.611765 -0.1822571 0.08506316 1.470761 
 
 SES scores: 
         A         B          C          D        E        F  
 -1.127146 -1.151843 -0.3717666 0.07545902 1.018916 1.775564 
 
Compare these estimates with those on p. 381 in Agresti. 
 
We could fit a saturated model (i.e., M = 3) by using nf = 3 or by using functions for correspondence 
analysis, described next. 
 
 
3. Correspondence Analysis 
 
Correspondence analysis is a graphical method for describing associations among categorical variables.  
The rows and columns of a contingency table are represented by points on a graph.  The greater the 
magnitude of the projections of the points onto an axis of the graph, the greater the association described 
by that axis.  Using the same notation as for equation (9.1) above, correspondence analysis uses the 
adjusted scores 

 ,ik k ik jk k jkx yλ μ λ ν= =  
 
Then, the graph of the first two dimensions plots ( 1ix , 2ix ) for each row, and ( 1jy , 2jy ) for each column. 
 
There are many functions for doing correspondence analysis in S-PLUS and R.  I will try to illustrate 
different aspects of each. 
 
The library multiv in both S-PLUS and R has function ca for doing correspondence analysis and function 
plaxes to help with creating a plot like that in Figure 9.4 of Agresti.  It needs an array or table, so  
 
table.9.9b.array<-t(design.table(table.9.9b))  # transposed to match table 9.10 
# R:  table.9.9b.array<-t(xtabs(count~MH+SES,data=table.9.9b)) 
 
library(multiv) 
(fit.ca<-ca(table.9.9b.array, nf=3)) 

 
$evals: 
[1] 0.0260860808 0.0013648955 0.0002818488 
 
$rproj: 
       "Factor1"   "Factor2"    "Factor3"  
[1,]  0.18204759 -0.01965218  0.027711980 
[2,]  0.18603645 -0.01028829 -0.026940068 
[3,]  0.06004474 -0.02157959 -0.010481182 
[4,] -0.01218750  0.04121665  0.009748941 
[5,] -0.16456708  0.04381706 -0.008189913 
[6,] -0.28677478 -0.06237160  0.003613989 
 
$cproj: 
       "Factor1"   "Factor2"    "Factor3"  
[1,]  0.26031947  0.01059579  0.022151845 
[2,]  0.02943694  0.02487137 -0.018917788 
[3,] -0.01373865 -0.06926409 -0.004141493 
[4,] -0.23754551  0.01763209  0.015692677 
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evals are the squared correlations, the kλ  above.  The second and third are almost zero, showing lesser 
importance of the second and third dimensions in explaining variability.  rproj and cproj are the row and 
column scores on each of the three dimensions.   
 
To plot the scores, use 
 
# plot of first and second factors 
plot(fit.ca$rproj[,1], fit.ca$rproj[,2],type="n",ylim=c(-.1,.1),xlim=c(-.3,.3), 
 xlab="",ylab="",axes=F) 
text(fit.ca$rproj[,1], fit.ca$rproj[,2], labels=dimnames(table.9.9b.array)$SES) 
text(fit.ca$cproj[,1], fit.ca$cproj[,2], labels=dimnames(table.9.9b.array)$MH) 
# Place additional axes through x=0 and y=0: 
my.plaxes(fit.ca$rproj[,1], fit.ca$rproj[,2],size=.15) 
# R: my.plaxes.f(fit.ca$rproj[,1], fit.ca$rproj[,2],Length=.15) 
 
where my.plaxes is a modification of plaxes 
 
# S-PLUS 
my.plaxes<- function(a, b, size = 0.1) 
{ 
 arrows(min(a), 0, max(a), 0, size = size) 
 arrows(0, min(b), 0, max(b), size = size) 
} 

 
# R 
my.plaxes<-function(a, b, Length = 0.1) 
{ 
    arrows(min(a), 0, max(a), 0, length = Length) 
    arrows(0, min(b), 0, max(b), length = Length) 
} 
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Another way to do correspondence analysis is via the corresp function from the MASS library.  However, 
this time we set the number of factors (nf) to 3. 
 
fit.corresp<-corresp(x=design.table(table.9.9b),nf=3) 
 
The scores are scaled, so we must re-scale by multiplying by the canonical correlations 
(fit.corresp$cor) 
 
fit.corresp$cor 
[1] 0.16151194 0.03694460 0.01678778 
 
fit.corresp$rscore %*% diag(fit.corresp$cor) 
                [,1]        [,2]         [,3]  
    well -0.26031933 -0.01059603  0.022154293 
    mild -0.02943669 -0.02487118 -0.018914368 
moderate  0.01373872  0.06926415 -0.004136768 
impaired  0.23754547 -0.01763185  0.015693435 
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fit.corresp$cscore %*% diag(fit.corresp$cor) 
         [,1]        [,2]         [,3]  
A -0.18204759  0.01965179  0.027712258 
B -0.18603645  0.01028853 -0.026939901 
C -0.06004474  0.02157969 -0.010480869 
D  0.01218753 -0.04121676  0.009748570 
E  0.16456713 -0.04381688 -0.008190311 
F  0.28677477  0.06237172  0.003614761 
 
Plotting is done via plot(fit.corresp) 
 
The R package CoCoAn will do (constrained) correspondence analysis via the function CAIV.  The call 
takes an array (table) and here would be  
 
library(CoCoAn) 
fit.CAIV<-CAIV(table.9.9b.array) 

 
Finally, a generalization of correspondence analysis to multi-way tables is given in the R function FCAk 
from package PTAk. 
 
G. Poisson Regression for Rates 
 
To model the rate of occurrence of an event over an exposure time, dependent on covariates, a Poisson 
loglinear model is useful.  If the response count for the ith individual is in over exposure time it , then the 
expected rate is /i itμ , the log of which is modeled is a linear function of covariates 
 

 ( )log i i it xμ α β= +  

The term log it  is then considered an offset. 
 
For this section, Agresti uses the data in Table 9.1 - Heart valve operations.  Patients were classified by 
type of heart valve (aortic, mitral) and age (< 55, 55+).  Follow-up observation lasted from the time of 
operation until the patient died or the study ended.  The follow-up observation for each patient is their 
time at risk, in months.  For each cell in the 2 x 2 table, the total time at risk is the sum of the times at risk 
for patients in that cell.  Also recorded is the number of deaths per cell.  The sample death rate is then the 
number of deaths divided by the total time at risk. 
 
After I read in the data, I use the function glm to fit a loglinear model to the responses because I want to 
include the offset term, exposure. 
 
table.9.11<-data.frame(expand.grid(factor(c("Aortic","Mitral")),factor(c("<55","55+"), 

levels= c("<55","55+"))), Deaths=c(4,1,7,9), Exposure=c(1259,2082,1417,1647)) 
names(table.9.11)[1:2]<-c("Valve","Age") 
attach(table.9.11) 
(table.9.11<-data.frame(table.9.11,Risk=Deaths/Exposure)) 
 
   Valve Age Deaths Exposure         Risk  
1 Aortic <55      4     1259 0.0031771247 
2 Mitral <55      1     2082 0.0004803074 
3 Aortic 55+      7     1417 0.0049400141 
4 Mitral 55+      9     1647 0.0054644809 
 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.rate<-glm(Deaths~Valve+Age+offset(log(Exposure)),family=poisson,data=table.9.11) 

 
summary(fit.rate) 
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Coefficients: 
                 Value Std. Error    t value  
(Intercept) -6.3120972  0.5064590 -12.463196 
      Valve -0.3298665  0.4381267  -0.752902 
        Age  1.2209479  0.5136586   2.376964 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 10.84053 on 3 degrees of freedom 
 
Residual Deviance: 3.222511 on 1 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
 
Thus, the estimated rate for the older age group (coded 1, by the ordering of the levels) is exp(1.221) = 
3.4 times that for the younger group.  The LR confidence intervals are 
 
library(MASS) 
exp(confint(fit.rate)) 

 
                   2.5 %       97.5 %  
(Intercept) 0.0005868836  0.004396417 
      Valve 0.2988564722  1.709356104 
        Age 1.3239556759 10.392076295 
 
The chi-squared statistic is 
 
sum(resid(fit.rate, type = "pearson")^2) 
[1] 3.113503 
 
which is not a significantly poor fit at the .05 level. 
 
Fitted values are obtain by 
 
attach(table.9.11) 
mhat<-fitted(fit.rate) 
exphat<-fitted(fit.rate)/Exposure 
temp<-rbind(mhat,exphat) 
array(temp,dim=c(2,2,2),dimnames=list(c("Deaths","Risk"),Valve=c("Aortic","Mitral"),Ag

e=c("<55","55+"))) 

 
, , <55 
            Aortic      Mitral  
Deaths 2.284108702 2.715892496 
  Risk 0.001814225 0.001304463 
 
, , 55+ 
            Aortic      Mitral  
Deaths 8.715891783 7.284108228 
  Risk 0.006150947 0.004422652 
 
 
The model with identity link can be fit by including terms that are products of the numerical codes for 
Valve and Age with Exposure, and by removing an intercept term.  To get the product of Valve and 
Exposure, we extract the numerical codes from Valve and multiply by Exposure, placing all this in an I() 
function (as is function).  For some reason, the codes for Age are backwards (counting down from <55 
instead of up), so I reversed the codes to get the equivalent of older = 1 and younger = 0.  The difference 
is that the sign of the coefficient is now positive instead of negative. 
 
fit.id<-glm(Deaths~I(codes(Valve)*Exposure) + I(rev(codes(Age))*Exposure) + Exposure-

1,family=poisson(link=identity),data=table.9.11) 
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summary(fit.id, cor=F) 

 
Coefficients: 
                                     Value  Std. Error    t value  
   I(codes(Valve) * Exposure) -0.001936109 0.001315309 -1.4719796 
I(rev(codes(Age)) * Exposure)  0.003965548 0.001440062  2.7537340 
                     Exposure  0.000479430 0.003249681  0.1475314 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: Inf on 4 degrees of freedom 
 
Residual Deviance: 1.093067 on 1 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
 
H. Modeling Survival Times 
 
Agresti notes the connection between ML estimation using a Poisson likelihood and a survival-time 
likelihood using an exponential hazard function. So, we can use methods for fitting loglinear models to fit 
these types of survival models.   
 
The random variable is the time to some event.  For the ith subject, this is it .  If the ith subject does not 
experience the event during the study time, then their recorded observation is censored.  Let iw  = 0 if the 
ith observation is censored, and 1 otherwise.  Then, if the exponential hazard is modeled as 
 

 ( ; ) exp( )h t λ ′=x xβ  
 
for covariates in x, then the survival-time log likelihood as a function of β  is identical to the log likelihood 
for independent Poisson variates iw  with expected values ( ; )i i i it h tμ = x .  Thus, we fit the Poisson 
loglinear model ( )log logi i itμ λ ′= + xβ  to responses { iw }. 
 
In the Lung Cancer Survival example, Agresti uses a piecewise constant hazard rate instead of a 
constant hazard rate.  The hazard is constant in two-month intervals of follow-up time.  The data contain 
counts of deaths within each follow-up interval, by factors Histology (I, II, III) and Stage of disease (1, 2, 
3).  When we read in the data set, the variable Deaths is the number of deaths at each cell of the table, or 
the sum of the { ijkw } for the ith histology, jth stage, and kth time interval. 
 
As usual, we reverse the levels of factors so that the glm coding sets the last category to zero instead of 
the first. 
 
table.9.13<-expand.grid(Stage=factor(c(1,2,3), 

levels=3:1),Histology=factor(c("I","II","III"), levels=rev(c("I","II","III"))), 
Time=factor(c(0,2,4,6,8,10,12), levels=rev(c(0,2,4,6,8,10,12)))) 
table.9.13<-data.frame(table.9.13, 

Deaths=c(9,12,42,5,4,28,1,1,19,2,7,26,2,3,19,1,1,11, 9,5,12,3,5,10,1,3,7, 
10,10,10,2,4,5,1,1,6,1,4,5,2,2,0,0,0,3,3,3,4,2,1,3,1,0,3,1,4,1,2,4,2,0,2,3), 
Exposure=c(157,134,212,77,71,130,21,22,101,139,110,136,68,63,72,17,18,63,126,96,90,63,

58,42,14,14,43,102,86,64, 55,42,21,12,10,32,88,66,47,50,35,14, 10,8,21,82, 
59,39,45,32,13,8,8,14,76,51,29,42,28,7,6,6,10) ) 

 
Now, I fit a main effects model,  
 
options(contrasts=c("contr.treatment", "contr.poly")) 
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fit.surv<-glm(Deaths~Histology+Time+Stage+offset(log(Exposure)), data=table.9.13, 
family=poisson,link=log) 

summary(fit.surv, cor=F) 

 
Coefficients: 
                  Value Std. Error    t value  
(Intercept) -1.75261448  0.2626080 -6.6738807 
HistologyII  0.05490011  0.1599783  0.3431722 
 HistologyI -0.10754218  0.1474495 -0.7293492 
     Time10 -0.17497139  0.3203716 -0.5461515 
      Time8 -0.48992699  0.3339600 -1.4670228 
      Time6  0.29410425  0.2706762  1.0865538 
      Time4  0.09545150  0.2669593  0.3575507 
      Time2  0.04772845  0.2596595  0.1838117 
      Time0  0.17518255  0.2497592  0.7014058 
     Stage2 -0.85429714  0.1368623 -6.2420187 
     Stage1 -1.32431049  0.1520463 -8.7099133 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 175.7178 on 62 degrees of freedom 
 
Residual Deviance: 43.92253 on 52 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
Note that we get the estimates of the effects of stage of disease shown on p. 390 of Agresti: 
 
-0.85 + 1.32 = 0.47 (stage 2 – stage 1) 
0 + 1.32 = 1.32 (stage 3 – stage 1) 
 
so that at fixed follow-up time and histology, the estimated death rate at the second disease stage is 
exp(0.47) = 1.60 times that at the first stage. 
 
As Agresti notes, as long as neither of the covariates (Stage or Histology) interacts with Time Interval, we 
have a proportional hazards model.  That is, the hazards at two different covariate combinations are 
proportional to one another (proportionality constant independent of time). 
 
One can use stepAIC in the MASS library to find a model with lowest AIC.  Here is the final result using 
as “upper scope” a model with all two-way interactions, and lower scope a model with all main effects 
except Histology. 
 
fit2<-glm(Deaths~Time+offset(log(Exposure)),data=table.9.13,family=poisson) 
library(MASS) 
stepAIC(fit.surv,scope=list(lower=formula(fit2),upper=~.^2),direction="both", 

trace=F)$anova 

 
Stepwise Model Path  
Analysis of Deviance Table 
 
Initial Model: 
Deaths ~ Histology + Time + Stage + offset(log(Exposure)) 
 
Final Model: 
Deaths ~ Time + Stage + offset(log(Exposure)) 
 
 
         Step Df Deviance Resid. Df Resid. Dev      AIC  
1                                52   43.92253 65.92253 
2 - Histology  2 1.876473        54   45.79901 63.79901 
 
A model without Histology has the lowest AIC. 
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I. Empty Cells and Sparseness 
 
When some cells in a table are empty, ordinary ML estimation may give infinite estimates of model 
parameters, or very large estimates with large standard errors.  Also, goodness-of-fit statistics may not 
have asymptotic chi-squared distributions.  Alternative tests include exact small-sample tests and Monte 
Carlo approximations to exact tests. 
 
For example, for the pharmaceutical clinical trials example, with five centers, two centers have no 
successes for either the treatment or placebo groups.  A logit model with factors Treatment and Center, 
with no intercept gives nonsense estimates for the Center 1 and 3 effects because the Center-Response 
marginal table has zeroes. 
 
table.9.16<-data.frame(expand.grid(treatment=c(1,0), Center= factor(1:5, levels=1:5)), 
prop=c(0,0,1/13,0,0,0,6/9,2/8,5/14,2/14)) 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.glm.sparse<-glm(prop~treatment+Center-1, data=table.9.16, weights=c(5,9,13,10,7, 
5,9,8,14,14), family=binomial) 
 
Warning message:  
Algorithm did not converge in: (if (is.empty.model(mt)) glm.fit.null else glm.fit)(x = 
X, y = Y,   
 
summary(fit.glm.sparse) # R output 
 
Coefficients: 
          Estimate Std. Error z value Pr(>|z|)     
treatment   1.5460     0.7016   2.203 0.027568 *   
Center1   -13.5922    95.2086  -0.143 0.886478     
Center2    -4.2025     1.1891  -3.534 0.000409 *** 
Center3   -13.5874    87.9646  -0.154 0.877244     
Center4    -0.9592     0.6548  -1.465 0.142955     
Center5    -2.0223     0.6700  -3.019 0.002540 **  
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 73.07369  on 10  degrees of freedom 
Residual deviance:  0.50231  on  4  degrees of freedom 
AIC: 24.859 
 
Number of Fisher Scoring iterations: 10 
 
An approximate likelihood-ratio test of the treatment effect compares the deviance between the fit above 
and the fit without treatment. 
   
fit.glm.sparse2<-glm(prop~Center-1, data=table.9.16, weights=c(5,9,13,10,7,5,9,8, 14, 
14), family=binomial) 
 
anova(fit.glm.sparse2,fit.glm.sparse) # R output 
 
Analysis of Deviance Table 
 
Model 1: prop ~ Center - 1 
Model 2: prop ~ treatment + Center - 1 
  Resid. Df Resid. Dev Df Deviance 
1         5     5.9880             
2         4     0.5023  1   5.4856 # LRT 
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However, we can use the survival library to get an exact likelihood ratio test of the treatment effect.  
Recall that to use clogit (R) or coxph (S-PLUS) for conditional logistic regression, the data must be in 
0’s and 1’s (i.e., success, failure) instead of counts out of totals.  I modify the data first, and rename the 
table table.9.16a.  I call the success/failure factor, case. 
 
temp<-length(20) 
temp[rep(c(T,F),10)]<-c(0,0,1,0,0,0,6,2,5,2)  # 1 
temp[rep(c(F,T),10)]<-c(5,9,12,10,7,5,3,6,9,12) # 0 
table.9.16a<-data.frame(table.9.16[rep(1:10,c(5,9,13,10,7,5,9,8,14,14)),1:2], 
case=rep(rep(c(1,0),10),temp)) 

 
Now, I call coxph (or it’s R wrapper, clogit) using Center as a strata variable, with method=”exact”. 
 
library(survival) # R only 
clogit(case~treatment+strata(Center), data=table.9.16a, method="exact") 
# S-PLUS: coxph(Surv(rep(1,sum(temp)),case)~treatment + strata(Center), 

data=table.9.16a, method="exact") 
 
 
          coef exp(coef) se(coef)    z     p 
treatment 1.47      4.35    0.682 2.16 0.031 
 
Likelihood ratio test=5.23  on 1 df, p=0.0222  n= 94 
 
Thus, there is a significant treatment effect. 
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Chapter 10 – Models for Matched Pairs  
 
A.  Summary of Chapter 10, Agresti   
  
 Matched pairs data contain observations on two response variables where each observation from 
one response variable pairs with one and only one observation from the other response variable.  Thus, 
the two response variables are dependent.  This chapter examines analyses of matched-pairs data with 
categorical responses. 
 The first section considers binary outcomes.  Marginal homogeneity occurs when the marginal 
probabilities for one response equal the corresponding marginal probabilities for the other response.  This 
implies that the off-diagonal joint probabilities are also equal (symmetry).  Mcnemar’s Test can be used to 
compare the corresponding dependent proportions. 
 “Subject-specific” tables have separate tables for each matched pair.  They allow probabilities to 
vary by pair.  (Thus, a better term might be pair-specific tables).  Population-averaged tables sum the 
subject-specific tables and correspond to marginal models.  Subject-specific tables are used to fit logit 
models that allow each pair to have their own probability distribution.  However, with these models, there 
are usually more parameters than pairs, leading to problems with ML estimation.  Solutions include 
conditional ML estimation and random effects models. 
 Extensions to matched-pairs with multinomial responses and additional explanatory variables use 
the random effects approach.  This is because the conditional ML approach can only estimate within-pair 
or within-cluster effects.  Between-cluster effects (covariates that are constant within any given cluster) 
will cancel out of the conditional likelihood.  Marginal models for matched-pairs for multinomial responses 
are discussed in Section 10.3. 
 Instead of modeling the marginal probabilities, one can model the joint cell probabilities.  Cell 
probabilities that satisfy symmetry (i.e., ab baπ π=  for a b≠ ) also satisfy marginal homogeneity, but not 
necessarily vice versa (unless quasi-symmetry also holds).  The equivalent loglinear model has pairwise 
association terms independent of the order of the subscripts (e.g., ab baλ λ=  for a b≠ ).  Because of its 
simplicity, a symmetry model fits well in very few applications.  A quasi-symmetry loglinear model permits 
the main-effect terms in the symmetry model to differ, so that ab baλ λ=  for log abμ  and log baμ , but the 
main-effect terms differ so that log logab baμ μ≠ , as it is for symmetry (see equation 10.19 in Agresti).  

The differences in the MLEs of the main effects parameters { }Y X
j jλ λ−  are equal to conditional MLEs of 

the { }jβ  in a baseline-category logit model applied to a population-averaged table.  Finally, a square 
table satisfies quasi-independence if the row and column variables are independent given that the row 
and column outcomes differ.  Ordinal versions of quasi-symmetry and quasi-independence are given in 
Sections 10.4.6 – 10.4.8. 
 Matched-pairs models are used to analyze agreement between two observers.  An independence 
model assumes no agreement.  Quasi-independence and quasi-symmetry models imply some 
association.  A numerical index of agreement is Cohen’s Kappa, ranging between 0 = agreement by 
chance only and 1 = perfect agreement. 
 Paired preferences are common in analyses using preference data.  The data may consist of an I 
x I table whose cells contain the number of preferences for the column designation versus the row 
designation.  The Bradley-Terry logit model can be used to model influences on the probability that one 
member is preferred to another.  The model can be extended to handle comparisons on ordinal scales. 
 Matched-sets are the generalization of matched-pairs to three or more responses.  There are 
analogs for marginal homogeneity, symmetry, and quasi-symmetry for matched-sets.  Marginal 
homogeneity is the equality of marginal probabilities in the multi-way table.   Symmetry is the equality of 
symmetric joint probabilities, where symmetric means permuted responses.  The log-linear quasi-
symmetry model is the symmetry model, plus factors representing main effect terms for the marginals. 
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B.  Comparing Dependent Proportions 
 
 In a 2 x 2 table, if 1π + denotes the marginal “success” probability for response 1, and 1π+  denotes 
the marginal “success” probability for response 2, then to test for marginal homogeneity ( 0 1 1:H π π+ += ), 
one can use the difference between the corresponding sample proportions.  The square of the score 
statistic for this test (equation 10.4 in Agresti) is the test statistic of Mcnemar’s Test, which has chi-
squared distribution with 1 df.  Mcnemar’s test does not use the counts on the main diagonal because 
they are irrelevant to decide whether the marginal probabilities 1π +  and  1π+  differ.  Confidence intervals 
on the difference ( 1 1π π+ +− ), based on large-sample theory, do depend on the main diagonal counts. 
 
 The Prime Minister Approval Rating example compares the proportion of survey respondents 
who approved of the UK Prime Minister on two different occasions (the responses). 
 
table.10.1<-matrix(c(794,150,86,570),byrow=T,ncol=2) 
 
Mcnemar’s test is built into both R and S-PLUS.  This tests the hypothesis of marginal homogeneity. 
 
mcnemar.test(table.10.1,correct=F) 
 
 McNemar's chi-square test without continuity correction 
 
data:  table.10.1  
McNemar's chi-square = 17.3559, df = 1, p-value = 0  
 
Marginal homogeneity is rejected.  A confidence interval on the difference between the two marginal 
probabilities is given using a large-sample formula in (10.2) of Agresti.  The computation is aided by two 
utility functions in the base library of R: marginal.table and prop.table.  Both of these functions can 
be sourced directly into S-PLUS (but without the “environment” information at the bottom). 
 
prop.table gives the table of sample proportions. 
 
table.10.1.prop<-prop.table(table.10.1) 
 

marginal.table gives the marginal sums for rows (1) or columns (2).  I use it to get d. 
 
prop.diff<-margin.table(table.10.1.prop,2)[1]-margin.table(table.10.1.prop,1)[1] 
 
Next, the off-diagonal proportions are used in the computation of the standard error. 
 
off.diag<-diag(table.10.1.prop[1:2,2:1]) 
 
Here is the 95% confidence interval 
  
prop.diff + c(-1,1)*qnorm(.975)*sqrt((sum(off.diag) - diff(off.diag)^2) / 
sum(table.10.1)) 
 
[1] -0.05871612 -0.02128388 
 
It shows that the probability of approval decreases between 2 and 6 percent across the two occasions. 
 
A small-sample test comparing dependent proportions conditions on the sum of the off-diagonal counts.  
Then, one of the two terms in the sum is binomially distributed with index equal to this sum, and 
probability ½.   
 
Also, McNemar’s test is equivalent to a Cochran-Mantel-Haenszel test with subjects as strata.  Thus, the 
CMH test is performed on a 2 x 2 x n table.  This table is called the subject-specific table, and will be 
used in the next section. 
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 C.  Conditional Logistic Regression for Binary Matched Pairs 
 
A subject-specific table (or, more accurately, a pair-specific table) can be used to fit a logit model with 
pair-specific probabilities.  Specifically, for binary response itY  from the tth observation from the ith pair  
 

 ( )[ ]logit 1it i tP Y xα β= = +  
 
where 1 0x =  and 2 1x = .  With this model, for each pair, the odds of success for observation 2 are 
exp( )β  times the odds for observation 1, and this odds ratio is common across pairs.  Conditional on the 

iα  and β , pairs are independent of each other, and within a pair, observations are independent of each 
other.  This means that the association within a pair is described completely by iα , and pairs are only 
associated via the common effect, β . 
 Conditional logistic regression can be used to find the MLE for β , where one conditions on 
sufficient statistics for the iα , which are the pairwise success totals 1 2{ }i i iS y y= +  (see section 10.2.3 in 
Agresti).  This distribution only depends on β  when at least one of the ity  is 1.  Thus, inference on β  
only depends on outcomes in different categories at the two observations. 
 An alternative way to find the MLE for β  is to treat the iα  as random effects, with identical 
normal distributions.  Integrating the likelihood with respect to the distributions of the iα  yields a marginal 
likelihood for β , which is maximized to get the MLE.  The model is called a generalized linear mixed 
model.  The MLE is the same for either the conditional ML estimation or ML estimation via the 
generalized linear mixed model. 
 
 Agresti illustrates a case-control study where 144 cases have myocardial infarction (MI) and 144 
controls, matched to cases by age and gender, do not.  Thus, there are 144 pairs.  Each member of a 
pair was also asked whether they had diabetes (1 = yes, 0 = no).  The response in this model is MI, which 
is fixed.  The predictor is diabetes, which is random.  The study is thus retrospective, but we can still get 
an estimate of the XY odds ratio, exp( )β  in a logistic regression model, by using the fixed responses 
(see chapter 2).  The model for subject t in pair i is 
 

 ( )[ ]logit 1it i itP Y xα β= = +  
 
We can get the MLE of β  using conditional logistic regression or by integrating out random effects.  The 
population-averaged table is in Table 10.3 in Agresti.  The pairs for the subject-specific table are in Table 
10.4.  We input the data into S using the subject-specific form.  The following data frame has the 
variables: pair (either subject 1 or subject 2 of the matched pair), MI (myocardial infarction; yes=1, no=0), 
diabetes (yes=1, no=0). 
 
table.10.3<-data.frame(pair=rep(1:144,rep(2,144)), MI=rep(c(0,1),144),  
 diabetes=c(rep(c(1,1),9),rep(c(1,0),16),rep(c(0,1),37),rep(c(0,0),82)) 
) 

 
For a conditional logistic regression, we can use coxph with method=exact, as we did in Section J of 
Chapter 6.  Recall that for R, we use the front-end function clogit. 
 
fit.CLR<-coxph(Surv(rep(1,2*144),MI)~diabetes+strata(pair),method="exact", 

data=table.10.3) 
# R: library(survival) 
# R: fit.CLR<-clogit(MI~diabetes+strata(pair),method="exact", data=table.10.3) 
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summary(fit.CLR) 

 
  n= 288  
 
          coef exp(coef) se(coef)   z      p  
diabetes 0.838      2.31    0.299 2.8 0.0051 
 
         exp(coef) exp(-coef) lower .95 upper .95  
diabetes      2.31      0.432      1.29      4.16 
 
Rsquare= 0.029   (max possible= 0.5 ) 
Likelihood ratio test= 8.55  on 1 df,   p=0.00345 
Wald test            = 7.85  on 1 df,   p=0.00508 
Score (logrank) test = 8.32  on 1 df,   p=0.00392 
 
 
In Section 10.2.6, Agresti shows how to fit this model using only software for logistic regression. 
 
We can also fit a generalized linear mixed model (GLMM), where the iα  are random effects with normal 
distribution, mean 0 and unknown standard deviation.  The MASS library fits GLMMs with its function 
glmmPQL via penalized quasi-likelihood estimation.  It uses the function lme, so the specification of its 
arguments is very similar to lme, and its output is identical.  Two additional R packages have functions for 
fitting GLMMs.  glmmML in package glmmML fits GLMMs (binomial and Poisson families only) with random 
(normal) intercepts via maximum likelihood estimation.  The repeated package also contains a glmm 
function, which fits via ML estimation.  Gauss-Hermite quadrature is used to integrate with respect to the 
random effects. 
 
To use glmmPQL, we need to specify a fixed-effect formula and a random-effect formula.  The fixed-effect 
formula will be like an ordinary S formula: response ~ predictor.  Here, it is MI ~ diabetes because 
diabetes is the predictor.  To specify a random intercept within pair, we use ~ 1 | pair for the random 
argument.  The 1 indicates a random intercept, and “| pair” means “within pair”.  Thus, the call for both 
S-PLUS and R is  
 
library(MASS) 
fit.glmmPQL<-glmmPQL(MI ~ diabetes, random = ~ 1 | pair, family = binomial, data = 

table.10.3) 
summary(fit.glmmPQL) 
 
iteration 1  
Linear mixed-effects model fit by maximum likelihood 
 Data: table.10.3  
       AIC      BIC    logLik  
  1232.324 1246.976 -612.1621 
 
Random effects: 
 Formula:  ~ 1 | pair 
        (Intercept)  Residual  
StdDev: 0.001827267 0.9993246 
 
Variance function: 
 Structure: fixed weights 
 Formula:  ~ invwt  
Fixed effects: MI ~ diabetes  
                 Value Std.Error  DF   t-value p-value  
(Intercept) -0.1941562 0.1367889 143 -1.419386  0.1580 
   diabetes  0.8038742 0.2836710 143  2.833826  0.0053 
 
Number of Observations: 288 
Number of Groups: 144  
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In the output, under “Random effects”, we get the standard deviation of the normal distribution of the 
random effects, which is quite small at 0.001827267.  This may imply a very low association between 
members of the same pair, as it means that the iα  are probably very similar (Recall that the association 
is described completely by the iα , by definition of the model).  “Residual”, I believe, is an estimate of the 
scale, which for the binomial is fixed at 1.0.  We also get estimates of the fixed effects, notably the 
estimate of the effect of diabetes (0.8038742).  The PQL estimate is slightly different from the conditional 
ML estimate from coxph. 
 
The function glmmML only allows a random intercept, and as such is less general than glmmPQL, although 
it is fine for this particular problem.  The arguments for glmmML differ in that cluster defines the random 
factor.  Note that the cluster argument will be evaluated in the calling environment, not within the data 
list.  So, you cannot just set cluster=pair for analyzing table.10.3 above (you must include the data 
frame as well).  Using glmmML, we get the same numerical estimate of β  as from glmmPQL.  The estimate 
of the standard deviation of the random effects (7.12e-06) is much smaller, but the resulting conclusion 
about low association is the same. 
 
library(glmmML) 
glmmML(MI ~ diabetes, cluster=table.10.3$pair, family = binomial, data = table.10.3) 

 
               coef se(coef)      z Pr(>|z|) 
(Intercept) -0.1942   0.1364 -1.423  0.15500 
diabetes     0.8039   0.2835  2.836  0.00457 
 
Standard deviation in mixing distribution:  7.12e-06  
Std. Error:                                 0.05206  
 
Residual deviance: 390.9 on 285 degrees of freedom      AIC: 396.9  
 
The definitions of AIC are the same in both functions (i.e., -2*loglik + 2*npar).  Thus, the difference in 
the AIC values across functions is due to the representation of the log likelihood, as glmmML gives -
195.4561 for the log likelihood. 
 
The function glmm in the repeated library also fits random effects model, and allows several choices of 
error distributions besides binomial.  The argument nest is for specifying the pair variable. 
 
fit.glmm<-glmm(MI ~ diabetes, family=binomial, data=table.10.3, nest=pair) 
 
summary(fit.glmm) 
 
Coefficients: 
              Estimate Std. Error  z value Pr(>|z|)    
(Intercept) -1.942e-01  1.365e-01   -1.423   0.1548    
diabetes     8.039e-01  2.837e-01    2.834   0.0046 ** 
sd           6.829e-07  1.196e-01 5.71e-06   1.0000    
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 399.25  on 287  degrees of freedom 
Residual deviance: 390.80  on 285  degrees of freedom 
AIC: 396.8 
 
Number of Fisher Scoring iterations: 4 
 
Normal mixing variance: 4.662868e-13  
 
Thus, glmm gives the same estimates as glmmML. 
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D.  Marginal Models for Square Contingency Tables 
 
This section discusses marginal models for matched-pairs with ordinal and nominal multinomial 
responses.  For an I x I table, marginal homogeneity is 1 2( ) ( )P Y a P Y a= = =  for responses tY , t = 1, 2 
and categories 1,...,a I= . 
 
1.  Ordinal Classifications 
 
The cumulative logit model for matched-pairs is 
 

 ( )[ ]logit , 1,2; 1,..., 1t j tP Y j x t j Iα β≤ = + = = −  

 
where 1 0x =  and 2 1x = .  In this model, the odds of outcome 2Y j≤  is exp( )β  times the odds of 
outcome 1Y j≤ .  Marginal homogeneity corresponds to 0β = . 
 
 In the Premarital and Extramarital Sex example, subjects responded with opinions about 
premarital sex (1 = always wrong, 2 = almost always wrong, 3 = sometimes wrong, 4 = never wrong) and 
about extra-marital sex.  Agresti fits a cumulative marginal logit model (equation 10.14) to these data, 
using maximum likelihood estimation.  One way to do this is to use J. Lang’s mph.fit function for R, 
which uses a method of constrained maximum likelihood estimation.  The model specification follows that 
in Section 11.2.5 in Agresti.  Briefly, if π  denotes the complete set of multinomial joint probabilities, then 
a marginal logit model has the generalized loglinear form 
 

 ( )log =C A Xπ β  (10.1) 
The components of (10.1) are used in mph.fit. 
 In using the function, I follow the notation of Lang’s documentation.  First, I will fit a marginal 
homogeneity model, which constrains the corresponding row and column marginal probabilities to be 
equal.  This constraint is specified in the function h.fct, which is an optional argument to mph.fit.  As 
you might perceive, the h function is the gradient of the Lagrangian. 
 
The observed counts are in y.  The matrix Z describes the strata in the data.  Here, we do not have 
stratification, so Z is a vector of ones.  ZF = Z because the sample size is assumed fixed (see the 
documentation).  M1, M2, and C.matrix are used in the constraint function.  M1 and M2 are used to get row 
and column totals of the expected counts.  C.matrix is a constraint matrix that specifies marginal 
homogeneity. 
 
y <- c(144, 33, 84, 126, 2, 4, 14, 29, 0, 2, 6, 25, 0, 0, 1, 5) 
 
ZF <- Z <- matrix(1,16,1)  

 
The function Marg.fct creates a marginalizing matrix that when multiplied by the vector of counts gives 
the appropriate marginal counts.  The first argument gives the index to NOT sum over.  The second 
argument gives the levels of the factors (here, both have 4 levels). 
 
M1 <- Marg.fct(1,rep(4,2))  # used to get m1+, etc 
M2 <- Marg.fct(2,rep(4,2))  # used to get m+1, etc 
 
The constraint matrix is used to specify marginal homogeneity, but doesn’t use all equality relations, as 
some are redundant. 
 
C.matrix <- matrix(c(  

1, 0, 0, 0, -1, 0, 0, 0,  # y1+ = y+1 
0, 1, 0, 0, 0, -1, 0, 0, # y2+ = y+2 
0, 0, 1, 0, 0, 0, -1, 0), # y3+ = y+3 
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3,8,byrow=T)  
 
h.fct <- function(m) {  # constraint function 
   marg <- rbind(M1%*%m,  M2%*%m)   # y1+, y2+, y3+, y4+, y+1, y+2, y+3, y+4 
   C.matrix%*%marg                  # y1+ = y+1, y2+ = y+2, etc 
}  
 
 
Now, we fit the model and get a summary, which gives the LR statistic, among other statistics.  The p-
values indicate a significantly poor fit. 
 
a <- mph.fit(y=y,Z=Z,ZF=ZF,h.fct=h.fct)  
 
mph.summary(a) 

 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 3 ):  Gsq =  348.0921 (p =  0 ) 
    Pearson's Score Stat  (df= 3 ):  Xsq =  247.3116 (p =  0 ) 
    Generalized Wald Stat (df= 3 ):  Wsq =  271.8397 (p =  0 ) 
 
 
CONVERGENCE STATISTICS... 
    iterations = 100 
    norm.diff  = 0.368841 
    norm.score = 7.2566e-09 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02 
 
Now, to fit the cumulative marginal logit model, we need to create the C, A, and X matrices in equation 
(10.1).  The matrices y, Z, M1, and M2 remain the same as above.  The result of the computations below  
give AMarg, which is a vector with the following sums of marginal probabilities, and their complements. 
 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 4( , , , , , , , ,..., )π π π π π π π π π π π π π π π π π+ + + + + + + + + + + + + + + + ++ + + + + + + +  
 
 
M<-rbind(M1,M2) 
 
CUM0 <- matrix(c( 

1, 0, 0, 0, 
0, 1, 1, 1, 
1, 1, 0, 0, 
0, 0, 1, 1, 
1, 1, 1, 0, 
0, 0, 0, 1) 

,6,4,byrow=T) 
 

CUM <- kronecker(diag(2),CUM0) 
 
AMarg <- CUM%*%M 

 
The C matrix (called CMarg) is a contrast matrix used to take differences of the logs of the probabilities 
above.   When CMarg and AMarg are used in L.fct, which is the left side of equation (10.1), we get the 
cumulative logits. 
 
C0 <- matrix(c( 

1, -1, 0, 0, 0, 0, 
0, 0, 1, -1, 0, 0, 
0, 0, 0, 0, 1, -1), 

3,6,byrow=T) 
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CMarg <- kronecker(diag(2),C0) 
 
 
L.fct <- function(m) { 
   CMarg%*%log(AMarg%*%m) 
} 

 
The design matrix on the right side of (10.1) represents the right side of model equation 10.14 in Agresti. 
 
 
XMarg <- matrix(c( 

1, 0, 0, 1, # j = 1, t = 1 
0, 1, 0, 1, # j = 2, t = 1 
0, 0, 1, 1, # j = 3, t = 1 
1, 0, 0, 0, # j = 1, t = 0 
0, 1, 0, 0, # etc 
0, 0, 1, 0) 

,6, 4,byrow=T) 
 
 
Now, we fit the model, and get a summary.  I give selected output below. 
 
a <- mph.fit(y,Z,ZF,L.fct=L.fct,X=XMarg) 
 
mph.summary(a) 
 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 2 ):  Gsq =  35.0301 (p =  2.4735e-08 ) 
    Pearson's Score Stat  (df= 2 ):  Xsq =  29.93261 (p =  3.1639e-07 ) 
    Generalized Wald Stat (df= 2 ):  Wsq =  24.56912 (p =  4.6226e-06 ) 
 
 
LINEAR PREDICTOR MODEL RESULTS... 
            BETA StdErr(BETA)   Z-ratio      p-value 
beta1 -0.9738808   0.09819651 -9.917673 0.000000e+00 
beta2 -0.4330636   0.09185925 -4.714426 2.423929e-06 
beta3  0.5385457   0.09246113  5.824564 5.726206e-09 
beta4  2.4992700   0.12930736 19.328134 0.000000e+00 
 
 
 
CONVERGENCE STATISTICS... 
    iterations = 100 
    norm.diff  = 1.24881 
    norm.score = 0.0394783 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02  
 
We get a much smaller LR statistic, but the model still fits significantly poorly.  The term beta4 above 
corresponds to β  in Agresti’s equation 10.14.  The others correspond to the jα ’s. 
To use S-PLUS, you could either modify mph.fit to work with S-PLUS 6.1 or use the yags library, which 
is discussed in Chapter 11. 
 
 
2.  Nominal Classifications 
 

For an I x I table with matched pairs, a LR test of marginal homogeneity maximizes a multinomial 
likelihood in the cell counts subject to corresponding marginal totals being equal.  This can be done easily 
using glm in R or S-PLUS, or using mph.fit in R.  To illustrate, we use the Migration Example in Section 
10.3.4 in Agresti.  The table of counts indicates the number of people surveyed who changed residence 
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from the Northeast, Midwest, South, and West regions of the U.S. in 1980 to any of those same regions 
in 1985.  The large majority remained in the same region for both years. 

 
To compute a LR test using glm, we need the cell counts and a set of dummy variables that 

correspond to the constraints of marginal homogeneity.  Table A.17 in Agresti shows the set of dummy 
variables.  In that table, corresponding marginal expected frequencies are constrained to be equal and 
are thus represented by only three variables: m1, m2, and m3 (m4 = n – m1 – m2 – m3), instead of six 
variables, differentiating row from column totals.  Then, the observed counts are modeled as functions of 
the expected marginal frequencies as well as expected cell counts.  For example, the observed (1, 4) cell 
is modeled as m1 – (m11 + m12 + m13), where mij gives the expected count in the ijth cell.   
 
So, we create a data frame with this matrix of dummy variables and the observed counts. 
 
dummies<-matrix(c(   
 1,    0,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,     0, 
 0,    1,    0,    0,    0,    0,    0,    0,    0,     0,     0,     0,     0, 
 0,    0,    1,    0,    0,    0,    0,    0,    0,     0,     0,     0,     0, 
-1,   -1,   -1,    0,    0,    0,    0,    0,    0,     0,     1,     0,     0, 
 0,    0,    0,    1,    0,    0,    0,    0,    0,     0,     0,     0,     0, 
 0,    0,    0,    0,    1,    0,    0,    0,    0,     0,     0,     0,     0, 
 0,    0,    0,    0,    0,    1,    0,    0,    0,     0,     0,     0,     0, 
 0,    0,    0,   -1,   -1,   -1,    0,    0,    0,     0,     0,     1,     0, 
 0,    0,    0,    0,    0,    0,    1,    0,    0,     0,     0,     0,     0, 
 0,    0,    0,    0,    0,    0,    0,    1,    0,     0,     0,     0,     0, 
 0,    0,    0,    0,    0,    0,    0,    0,    1,     0,     0,     0,     0, 
 0,    0,    0,    0,    0,    0,   -1,   -1,   -1,     0,     0,     0,     1, 
-1,    0,    0,   -1,    0,    0,   -1,    0,    0,     0,     1,     0,     0, 
 0,   -1,    0,    0,   -1,    0,    0,   -1,    0,     0,     0,     1,     0, 
 0,    0,   -1,    0,    0,   -1,    0,    0,   -1,     0,     0,     0,     1, 
 0,    0,    0,    0,    0,    0,    0,    0,    0,     1,     0,     0,     0), 
nrow=16, ncol=((4-1)^2) + 1 +3) 
 
 
dummies<-data.frame( 

counts=c(11607,100,366,124,87,13677,515,302,172,225,17819,270,63,176,286,10192), 
dummies) 

names(dummies)<-c("counts", 
"m11","m12","m13","m21","m22","m23","m31","m32","m33","m44","m1","m2","m3") 

We then use glm with Poisson family and identity link to get the equivalencies corresponding to marginal 
homogeneity. 
 
(fit<-glm(counts~.-1,family=poisson(identity),data=dummies)) 
 
Coefficients: 
   m11      m12      m13      m21   m22      m23      m31      m32  
 11607 98.08285 265.6867 88.73298 13677 379.0733 276.4748 350.8006 
 
   m33   m44       m1       m2       m3  
 17819 10192 12064.74 14377.15 18733.53 
 
Degrees of Freedom: 16 Total; 3 Residual 
Residual Deviance: 240.7458  
 
The Residual Deviance gives the value of the LR statistic.  Note that the estimated coefficients are the 
expected counts.  We can also reproduce them using fitted. 
 
residence80 <- (c("NE", "MW", "S", "W")) 
residence85 <- (c("NE", "MW", "S", "W")) 
matrix(fitted(fit), byrow = T, nc = 4, dimnames = list(residence80, residence85)) 
 
            NE          MW          S           W  
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NE 11607.00000    98.08285   265.6867    93.96975 
MW    88.73298 13677.00000   379.0733   232.34523 
 S   276.47479   350.80060 17819.0000   287.25936 
 W    92.53157   251.26811   269.7747 10192.00000 
 
Of course, with such a large value of the statistic, we reject marginal homogeneity. 
 
The R function mph.fit can also be used to get the LR test.  Example 3 of Lang’s documentation for the 
function gives the necessary steps, which can be applied almost verbatim to the Migration data.  It is left 
to the reader to try mph.fit on this data set, recalling that h.fct is the constraint function. 
 
A Wald test of marginal homogeneity can be computed using Bhapkar’s statistic (equation 10.16 in 
Agresti).  This statistic is actually very easy to calculate if we follow Wickens (1989, pp. 313-314)  and 
note that what we are testing is a set of simultaneous linear combinations of the cell probabilities.  These 
linear combinations are 
 

 
12 13 14 21 31 41

12 32 42 21 23 24

13 23 43 31 32 34

π π π π π π
π π π π π π
π π π π π π

+ + = + +
+ + = + +
+ + = + +

 

 
which imply marginal homogeneity if they hold simultaneously.  If we represent the cell probabilities in a 
16 x 1 vector, π , then the following matrix, A, gives the three linear combinations above if post-multiplied 
by π  
 
A<-matrix(c(0,1,1,1,-1,0,0,0,-1,0,0,0,-1,0,0,0, 
            0,1,0,0,-1,0,-1,-1,0,1,0,0,0,1,0,0, 
            0,0,1,0,0,0,1,0,-1,-1,0,-1,0,0,1,0),nc=16,nr=3,byrow=T) 

 
Post-multiplying A by the vector of sample proportions, p, gives the estimated linear combinations, y. 
 
counts<-c(11607,100,366,124,87,13677,515,302,172,225,17819,270,63,176,286,10192) 
p<-counts/(n<-sum(counts)) 
(y<-A%*%p) 
 
             [,1]  
[1,]  0.004787339 
[2,] -0.007198871 
[3,]  0.008931602 
 
To compute estimated covariance matrix of y, we need is the estimated covariance matrix of p.  This is 
found easily using the outer function applied to p, and then setting the diagonal. 
 
Sp<--outer(p,p)/n 
diag(Sp)<-p*(1-p)/n 

 
Then, Sy is the estimated covariance matrix of y. 
 
Sy<-A%*%Sp%*%t(A) 

 
The Wald statistic is the quadratic form in y, below. 
 
W<-as.numeric(t(y) %*% solve(Sy) %*% y) 
 
[1] 236.4906 
 
which compared to a chi-squared distribution with 3 df gives a p-value of 
 
1 - pchisq(W, df = 3) 
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[1] 0 
 
 
E.  Symmetry, Quasi-symmetry, and Quasi-independence  
 

An I x I table satisfying symmetry has ab baπ π= , a b≠ .  This implies the loglinear model  
 

 log ab a b abμ λ λ λ λ= + + +  
 
where all ab baλ λ= .  Note that the main-effect terms are the same for the two expected frequencies abμ  
and baμ .  Quasi-symmetry allows the main-effect terms to differ so that  
 

 log logX Y X Y
ab a b ab ba b a abμ λ λ λ λ μ λ λ λ λ= + + + ≠ = + + +  

 
For this model, the odds ratios on one side of the main diagonal are identical to the “mirror-image” odds 
ratios on the other side.  The loglinear model for a table displaying quasi-independence adds a parameter 
for each cell on the main diagonal: 
 

 log ( )X Y
ab a b a I a bμ λ λ λ δ= + + + =  

 
When 0aδ > , aaμ  is greater than under independence.  Thus, this model would be used for a table that 
showed independence on the off-diagonal cells, but had larger counts on the main diagonal. 
 
 Agresti uses the Migration example to illustrate fitting these three models via maximum likelihood 
estimation.  We can use the definitions above to create a data frame 
 
residence80<-factor(residence80, levels= residence80) 
residence85<-residence80 
 
table.10.6<-expand.grid(res80=residence80,res85=residence85) 
table.10.6$counts<-c(11607,100,366,124,87,13677,515,302,172,225,17819,270, 

63,176,286,10192) 

 
 
1. Symmetry Model 
 
To fit a symmetry model, we add a factor called “symm” to the data frame.  This factor has a level for 
each unique cell probability in the table.  I also reverse the levels so that the coefficient that is zeroed out 
for identifiability is the last coefficient. 
 
table.10.6$symm<-paste( 
 pmin(as.numeric(table.10.6$res80),as.numeric(table.10.6$res85)), 
 pmax(as.numeric(table.10.6$res80),as.numeric(table.10.6$res85)),sep=",") 
table.10.6$symm<-factor(table.10.6$symm, levels=rev(table.10.6$symm)) 

 
   res80 res85 counts symm  
 1    NE    NE  11607  1,1 
 2    MW    NE    100  1,2 
 3     S    NE    366  1,3 
 4     W    NE    124  1,4 
 5    NE    MW     87  1,2 
 6    MW    MW  13677  2,2 
 7     S    MW    515  2,3 
 8     W    MW    302  2,4 
 9    NE     S    172  1,3 
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10    MW     S    225  2,3 
11     S     S  17819  3,3 
12     W     S    270  3,4 
13    NE     W     63  1,4 
14    MW     W    176  2,4 
15     S     W    286  3,4 
16     W     W  10192  4,4 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
(fit.symm <- glm(counts ~ symm, family = poisson(log), data = table.10.6)) 
 
Coefficients: 
 (Intercept)   symm3,4   symm2,4   symm1,4   symm3,3   symm2,3   symm1,3   symm2,2  
    9.229358 -3.601737 -3.752895 -4.691396 0.5586622 -3.315851 -3.634645 0.2941125 
 
   symm1,2   symm1,1  
 -4.691397 0.1300053 
 
Degrees of Freedom: 16 Total; 6 Residual 
Residual Deviance: 243.5502  
 
 
This method is due to Alan Zaslavsky, as far as I know.  The estimates in the model correspond to the 

abλ s in the model log ab abμ λ= .  The deviance statistic is still very high.. 
 
 
2. Quasi-Symmetry Model 
 
For the quasi-symmetry, we need to add a factor to the model that differentiates main effects for rows and 
columns.  We do this by adding res80a to the model, which is res80 with the levels reversed so that the 
last category coefficient (for West) is zeroed out.  The resulting coefficient estimates are the differences 
{ }Y X

j jλ λ−  for j = 1, 2, 3. 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
table.10.6$res80a<-factor(table.10.6$res80, levels=rev(residence80)) 
table.10.6$res85a<-factor(table.10.6$res85, levels=rev(residence80)) # we will use 

this for quasi-independence 
(fit.qsymm<-glm(counts~symm+res80a,family=poisson(log),data=table.10.6)) 
 
Coefficients: 
 (Intercept)   symm3,4   symm2,4   symm1,4   symm3,3   symm2,3   symm1,3  symm2,2  
    9.229358 -3.664378 -3.489224 -4.410902 0.4370738 -3.132979 -3.436262 0.916888 
 
   symm1,2   symm1,1   res80aS   res80aMW   res80aNE  
 -4.044439 0.8017449 0.1215884 -0.6227755 -0.6717397 
 
Degrees of Freedom: 16 Total; 3 Residual 
Residual Deviance: 2.985962  
 
The quasi-symmetry model fits well, with asymptotic p-value  
 
1 - pchisq(fit.qsymm$deviance, df = fit.qsymm$df) 
[1] 0.3937946 
 
which well exceeds 0.05. 
 
To interpret the parameter estimates in terms of subject-specific effects, for a given subject, the estimated 
odds of living in the MidWest instead of the West (the last category) in 1985 were exp(-0.623) = 0.536 
times the odds in 1980. 
 
Fitted counts are obtained using 
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matrix(fitted(fit.qsymm), ncol = 4, byrow = T, dimnames = 

list(rev(levels(residence80)),  rev(levels(residence85)))) 
 
            NE          MW          S          W  
NE 11607.00000    95.78862   370.4375   123.7739 
MW    91.21138 13677.00000   501.6825   311.1061 
 S   167.56253   238.31746 17819.0000   261.1200 
 W    63.22609   166.89392   294.8800 10192.0000 
 
 
From equation (10.25) in Agresti, a test of the null hypothesis of marginal homogeneity is given by  
 
1 - pchisq(fit.symm$deviance - fit.qsymm$deviance, df = fit.symm$df - fit.qsymm$df) 
 
[1] 0 
 
showing strong evidence of marginal heterogeneity. 
 
A fit of the quasi-symmetry model for the Migration data is given in an example in the documentation for 
the R package exactLoglinTest.  In fact, the data are included in the library as residence.dat. 
 
library(exactLoglinTest) 
data(residence.dat)  

 
residence.dat 
 
       y res.1985 res.1980 sym.pair 
1  11607       NE       NE        1 
2    100       MW       NE        2 
3    366        S       NE        3 
4    124        W       NE        4 
5     87       NE       MW        2 
6  13677       MW       MW        5 
7    515        S       MW        6 
8    302        W       MW        7 
9    172       NE        S        3 
10   225       MW        S        6 
11 17819        S        S        8 
12   270        W        S        9 
13    63       NE        W        4 
14   176       MW        W        7 
15   286        S        W        9 
16 10192        W        W       10 
 
The variable sym.pair serves the same purpose as symm above.  We can use mcexact to check the 
asymptotic p-value. 
 
(fit.qsymm.exact<-mcexact(y ~ res.1980 + factor(sym.pair), data=residence.dat, 
maxiter=10^6,  nosim=10^4)) 
 
                 deviance   Pearson 
observed.stat 2.985962330 2.9819870 
pvalue        0.395651242 0.3956424 
mcse          0.003848147 0.0038481 
 
The Monte Carlo p-value is slightly larger. 
 
 
3. Quasi-independence 
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To fit a quasi-independence model to the Migration data, we can add four dummy variables to the data 
frame that represent the main diagonal cells. 
 
table.10.6$D1<-as.numeric(table.10.6$symm=="1,1") 
table.10.6$D2<-as.numeric(table.10.6$symm=="2,2") 
table.10.6$D3<-as.numeric(table.10.6$symm=="3,3") 
table.10.6$D4<-as.numeric(table.10.6$symm=="4,4") 

 
The model is fit with these variables plus the main effect variables 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
 (fit.qi <- glm(counts ~ res80a + res85a + D1 + D2 + D3 + D4, family = poisson(log), 

data = table.10.6)) 
 
Coefficients: 
 (Intercept)   res80aS   res80aMW   res80aNE   res85aS  res85aMW   res85aNE       D1  
    5.045833 0.7317538 -0.1734236 -0.7777343 0.6239489 0.4973868 -0.0316759 5.122941 
 
       D2       D3       D4  
 4.153674 3.386485 4.183525 
 
 
Degrees of Freedom: 16 Total; 5 Residual 
Residual Deviance: 69.5094  
 
This model fits worse than the quasi-symmetry model. 
 
The first edition of this manual (Thompson, 1999) gave another way to fit the quasi-independence model 
using loglin (or loglm in MASS).  With this method, one zeroes out the main diagonal of the table and 
fits an independence loglinear model, treating the main diagonal zeroes as structural zeroes.  The start 
option in loglin can be used to set structural zeroes.  Note that this method only deals with the part of 
the table relevant for the analysis (i.e., the off-diagonals). 
 
 
F.  Square Tables with Ordered Categories  
 
When categories are ordered, more parsimonious loglinear models exist.  Agresti discusses quasi-
symmetry models, conditional symmetry models, and quasi-uniform association models for ordinal 
categories. 
 
1. Ordinal Quasi-Symmetry 
 
For ordered scores 1 ... Iu u≤ ≤ , ordinal quasi-symmetry model sets Y X

b b buλ λ β− =  within the quasi-
symmetry model for nominal categories.  Thus, the difference in the effect of a category from one 
occasion to the other follows a linear trend in the category scores.  The logit representation (10.27 in 
Agresti) shows that the greater | |β , the greater the difference between the two joint probabilities abπ  and 

baπ  and hence the difference between the marginal row and column distributions.  Thus, a test of 
marginal homogeneity is a test of 0β = .  As with quasi-symmetry models for nominal categories, a LR 
test compares the deviance for symmetry and quasi-symmetry. 
 
Agresti fits an ordinal quasi-symmetry model to the Premarital and Extra-marital Sex data, giving scores 
1, 2, 3, 4 to the categories.  We can use glm to fit this model. 
 
Again, when we create a symm factor, we use the reverse levels so that the 4,4 coefficient is zeroed out. 
 
table.10.5<-data.frame(expand.grid(PreSex=factor(1:4),ExSex=factor(1:4)),counts=c(144, 

33, 84, 126, 2, 4 ,14 ,29 ,0 ,2 ,6 ,25, 0, 0, 1, 5)) 
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table.10.5$symm<-paste( 
 pmin(as.numeric(table.10.5$PreSex),as.numeric(table.10.5$ExSex)), 
 pmax(as.numeric(table.10.5$PreSex),as.numeric(table.10.5$ExSex)),sep=",") 
table.10.5$symm<-factor(table.10.5$symm, levels=rev(table.10.5$symm)) 
 
table.10.5$scores<-rep(1:4,each=4) 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
(fit.oqsymm<-glm(counts~symm + scores,data=table.10.5,family=poisson(log)) ) 

 
Coefficients: 
 (Intercept)   symm3,4   symm2,4   symm1,4   symm3,3   symm2,3  symm1,3   symm2,2  
    13.03569 -1.263781 -3.958567 -5.343038 -2.674243 -4.605853 -5.75161 -5.936272 
 
   symm1,2   symm1,1    scores  
 -6.679657 -5.209317 -2.856564 
 
Degrees of Freedom: 16 Total; 5 Residual 
Residual Deviance: 2.097209  
 
Thus, the estimated probability that premarital sex is judged wrong only sometimes and extramarital sex 
is judged always wrong is exp(2*2.86) = 304.9 times the estimated probability that extramarital sex is 
judged wrong only sometimes and premarital sex is judged always wrong. 
 
2.  Conditional Symmetry 
 
Symmmetry in an I x I table implies ab baπ π=  for all a, b.  Conditional symmetry implies ab baπ π<  or 

ab baπ π>  for all a < b.  Thus, ab baeτπ π=  for some τ , which implies that the probability of first response 

being a and second response being b is eτ  larger than the probability of first response a and second 
response b. 
 
This gives the logit model 
 

 ( )log ,ab ba a bπ π τ= <  
 
The equivalent loglinear model is 
 

 log ( )ab a b ab I a bμ λ λ λ λ τ= + + + + <  
 
where all ab baλ λ= . 
 
To fit the conditional symmetry model to the example above, first I get a vector that represents τ . 
 
temp<-matrix(0,nr=4,nc=4) 
tau<-as.numeric(row(temp)<col(temp)) 
tau 
 
 [1] 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 0 
 
Then, I add tau to the symmetry model 
 
options(contrasts = c("contr.treatment", "contr.poly"))  
fit.cs<-glm(counts~symm+tau,family=poisson(log),data=table.10.5) 
summary(fit.cs, cor=F) 

 
Coefficients: 
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                 Value Std. Error    t value  
(Intercept)  1.6094379  0.4472136  3.5988126 
    symm3,4  1.6327093  0.4883751  3.3431460 
    symm2,4  1.7419086  0.4842847  3.5968686 
    symm1,4  3.2108947  0.4560560  7.0405708 
    symm3,3  0.1823216  0.6055301  0.3010941 
    symm2,3  1.1472015  0.5123936  2.2389066 
    symm1,3  2.8054296  0.4603858  6.0936490 
    symm2,2 -0.2231436  0.6708204 -0.3326428 
    symm1,2  1.9299608  0.4781430  4.0363673 
    symm1,1  3.3603754  0.4549115  7.3868777 
        tau -4.1303475  0.4499372 -9.1798320 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 888.3778 on 15 degrees of freedom 
 
Residual Deviance: 15.51736 on 5 degrees of freedom 
 
Number of Fisher Scoring Iterations: 5  
 
The estimated value of τ  implies that the estimated probability that premarital sex is considered more 
wrong (i.e., closer to 1 than 4) than extramarital sex is exp(-4.13) = 0.016 times the estimated probability 
that extramarital sex is considered more wrong. 
 
3.  Quasi-Uniform Association 
 
Even after conditioning on the event that the two responses differ, sometimes independence still does not 
hold.  Sometimes there is a monotone pattern to the probabilities.  The loglinear model 
 

 log ( )X Y
ab a b a b au u I a bμ λ λ λ β δ= + + + + =  

 
permits linear-by-linear association off the main diagonal.  For equal-interval scores, it implies uniform 
local association, given that responses differ. 
 
Fitting this model to the above example requires first defining scores for the row variable, then creating a 
Delta vector respresenting aδ . 
 
table.10.5$scores.a<-rep(1:4,4) 
Delta<-as.numeric(row(temp)==col(temp)) 

 
I also modified the PreSex and ExSex factors to have reversed levels so that the last category coefficient 
would be zero. 
 
table.10.5$PreSex<-factor(table.10.5$PreSex, levels=rev(table.10.5$PreSex)) 
table.10.5$ExSex<-factor(table.10.5$ExSex, levels=rev(table.10.5$ExSex)) 
 
options(contrasts = c("contr.treatment", "contr.poly"))  
fit.qa<-glm(counts~PreSex+ExSex+scores:scores.a + Delta,family=poisson(log), 

data=table.10.5) 
summary(fit.qa, cor=F) 
 
Coefficients: 
                       Value Std. Error   t value  
    (Intercept)  -8.58112859  1.8763462 -4.573318 
        PreSex3   0.24220678  0.1989176  1.217624 
        PreSex2  -0.04925675  0.3280743 -0.150139 
        PreSex1   1.54119021  0.4710163  3.272053 
         ExSex3   4.37970228  0.6979412  6.275174 
         ExSex2   7.06457536  1.0791369  6.546505 
         ExSex1  10.94128024  1.4192651  7.709117 
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          Delta   0.43837201  0.2737843  1.601158 
scores:scores.a   0.61632154  0.1142078  5.396493 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 888.3778 on 15 degrees of freedom 
 
Residual Deviance: 5.797136 on 7 degrees of freedom 
 
Number of Fisher Scoring Iterations: 4  
 
Thus, off the main diagonal, the estimated local odds ratio is exp(0.616) = 1.85, which is slightly lower 
than Agresti’s result of 1.88. 
 
 
G.  Measuring Agreement Between Observers 
 
Matched-pairs models are used to measure agreement between ratings from two observers.  An 
independence model would imply no agreement, whereas a quasi-independence or quasi-symmetry 
model implies some agreement in ratings. 

Section 10.5 in Agresti uses the Pathologists’ Tumor Ratings data to illustrate fitting different 
models to assess degree of agreement between the two pathologists.  The baseline model is the 
independence model.  The quasi-independence and quasi-symmetry models allow estimation of the odds 
of agreement. 
 
The data set is available in the R package exactLoglinTest.  We dump the object and source it into an S-
PLUS session.  So, for example 
 
# R 
library(exactLoglinTest) 
data(pathologist.dat) 
 
dump("pathologist.dat", file="c:/program files/insightful/splus61/users/cda/ 
pathologist.R") 

 
# S-PLUS 
source("pathologist.R") 

 
However, there are three differences between pathologist.dat and Table 10.8 in Agresti.  First, Agresti 
only uses the first 4 levels of each variable.  Second, the A and B labels are reversed.  Third, two of the 
counts differ across the two data sets.  We will fix the last two now, then subset the data in the glm call. 
 
We can switch the labels by changing the names 
 
names(pathologist.dat)<-c("y","B","A") 

 
We fix the two counts to match Agresti’s 
 
pathologist.dat$y[pathologist.dat$A==4 & (pathologist.dat$B==3 | 

pathologist.dat$B==4)] <-c(17,10) 

 
We also create factors out of A and B, making the levels reversed so that the last category is zero for 
identifiability. 
 
pathologist.dat$A<-factor(pathologist.dat$A, levels=5:1) 
pathologist.dat$B<-factor(pathologist.dat$B, levels=5:1) 

 
Agresti shows that the independence model fits poorly, with large positive standardized residuals on the 
main diagonal and mainly negative residuals on the off-diagonals. 
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options(contrasts = c("contr.treatment", "contr.poly")) 
(fit.ind <- glm(y ~ A + B, data = pathologist.dat, family = poisson(log), subset = (A 

!= 5) & (B != 5))) 
 
Coefficients: 
 (Intercept)        A3          A2          A1       B3        B2        B1  
   0.8641481 0.3053828 -0.07410805 -0.07410781 1.931478 0.1822781 0.9932105 
 
Degrees of Freedom: 16 Total; 9 Residual 
Residual Deviance: 117.9569  
 
 
pear.std<-resid(fit.ind, type="pearson")/sqrt(1-lm.influence(fit.ind)$hat) 
matrix(pear.std,nr=4,byrow=T) 
 
           [,1]      [,2]       [,3]      [,4]  
[1,]  8.4792195 -0.473263 -5.9460585 -1.749755 
[2,] -0.5014518  3.201010 -0.5419787 -1.749897 
[3,] -4.0736603 -1.214994  5.5035585 -2.268019 
[4,] -3.2976055 -1.322654  0.2751683  5.901283 
 
A quasi-independence model would account for the counts on the main diagonal being larger than 
expected under independence.  Recall this model adds main-diagonal parameters.  We can add these 
parameters into the model by creating dummy variables 
 
pathologist.dat$D1<-as.numeric((pathologist.dat$A==1) & (pathologist.dat$B==1)) 
pathologist.dat$D2<-as.numeric((pathologist.dat$A==2) & (pathologist.dat$B==2)) 
pathologist.dat$D3<-as.numeric((pathologist.dat$A==3) & (pathologist.dat$B==3)) 
pathologist.dat$D4<-as.numeric((pathologist.dat$A==4) & (pathologist.dat$B==4)) 
 
options(contrasts = c("contr.treatment", "contr.poly")) 
(fit.qi<-glm(y~A+B+D1+D2+D3+D4,family=poisson(log),data=pathologist.dat, 

subset=(A!=5)&(B!=5))) 

 
Coefficients: 
 (Intercept)         A3        A2       A1       B3       B2       B1       D1  
   -9.146122 -0.8928303 0.2375028 -1.39455 11.71995 10.25029 9.770648 3.861066 
 
        D2       D3       D4  
 0.6042435 1.902521 11.44871 
 
Degrees of Freedom: 16 Total; 5 Residual 
Residual Deviance: 13.17847  
 
 
If two pathologists classify two slides as (2 = atypical squamous hyperplasia) and (3 = carcinoma in situ), 
then the odds that they agree on which is 2 and which is 3 are equal to 
 

 22 33 22 33
23 2 3

23 32 23 32
exp( )π π μ μτ δ δπ π μ μ= = = +  

 
This is estimated as exp(0.6 + 1.9) = 12.3. 
 
This model fits better than independence, but the fitted counts show some discrepancy compared with 
the observed counts. 
 
matrix(fitted(fit.qi), nr = 4, byrow = T) 
 
           [,1]      [,2]      [,3]          [,4]  
[1,] 22.0000000 0.7479747  3.252025 2.643897e-005 
[2,]  2.3679620 7.0000000 16.632038 1.352185e-004 
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[3,]  0.7646757 1.2353243 36.000000 4.366551e-005 
[4,]  1.8673623 3.0167010 13.115937 1.000000e+001 
 
A quasi-symmetry model would account for any association on the off-diagonal.  To fit that model, we 
need to create a symm factor.  To ensure that we use the correct levels, we create a new data frame 
without the ratings of 5.  Then, we drop the unused level  5 in the factors. 
 
pathologist.dat2<-pathologist.dat[(pathologist.dat$A!=5)&(pathologist.dat$B!=5),] 
pathologist.dat2$A<-pathologist.dat2$A[drop=T] 
pathologist.dat2$B<-pathologist.dat2$B[drop=T] 

 
Because we already reversed the levels of A and B, the symm factor levels are not reversed. 
 
pathologist.dat2$symm<-paste( 
 pmin(as.numeric(pathologist.dat2$A),as.numeric(pathologist.dat2$B)), 
 pmax(as.numeric(pathologist.dat2$A),as.numeric(pathologist.dat2$B)),sep=",") 
 
pathologist.dat2$symm<-factor(pathologist.dat2$symm, levels=(pathologist.dat2$symm)) 

 
Because we have two symmetric cells both with a count of 0, we have to fix the fitted counts to zero.  The 
function loglin can do this well through the use of the start argument (see p. 71 of Thompson, 1999).  
As we have been using glm here, we will try to achieve the same thing by using start (in S-PLUS) or 
etastart (in R).   
 
starter<-fitted(fit.qi) 
starter[c(4,13)]<-0  # the fixed zeroes 

 
options(contrasts = c("contr.treatment", "contr.poly")) 
fit.qsymm<-glm(y~symm + A, data=pathologist.dat2, family=poisson(log), 

control=glm.control(maxit=100), start=starter) 
# R: fit.qsymm<-glm(y~symm + A, data=pathologist.dat2, family=poisson(log), 

control=glm.control(maxit=100), etastart=starter) 
  
Coefficients: 
 (Intercept)   symm3,4   symm2,4   symm1,4   symm3,3   symm2,3   symm1,3  symm2,2  
    27.39476 -2.230336 -2.599296 -60.19605 -1.818099 -1.099226 -27.39476 1.992546 
 
   symm1,2   symm1,1        A3        A2        A1  
 -24.56154 -25.09217 -25.80378 -23.63075 -24.30371 
 
Degrees of Freedom: 16 Total; 3 Residual 
Residual Deviance: 0.9783039  
 
 
The degrees of freedom apparently need to be reduced because we fixed cells.  Under quasi-symmetry, 
if two pathologists classify two slides as (2 = atypical squamous hyperplasia) and (3 = carcinoma in situ), 
then the odds that they agree on which is 2 and which is 3 are equal to  
 
as.numeric(exp(coefs["symm2,2"] + coefs["symm3,3"] - 2 * coefs["symm2,3"])) 
 
[1] 10.72846 
 
The fitted counts then should reflect the fixed zeroes. 
 
matrix(fitted(fit.qsymm), nr = 4, byrow = T) 
 
              [,1]    [,2]     [,3]          [,4]  
[1,] 2.200000e+001 2.36483  1.63517 2.220446e-016 
[2,] 4.635170e+000 7.00000 14.36483 5.461304e-011 
[3,] 3.648303e-001 1.63517 36.00000 1.056836e-010 
[4,] 5.683035e-015 1.00000 17.00000 1.000000e+001 
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H.  Kappa Measure of Agreement 
 
A numerical index that summarizes agreement is Cohen’s Kappa.  Kappa compares the probability of 
agreement, aaa

π∑ , to that expected if the two sets of ratings were independent, a aa
π π+ +∑ , as a 

proportion of the difference between perfect agreement (1.0) and chance agreement.   
 

 
1

aa a aa a

a aa

π π π
κ

π π
+ +

+ +

−
=

−
∑ ∑

∑
 

 
Kappa equals 0 when agreement equals that expected under independence, and equals 1.0 when 
perfect agreement occurs.  With ordered categories, one can weight disagreements in ratings differently 
depending on the difference between the ratings.  Weighted Kappa is 
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Fleiss and Cohen give weights 2 21 ( ) ( 1)abw a b I= − − − , which are larger for ratings closer together. 
 
We can compute Kappa and its ASE in S-PLUS using the function 
 
Kappa<-function(table){ 
 pow<-function(x,a) x^a 
 pij<-table/(n<-sum(table)) 
 row.sums<-rowSums(pij) 
 col.sums<-colSums(pij) 
 outer.sum<-outer(row.sums,col.sums,"+") 
 pio<-sum(diag.pij<-diag(pij)) 
 pie<-sum(row.sums*col.sums) 
 
 kap<-(pio-pie)/(1-pie)  
 
 var<-(pio*(1-pio)/pow(1-pie,2)) + (2*(1-pio)*(2*pio*pie-sum(diag.pij*(row.sums + 

col.sums)))/pow(1-pie,3)) +  
 pow(1-pio, 2)*(sum(pij*pow(outer.sum,2)) - 4*pow(pie,2))/pow(1-pie, 4) 
 
 return(c(kappa=kap, SE=sqrt(var/n))) 
} 

 
which requires a table as input (obtainable using design.table, for example).  In the R package vcd, 
there is a Kappa function which computes both unweighted and weighted Kappa.  It also gives the 
estimated standard error and a 95% confidence interval.  Thus, for the pathologists’ tumor ratings data, 
we get 
 
# S-PLUS 
path.tab<-design.table(pathologist.dat2[c("y","B","A")]) 
Kappa(path.tab) 
  
     kappa         SE  
 0.4930056 0.06137286 
 
and  
 
# R 
library(vcd) 
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path.tab<-xtabs(y~A+B, data=pathologist.dat2) 
Kappa(path.tab, weights="Fleiss-Cohen") 
 
               value        ASE       lwr       upr 
Unweighted 0.4930056 0.06163942 0.3721945 0.6138166 
Weighted   0.7838219 0.10260338 0.5827230 0.9849208 
 
The 95% confidence interval shows that the weighted Kappa can be quite high.  However, we don’t have 
ordinal ratings.  Some nominal classification disagreements may be considered more severe than others 
(e.g., one classification of 1 and another not 1) in which case the weights matrix would reflect that. 
 
 
I.  Bradley-Terry Model for Paired Preferences 
 
Consider an I x I table of counts where the (a, b) cell is the number of times category a is preferred to 
category b, of a set of I categories (the main diagonal is empty).  The Bradley-Terry model for the 
probability that a is preferred to b is 

 log ab
a b

ba
β βΠ

Π
= −  

 
where abΠ  is the probability that a is preferred to b, and  [ ]exp( ) exp( ) exp( )ab a a bβ β βΠ = + .  There are 

( )2
I  such probabilities for the I x I table, described by ( 1)I −  parameters.  Thus, the above Bradley-

Terry model has residual df = ( ) ( 1)2
I I− − .  When the abN  comparisons of categories a and b are 

independent with probability abΠ  for each, then the number preferring a, abn , has a binomial( abN , abΠ ) 
distribution. 
 
Agresti fits the Bradley-Terry model to wins (and losses) from the seven teams of the 1987 American 
baseball season in the Eastern Division.  We want to estimate the probability that each team is preferred 
over each other team.  We can do this by fitting the logit model as above or fitting the equivalent quasi-
symmetry model in Section 10.6.3 in Agresti. 

For the logit model formulation, we first create seven artificial variables, corresponding to the 
seven teams, and then fitting a logit model to the counts of wins.  Here, X1 – X7 are the artificial 
variables, which equal 1 if the particular team won the game represented by the cell,  – 1 if the team lost 
the game, and 0 if the team did not play. 
 
Milwaukee<-c(-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) 
Detroit<-  c(1,0,0,0,0,0,-1,-1,-1,-1,-1,rep(0,10)) 
Toronto<-  c(0,1,0,0,0,0,1,0,0,0,0,-1,-1,-1,-1,rep(0,6)) 
NY<-       c(0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,-1,-1,-1,rep(0,3)) 
Boston<-   c(0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,-1,-1,0) 
Cleveland<-c(0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,-1) 
Baltimore<-c(0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0) 

 
Then, the first column of response is the number of wins in each of the 21 games; the second is the 
number of losses. 
 
response<-cbind(c(6,4,6,6,4,2,6,8,2,4,4,6,6,5,1,7,6,3,6,1,7), 13 - c(6,4,6,6,4,2,6, 
8,2,4,4,6,6,5,1,7,6,3,6,1,7)) 

 
To fit the model, we use the assumption of the binomial distributions given above.  Each of the Xs will 
represent a parameter.  We set the last parameter to zero for identifiability purposes.  We also exclude an 
intercept. 
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options(contrasts=c("contr.treatment", "contr.poly")) 
fit.BT<-glm(response~-1 + Milwaukee + Detroit + Toronto + NY + Boston + Cleveland , 

family=binomial)  # exclude intercept 

 
summary(fit.BT, cor = F) 
 
Coefficients: 
              Value Std. Error  t value  
Milwaukee 1.5813542  0.3430970 4.609059 
  Detroit 1.4364067  0.3394029 4.232157 
  Toronto 1.2944835  0.3365135 3.846750 
       NY 1.2476162  0.3357076 3.716377 
   Boston 1.1076961  0.3337292 3.319147 
Cleveland 0.6838513  0.3317390 2.061414 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 49.69851 on 21 degrees of freedom 
 
Residual Deviance: 15.7365 on 15 degrees of freedom 
 
Number of Fisher Scoring Iterations: 3  
 
 
The fitted counts are given by 
 
losing.team<-c("Milwaukee","Detroit","Toronto","NY","Boston","Cleveland", "Baltimore")  # labels 
win.team<-losing.team 

 
fitted.counts<-matrix(0,nc=7,nr=7,dimnames=list(win.team,win.team)) 
fitted.counts[lower.tri(fitted.counts)]<-round(13*fitted(fit.BT),1) 
fitted.counts[!lower.tri(fitted.counts,diag=T)]<-13-round(13*fitted(fit.BT),1) 
fitted.counts 

 
          Milwaukee Detroit Toronto   NY Boston Cleveland Baltimore  
Milwaukee       0.0     7.0     7.4  8.0    7.0      10.5       7.0 
  Detroit       6.0     0.0     7.6  9.2    7.1       6.7       8.3 
  Toronto       5.6     6.0     0.0 10.8    7.6       7.1      10.1 
       NY       5.4     5.9     6.3  0.0    8.8       8.4       7.9 
   Boston       5.0     5.4     5.9  6.0    0.0      10.2       9.8 
Cleveland       3.8     4.2     4.6  4.7    5.1       0.0       8.6 
Baltimore       2.2     2.5     2.8  2.9    3.2       4.4       0.0 
 
The estimated probabilities of each team beating another are given by  
 
fitted.probs<-matrix(0,nc=7,nr=7,dimnames=list(win.team,win.team)) 
fitted.probs[lower.tri(fitted.probs)]<-round(fitted(fit.BT),2) 
fitted.probs[!lower.tri(fitted.probs,diag=T)]<-1-round(fitted(fit.BT),2) 

 
          Milwaukee Detroit Toronto   NY Boston Cleveland Baltimore  
Milwaukee      0.00    0.54    0.57 0.62   0.54      0.81      0.53 
  Detroit      0.46    0.00    0.58 0.71   0.55      0.51      0.64 
  Toronto      0.43    0.46    0.00 0.83   0.58      0.55      0.78 
       NY      0.42    0.45    0.49 0.00   0.68      0.65      0.60 
   Boston      0.38    0.42    0.45 0.47   0.00      0.78      0.75 
Cleveland      0.29    0.32    0.35 0.36   0.40      0.00      0.66 
Baltimore      0.17    0.19    0.22 0.22   0.25      0.34      0.00 
 
 
We can also fit the Bradley-Terry model as a quasi-symmetry model.  Under that model, given that an 
observation is in either cell (a, b) or cell (b, a), the logit of the conditional probability that it falls in (a, b) is 
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 log ( ) ( )

( ) ( )

X Y X Yab
a b ab b a ab

ba
X Y X Y

a a b b a b

μ λ λ λ λ λ λ λ λμ
λ λ λ λ β β

= + + + − + + +

= − − − = −
 

 
We fit this quasi-symmetry model using the method from Section E of this chapter. First, I set up the data 
set.  The symm factor represents the interaction term. 
 
losing.team<-c("Milwaukee","Detroit","Toronto","NY","Boston","Cleveland","Baltimore") 
win.team<-losing.team  # create labels 
 
table.10.10<-expand.grid(losing=factor(losing.team, 

levels=rev(losing.team)),winning=factor(win.team, levels=rev(win.team))) 
table.10.10$counts<-

c(0,7,9,7,7,9,11,6,0,7,5,11,9,9,4,6,0,7,7,8,12,6,8,6,0,6,7,10,6,2,6,7,0,7,12,4,4,5,
6,6,0,6,2,4,1,3,1,7,0) 

table.10.10$symm<-paste( 
 pmin(as.character(table.10.10$winning),as.character(table.10.10$losing)), 
 pmax(as.character(table.10.10$winning),as.character(table.10.10$losing)),sep=",") 

 
Now, I fit the model  
 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.BTQS<-glm(counts~symm+winning, data=table.10.10, family=poisson(log)) 
summary(fit.BTQS, cor = F) 
 
Coefficients: 
                             Value Std. Error    t value  
            (Intercept)  -9.789761   81.03497 -0.1208091 
   symmBaltimore,Boston  10.961595   81.03583  0.1352685 
symmBaltimore,Cleveland  11.262285   81.03574  0.1389792 
  symmBaltimore,Detroit  10.704983   81.03590  0.1321017 
symmBaltimore,Milwaukee  10.586298   81.03594  0.1306371 
       symmBaltimore,NY  10.854633   81.03586  0.1339485 
  symmBaltimore,Toronto  10.818034   81.03587  0.1334969 
etc………… snip. 
 
                     Value Std. Error  t value  
winningCleveland 0.6838528  0.3318767 2.060563 
   winningBoston 1.1076977  0.3338782 3.317670 
       winningNY 1.2476178  0.3358609 3.714686 
  winningToronto 1.2944851  0.3366694 3.844974 
  winningDetroit 1.4364084  0.3395685 4.230099 
winningMilwaukee 1.5813559  0.3432560 4.606929 
 
(Dispersion Parameter for Poisson family taken to be 1 ) 
 
    Null Deviance: 133.8648 on 48 degrees of freedom 
 
Residual Deviance: 15.73729 on 15 degrees of freedom 
 
Number of Fisher Scoring Iterations: 8  
 
 
I added winning to the model in order to differentiate main effects for rows and columns.  However, I 
reversed the levels of winning so that the last category coefficient (for Baltimore) is zeroed out.  The 
resulting coefficient estimates are the differences { }Y X

j jλ λ−  for j = 1, …, 6, which we see match those in 
Table 10.11 in Agresti. 
 
Fitted counts are obtained in the same way 
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matrix(round(fitted(fit.BTQS),1),nr=7,nc=7,byrow=T,dimnames=list(win.team, 
losing.team))  

 
 
J.  Bradley-Terry Model with Order Effect  
 
We would like to see if there is a significant home team advantage.  That is, is a team more likely to win if 
they play in their home city?  We can incorporate a home team advantage for the team called a, via a 
logit model for the probability that team a beats team b when a is the home team: 
 

 
*

*log ( )
1

ab
a b

ab

α β βΠ
Π

= + −
−

 

 
When 0α > , there is a home team advantage.  If the teams were equally matched ( )a bβ β= , the home 
team has probability [ ]exp( ) 1 exp( )α α+  of winning. 
 
As mentioned in Agresti, the 42 pair sets (where order matters) can be viewed as 42 independent 
binomial samples, where response is the number of successes (wins) for the home team out of the total 
played.  So, for example, 
 
response<-cbind(c(4,4,4,6,4,6,4,4,6,6,4,2,4,4,6,4,4,6,5,6,2, 
              3,2,3,5,2,2,4,5,2,3,1,2,3,3,1,4,4,2,4,1,3), 
        c(3,2,3,1,2,0,2,3,0,1,3,4,3,2,0,3,2,1,2,0,4, 
                 3,5,3,1,5,5,3,1,5,3,5,5,3,4,6,2,3,4,2,6,4))   # 42 pair sets 

 
Now, we use seven dummy variables that indicate by a 1, who is the home team for that pair set, and by 
a –1 who is the away team for the pair set. 
 
Milwaukee<-c( 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
Detroit<-  c(-1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,-1,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
Toronto<-  c( 0,-1, 0, 0, 0, 0,-1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,-1,-1,-1,-1, 0, 0, 0, 0, 0, 0) 
NY<-       c( 0, 0,-1, 0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,-1,-1,-1, 0, 0, 0) 
Boston<-   c( 0, 0, 0,-1, 0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,-1,-1, 0) 
Cleveland<-c( 0, 0, 0, 0,-1, 0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0,-1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0,-1) 
Baltimore<-c( 0, 0, 0, 0, 0,-1, 0, 0, 0, 0,-1, 0, 0, 0,-1, 0, 0,-1, 0,-1,-1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1) 

 
Then, we put all but the last category (Baltimore) in the glm call.  The intercept is the estimate of α . 
 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.BTO<-glm(response~Milwaukee+Detroit+Toronto+NY+Boston+Cleveland,family=binomial) 
summary(fit.BTO, cor=F) 

 
Coefficients: 
                Value Std. Error  t value  
(Intercept) 0.2963483  0.1307495 2.266536 
  Milwaukee 1.6436308  0.3473118 4.732435 
    Detroit 1.4994142  0.3444591 4.352953 
    Toronto 1.3512237  0.3402589 3.971164 
         NY 1.3054814  0.3403238 3.835998 
     Boston 1.1677444  0.3377718 3.457199 
  Cleveland 0.7477615  0.3318849 2.253075 
 
(Dispersion Parameter for Binomial family taken to be 1 ) 
 
    Null Deviance: 74.14759 on 41 degrees of freedom 
 
Residual Deviance: 38.62303 on 35 degrees of freedom 
 
Number of Fisher Scoring Iterations: 3  
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Thus, the estimate of the home team advantage parameter is positive, not surprisingly, implying a home 
team advantage, and its ASE is not too large. 
 
The fitted probabilities are obtained using 
 
fitted.probs<-matrix(0,nc=7,nr=7,dimnames=list(win.team,win.team)) 
fitted.probs[lower.tri(fitted.probs,diag=F) | !lower.tri(fitted.probs,diag=T)]<-

round(fitted(fit.BTO),2) 

 
          Milwaukee Detroit Toronto   NY Boston Cleveland Baltimore  
Milwaukee      0.00    0.61    0.62 0.67   0.46      0.39      0.54 
  Detroit      0.61    0.00    0.71 0.81   0.35      0.23      0.44 
  Toronto      0.64    0.62    0.00 0.74   0.21      0.56      0.27 
       NY      0.65    0.65    0.84 0.00   0.54      0.53      0.47 
   Boston      0.68    0.74    0.61 0.54   0.00      0.42      0.29 
Cleveland      0.77    0.86    0.70 0.50   0.53      0.00      0.39 
Baltimore      0.87    0.58    0.83 0.49   0.49      0.26      0.00 
 
These are not much different than those from the Bradley-Terry model without order effect. 
 
Bradley-Terry models both with and without an order effect are easily fit using a new R package called 
BradleyTerry by D. Firth.  In fact, the above example is illustrated in the help page for the function BTm in 
the package.  Thus, I refer you to that page to see an easier way to fit these models in R. 
 
 
K.  Marginal and Quasi-symmetry Models for Matched Sets  
 
A matched set generalizes a matched pair to three or more members or responses.  Suppose there are 
three responses in a set, with each response being binary.  Then, the three-way table has eight cells.  
The joint probabilities in the cells are 

1 2 31 1 2 2 3 3 ( , , )( , , ) i i iP Y i Y i Y i π= = = =  for ti = 0 or 1.  The marginal 

probabilities are 1( ) jP Y j π ++= = , 2( ) jP Y j π+ += = , and 3( ) jP Y j π++= =  for j = 0,1.  Marginal 

homogeneity is satisfied when the marginal probabilities are equal for each j = 0,1.  Complete symmetry 
is satisfied when 

1 2 3 1 2 3( , , ) ( , , )i i i j j jπ π=  for 1 2 3( , , )j j j  a permutation of 1 2 3( , , )i i i .  For example, under complete 

symmetry, 1 2 3 1 2 3( 1, 1, 0) ( 0, 1, 1)P Y Y Y P Y Y Y= = = = = = = . 
 
As a loglinear model, complete symmetry is 
 

 
1 2 3( , , )log i i i abcμ λ=  (10.2) 

 

where a is the minimum of 1 2 3( , , )i i i , and c is the maximum.  This model has ( )2 3 1 43
+ − =  parameters 

when there are three binary responses.  Quasi-symmetry adds “main effect” parameters 
 

 
1 2 3 1 2 3( , , ) 1 2 3log i i i i i i abcμ λ λ λ λ= + + +  

 
The identifiability constraints for a binary response are, for example, 10 20 30 0λ λ λ= = = . 
 
When quasi-symmetry holds, in order for marginal homogeneity to hold, complete symmetry must be 
true.  This can be seen by equating the marginal probabilities under the model (10.2), and realizing that 
they can’t all be equal unless complete symmetry holds. 
 
Agresti uses the Attitudes Toward Abortion example to illustrate fitting complete symmetry and quasi-
symmetry models.  Subjects indicated whether they supported legalized abortion in three situations (1) if 
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the family has a low income, (2) when the woman is not married and doesn’t want to marry the man, and 
(3) when the woman wants it for any reason.  Gender was also recorded.  So, there are four binary 
responses. 
 
Agresti first fits a complete symmetry model, with the same complete symmetry pattern within each 
gender.  So, there is a different intercept for each gender.  The data are read below.  Notice the order of 
the levels of the question variables.   
 
table.10.13<-data.frame(expand.grid(gender=factor(c("M","F"), levels=c("M","F")),  
question1=factor(c("Y","N"), levels=c("N","Y")),  
question2=factor(c("Y","N"), levels=c("N","Y")),  
question3=factor(c("Y","N"), levels=c("N","Y"))), 
count=c(342,440,6,14,11,14,19,22,26,25,21,18,32,47,356,457)) 
 
The symmetry factor is created a little differently when there are more than two responses, but the idea is 
the same.  All permutations of the same set of categories are considered one level.  Instead of using 
pmin and pmax, I use sort to get the permutations all the same.  Actually, sort can be used even with 
only two responses.  So, the following method is the most general method. 
 
(temp<-apply(table.10.13[,c("question1","question2","question3")],1,function(x) 
paste(sort(x),collapse=","))) 
 
      1       2       3       4       5       6       7       8       9      10  
"Y,Y,Y" "Y,Y,Y" "N,Y,Y" "N,Y,Y" "N,Y,Y" "N,Y,Y" "N,N,Y" "N,N,Y" "N,Y,Y" "N,Y,Y"  
     11      12      13      14      15      16  
"N,N,Y" "N,N,Y" "N,N,Y" "N,N,Y" "N,N,N" "N,N,N" 
 
Then, I make the vector a factor, using levels "N,N,N" "N,N,Y" "N,Y,Y" and "Y,Y,Y", which causes glm to 
effectively set to zero any parameter with sequence that has N in the last slot. 
 
table.10.13$symm<-factor(temp, levels=rev(unique(temp))) 

 
Now, I fit the complete symmetry model, excluding an intercept so that each gender has its own intercept.  
 
options(contrasts=c("contr.treatment", "contr.poly")) 
glm(count~-1+gender+symm, family=poisson, data=table.10.13) 
 
Coefficients: 
  genderM    genderF  symmN,N,Y  symmN,Y,Y  symmY,Y,Y   
  5.87852    6.12188   -2.73044   -3.23500   -0.03888   
 
Degrees of Freedom: 16 Total (i.e. Null);  11 Residual 
Null Deviance:      17080  
Residual Deviance: 39.18        AIC: 137.9 
 
The likelihood ratio statistic is 39.18, on 11 df.  A quasi-symmetry model, with the same quasi-symmetry 
pattern per gender, fits better.  Below is the fit using glm.  The nonzero main effects are the Yes response 
on question 1 and the Yes response on question 2.  The remaining are zero for identifiability purposes. 
 
(fit.qs<-glm(count~-1+gender+question1+question2+symm, family=poisson, 
data=table.10.13)) 
 
Coefficients: 
   genderM     genderF  question1Y  question2Y   symmN,N,Y   symmN,Y,Y   
    5.8785      6.1219      0.8284      0.3074     -3.1686     -4.0479   
 
 symmY,Y,Y   
   -1.1747   
 
Degrees of Freedom: 16 Total (i.e. Null);  9 Residual 
Null Deviance:      17080  
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Residual Deviance: 10.16        AIC: 112.8  
 
To see what the model predicts, we can look at the fitted probabilities. 
 
fitted.qs<-predict(fit.qs,type="response")/sum(table.10.13$count) 
(fitted.table.10.13<-cbind(table.10.13,fitted.qs)) 
 
   gender question1 question2 question3 count  symm   fitted.qs 
1       M         Y         Y         Y   342 Y,Y,Y 0.185760701 
2       F         Y         Y         Y   440 Y,Y,Y 0.236942001 
3       M         N         Y         Y     6 N,Y,Y 0.004585075 
4       F         N         Y         Y    14 N,Y,Y 0.005848367 
5       M         Y         N         Y    11 N,Y,Y 0.007720601 
6       F         Y         N         Y    14 N,Y,Y 0.009847803 
7       M         N         N         Y    19 N,N,Y 0.008123250 
8       F         N         N         Y    22 N,N,Y 0.010361390 
9       M         Y         Y         N    26 N,Y,Y 0.010498707 
10      F         Y         Y         N    25 N,Y,Y 0.013391339 
11      M         N         Y         N    21 N,N,Y 0.011046241 
12      F         N         Y         N    18 N,N,Y 0.014089731 
13      M         Y         N         N    32 N,N,Y 0.018600268 
14      F         Y         N         N    47 N,N,Y 0.023725065 
15      M         N         N         N   356 N,N,N 0.193124617 
16      F         N         N         N   457 N,N,N 0.246334843 
 
 
The highest probabilities occur for the two extremes.  We can look at some marginal probabilities using 
aggregate, for example.  Below are the distributions for each question, by gender. 
 
aggregate(fitted.table.10.13$fitted.qs, 
list(gender=fitted.table.10.13$gender,question1=fitted.table.10.13$question1), sum) 
 
  gender question1         x 
1      M         N 0.2168792 
2      F         N 0.2766343 
3      M         Y 0.2225803 
4      F         Y 0.2839062 
 
aggregate(fitted.table.10.13$fitted.qs, 
list(gender=fitted.table.10.13$gender,question2=fitted.table.10.13$question2), sum) 
 
  gender question2         x 
1      M         N 0.2275687 
2      F         N 0.2902691 
3      M         Y 0.2118907 
4      F         Y 0.2702714 
 
aggregate(fitted.table.10.13$fitted.qs, 
list(gender=fitted.table.10.13$gender,question3=fitted.table.10.13$question3), sum) 
 
  gender question3         x 
1      M         N 0.2332698 
2      F         N 0.2975410 
3      M         Y 0.2061896 
4      F         Y 0.2629996 
 
For question 1, “Yes” responses are predicted slightly more often than “No” responses for both men and 
women.  This is not the case for the other two questions. 
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Chapter 11 – Analyzing Repeated Categorical Response 
Data  

 
A.  Summary of Chapter 11, Agresti   
  
 Repeated categorical responses may come from repeated measurements over time on each 
individual or from a set of measurements that are related because they belong to the same group or 
cluster (e.g., measurements made on siblings from the same family, measurements made on a set of 
teeth from the same mouth).  Observations within a cluster are not usually independent of each other, as 
the response from one child of a family, say, may influence the response from another child, because the 
two grew up together.  Matched-pairs are the special case of each cluster having two members. 
 Using repeated measures within a cluster can be an efficient way to estimate the mean response 
at each measurement time without estimating between-cluster variability.  Many times, one is interested 
in the marginal distribution of the response at each measurement time, and not substantially interested in 
the correlation between responses across times.  Estimation methods for marginal modeling include 
maximum likelihood estimation and generalized estimating equations.  Maximum likelihood estimation is 
difficult because the likelihood is written in terms of the IT multinomial joint probabilities for T responses 
with I categories each, but the model applies to the marginal probabilities.  Lang and Agresti give a 
method for maximum likelihood fitting of marginal models in Section 11.2.5.  Modeling a repeated 
multinomial response or repeated ordinal response is handled in the same way. 
 Generalized estimating equations (GEE) are a multivariate generalization of quasi-likelihood 
estimation.  If there are T measurements per subject, then the quasi-likelihood method specifies a model 
for the mean and variance (as a function of the mean) for each measurement, without requiring 
knowledge of the distribution of the measurements (as ML estimation does). A “working” covariance 
structure for the responses must be specified.   The estimates of parameters in the mean response are 
solutions of quasi-likelihood equations called generalized estimating equations.   The estimates are 
consistent even if the covariance matrix is incorrectly specified.  However, this does not imply that one 
can use an identity matrix for the correlation structure.  The standard errors would be incorrect (probably 
underestimated).  They are adjusted using the empirical dependence. 
 However, as GEE does not have a likelihood function, then inference procedures based on a 
likelihood cannot be done.  Instead, inference only uses Wald statistics and their asymptotic normality. 
 Transitional models are special cases of logit or loglinear models for repeated categorical 
observations.  When the repeated observations can be assumed to follow a Markov chain, an appropriate 
Markov chain model can be fit.  The first-order Markov property is satisfied when the prediction of a future 
response only depends on the response immediately prior to it, and no other responses occurring before 
that previous response.  Estimation of Markov chain models is via IRLS.  Estimation can also be done 
using IPF if the model is a loglinear model.  When there are explanatory variables, a regressive logistic 
model can be used (for a binary response) where the regressors are explanatory variables and also 
previous responses. 
 
 
B.  Comparing Marginal Distributions: Multiple Responses 
 
 With T repeated binary measurements, one may be interested in comparing the probability of 
success at each of the T times.  The marginal logit model for T responses is 
 

 logit[ ( 1)] , 1,...,t tP Y t Tα β= = + =  (11.1) 
 
Because there are T probabilities with T + 1 parameters, one of the parameters must be constrained to 
be zero.  In that case, the model is saturated, and MLEs of the marginal probabilities are the sample 
proportions with 1ty = .  The multinomial likelihood is written in terms of the joint probabilities of response.  
Each sample cell proportion is the MLE of the joint probability corresponding to that cell.    Marginal 
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homogeneity corresponds to 1( 1) ... ( 1)TP Y P Y= = = = .  That is, there are T identical response 
distributions across the T time periods.  A likelihood ratio test compares the likelihood maximized under 
marginal homogeneity to the ML fit under model (11.1).  Maximum likelihood estimation under marginal 
homogeneity is discussed in Section 11.2.5 in Agresti and in Section D in Chapter 10 of this manual, for 
illustrating Lang’s mph.fit function.  The generalized loglinear form of the marginal logit model is given in 
(11.8) of Agresti, and repeated in (10.1) of this manual.  For the case of a 2T table, there are T marginal 
probabilities.  The model of marginal homogeneity with no covariates has the form given at the bottom of 
p. 464 in Agresti when T = 2.  The Lagrangian includes constraints that set the marginal probabilities 
equal to one another, as well as identifiability constraints.  The fitting method of Lang gives consistent 
estimates of the regression coefficients, β , if the marginal model holds, regardless of the form of the joint 
distribution.  This is because the marginal parameters β  and the joint parameters π  are orthogonal.  
Thus, for consistency of the marginal parameter estimates, the method is robust to the specification of the 
joint distribution. 
 
Agresti tests marginal homogeneity for the Crossover Drug Comparison Example (Table 11.1) where 
each subject used each of three drugs at three different times for the treatment of a chronic condition.  
The binary response at each time was favorable/unfavorable response.  We first use the function 
mph.fit for R (available from J. Lang.  See Agresti p. 649) to test marginal homogeneity. 
 
First, I source in the appropriate files. 
 
source("C:/Program Files/R/rw1080/CDA/mph.r") 
source("C:/Program Files/R/rw1080/CDA/mph.supp.fcts.r") 
 
I happen to set up the data as a data frame, but we only use the count vector within mph.fit for the test. 
 
table.11.1<-data.frame(expand.grid( C=factor(c("Y","N"), levels=c("N","Y")), 
                                    B=factor(c("Y","N"), levels=c("N","Y")), 
                                    A=factor(c("Y","N"), levels=c("N","Y")), 
                                    count=c(6,16,2,4,2,4,6,6)) 

 
y <- table.11.1$count 

 
As in Chapter 10, we do not have stratification.  So, the Z matrix is a vector of ones.  Also ZF is a vector 
of ones because the sample size is assumed fixed. 
 
Z <- matrix(1,2*2*2,1)  
ZF <- Z  

 
M1 describes the marginal totals for drug C.  M2 describes the marginal totals for drug B, and M3 
describes the marginal totals for drug A.  The first argument to Marg.fct is the index to NOT sum over, 
the next argument is the number of levels of the factors (here, 2, 2, and 2). 
 
M1 <- Marg.fct(1,rep(2,3))  # used to get y1++, etc 
M2 <- Marg.fct(2,rep(2,3))  # used to get y+1+, etc 
M3 <- Marg.fct(3,rep(2,3))  # used to get y++1, etc 

 
The constraint matrix (specified by C.matrix below) represents the constraints implied by marginal 
homogeneity.  As indicated in the definition, some constraints are redundant. 
 
C.matrix <- matrix(c( 
               1, 0, -1, 0, 0, 0,  # y1++ = y+1+ 
               0, 0, 1, 0, -1, 0), # y+1+ = y++1 
        2,6,byrow=T)       
 
The function h.fct is the gradient of the Lagrangian. 
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h.fct <- function(m) { # constraint function 
   marg <- rbind(M1%*%m,  M2%*%m, M3%*%m)  # y1++, y2++, y+1+, y+2+, y++1, y++2 
   C.matrix%*%marg                         # y1++ = y+1+, y+1+ = y++1, etc 
}  
 
Now, we fit the model 
 
a <- mph.fit(y=y,Z=Z,ZF=ZF,h.fct=h.fct)  
 
mph.summary(a) 
 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 2 ):  Gsq =  5.94507 (p =  0.051174 ) 
    Pearson's Score Stat  (df= 2 ):  Xsq =  5.71054 (p =  0.05754 ) 
    Generalized Wald Stat (df= 2 ):  Wsq =  5.76 (p =  0.056135 ) 
 
 
CONVERGENCE STATISTICS... 
    iterations = 10 
    norm.diff  = 3.46689e-06 
    norm.score = 6.60356e-06 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02 
 
which gives a LRT statistic of about 5.95 (p = 0.05, df = 2).  The Generalized Wald statistic is the score 
statistic discussed in Section 11.1.4 of Agresti.   
 
Bhapkar’s statistic was computed in Chapter 10 Section D.2.  The only change is for the matrix A, which 
is now 
 
A<-matrix(c(0,0,1,1,-1,-1,0,0, 
  0,1,-1,0,0,1,-1,0), nc=8,nr=2,byrow=T) 
 

This matrix corresponds to equal marginal probabilities if the probability vector is =π 111 112 121 122( , , , ,π π π π  

211 212 221 222, , , )π π π π . 
 
Multiple instead of binary responses are easily handled by making appropriate changes to the M matrices 
and C.matrix, as in Section D of Chapter 10. 
 
The function marg.hom in the repeated library fits marginal homogeneity models to tables with two 
dimensions using maximum likelihood estimation. 
 
 
C.  Marginal Modeling: Maximum Likelihood Approach 
 
The last section dealt with comparing marginal distributions and testing for homogeneity of those 
distributions.  In this section, we will estimate the parameters of the marginal logit model with explanatory 
variables, using maximum likelihood estimation.  We’ll use the longitudinal mental depression data 
available on Agresti’s CDA web site.  This data set refers to a longitudinal study comparing a new drug 
with a standard drug for depression.  Subjects were classified into two initial diagnosis groups (Mild, 
Severe).  In each group, subjects were randomly assigned to one of the two drugs.  At 1 week, 2 weeks, 
and 4 weeks, each subject’s suffering from depression was classified as normal or abnormal. 
 As there are T = 3 occasions and binary responses, this is a 23 table at each of the treatment x 
initial diagnosis groupings.  There are 12 marginal distributions, one at each of the response times for 
each of the groupings. 
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I have copied the appropriate data lines and column headers from Agresti’s CDA data set web site, and 
pasted them into a file, which I’ve renamed “depress.txt”.   The time variable is transformed using log 
base 2. 
 
table.11.2<-read.table("c:/program files/r/rw1080/cda/depress.txt", header=T) 
table.11.2[1:10,] # first 10 values 
 
   case diagnose treat time outcome 
1     1        0     0    0       1 
2     1        0     0    1       1 
3     1        0     0    2       1 
4     2        0     0    0       1 
5     2        0     0    1       1 
6     2        0     0    2       1 
7     3        0     0    0       1 
8     3        0     0    1       1 
9     3        0     0    2       1 
10    4        0     0    0       1  
 
Here are the sample marginal proportions 
 
tapply(table.11.2$outcome, 
list(diagnose=table.11.2$diagnose,treat=table.11.2$treat,time=table.11.2$time), mean)
 # output is R 
 
, , time = 0 
 
        treat 
diagnose      0         1 
       0 0.5125 0.5285714 
       1 0.2100 0.1777778 
 
, , time = 1 
 
        treat 
diagnose      0         1 
       0 0.5875 0.7857143 
       1 0.2800 0.5000000 
 
, , time = 2 
 
        treat 
diagnose     0         1 
       0 0.675 0.9714286 
       1 0.460 0.8333333 
 
 
In Agresti’s notation, s indexes the severity of the diagnosis (diagnose; Severe = 1, Mild = 0), t indexes 
time (0, 1, 2), and d indexes the drug (treat; New = 1, Standard = 0).  Agresti considers a group to be a 
diagnose x treat combination.  Let the variable Yt be the outcome (Normal = 1; Abnormal = 0) at time t.  
Then, the marginal logit model with main effects and a linear effect of time that is the same within each 
group is  
 

 ( )[ ] 1 2 3logit 1tP Y s d tα β β β= = + + +  (11.2) 
 
The sampling model is product multinomial, with four groups, and eight cells per group (23 cross-
classifications of the three responses), leading to 32 cell probabilities.  However, (11.2) refers to marginal 
probabilities, and the three marginal binomial variates per group are dependent.  As explained in Section 
B of this chapter, to fit this model using maximum likelihood estimation, we use the methodology from 
Section 11.2.5 in Agresti. 
 



 

 

207

To begin, we define the indices g to index the four groups (1=Severe/New; 2=Severe/Standard, 
3=Mild/New, 4=Mild/Standard).  We also define the indices t1 to t3 to index the outcome values at the 
three measurement times.  Then, we set the vector π  equal to the 32 cell probabilities {

1 2 3gt t tπ }.  For 
example, the probability of a normal outcome at all three times from an individual on the new drug, with 
severe depression is 1111π .  The marginal probability of normal response for this individual at time 0 is the 
anti-logit of 1 2α β β+ + .   
 
We define the A and C matrices to get the expression on the left of (11.2).  For example, to write the 
marginal probability of Normal response at time 0, for group 1, we compute the sum of cell probabilities, 

2 33 2

1 1
1,1, ,0 0 t tt t

π
= =∑ ∑ .  Thus, the row of A that corresponds to this sum has a 1 in each of the spots that 

corresponds to each of the terms of the sum.  Each row of the matrix C has exactly one element with a –1 
and exactly one element with a +1, the remaining being 0.  This matrix forms the logits (a ratio of logs of 
sums of cell probabilities).  Finally, the matrix X has one column of all ones (for the intercept), two 
columns for the group designation, and a final column for the value of time (0, 1, 2).  Using these 
definitions, we can run mph.fit for R. 
 
First, we must “unstack” the data frame table.11.2 so that time is three variables (log week 0, 1, and 2) 
instead of one. 
 
table.11.2a<-data.frame(unique(table.11.2[,c("case","treat","diagnose")]), 
unstack(table.11.2,outcome~time)) 
names(table.11.2a)[4:6]<-c("t1","t2","t3") 

 
table.11.2a[1:6,] 
 
   case treat diagnose t1 t2 t3 
1     1     0        0  1  1  1 
4     2     0        0  1  1  1 
7     3     0        0  1  1  1 
10    4     0        0  1  1  1 
13    5     0        0  1  1  1 
16    6     0        0  1  1  1 
 
Now, we make the variables factors to help control the ordering of the levels.  Here, I have the orderings 
all 1, 0.  Either order is acceptable.  However, the order of the vector of counts depends on the order you 
choose here. 
 
table.11.2a$diagnose<-factor(table.11.2a$diagnose, levels=c(1,0))    
table.11.2a$treat<-factor(table.11.2a$treat, levels=c(1,0))     
table.11.2a$t1<-factor(table.11.2a$t1, levels=c(1,0))     
table.11.2a$t2<-factor(table.11.2a$t2, levels=c(1,0))     
table.11.2a$t3<-factor(table.11.2a$t3, levels=c(1,0)) 

 
Now, we form the 32 x 1 vector of counts in each cell.  The order of the counts follows that given for the 
factors.  Thus, the first count is for group 1: diagnose = 1 and treat = 1, for normal evaluations at all three 
times (i.e., t1=1, t2=1, t3=1). 
 
Y<-c(tapply(table.11.2a$case,table.11.2a[,2:6],length)) 
Y<-ifelse(is.na(Y),0,Y)     
Y 
[1]  7  2 31 16 31  9 22 14  5  8  6  9 32 27  9 15  2  2  0 13  5 15  2  4  2 
[26]  9  0  3  6 28  0  6 
 

The design matrix has “diagnose” changing the slowest and “time” changing the fastest. 
 
(X<-cbind(1,expand.grid(time=0:2, treat=c(1,0), diagnose=c(1,0) ))) 
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   1 time treat diagnose 
1  1    0     1        1 
2  1    1     1        1 
3  1    2     1        1 
4  1    0     0        1 
5  1    1     0        1 
6  1    2     0        1 
7  1    0     1        0 
8  1    1     1        0 
9  1    2     1        0 
10 1    0     0        0 
11 1    1     0        0 
12 1    2     0        0 
 
The sampling matrix has a column for each group and a row for each of the 32 cells, where the rows are 
in the same order as the Y vector.  In each column, there is a 1 for each cell that corresponds to a cell for 
the group for that column. 
 
Z<-kronecker(matrix(rep(1,8),nc=1),diag(4)) 
(ZF<-Z) 
 
      [,1] [,2] [,3] [,4] 
 [1,]    1    0    0    0 
 [2,]    0    1    0    0 
 [3,]    0    0    1    0 
 [4,]    0    0    0    1 
 [5,]    1    0    0    0 
 [6,]    0    1    0    0 
 [7,]    0    0    1    0 
 [8,]    0    0    0    1 
 [9,]    1    0    0    0 
[10,]    0    1    0    0 
[11,]    0    0    1    0 
[12,]    0    0    0    1 
[13,]    1    0    0    0 
[14,]    0    1    0    0 
[15,]    0    0    1    0 
[16,]    0    0    0    1 
[17,]    1    0    0    0 
[18,]    0    1    0    0 
[19,]    0    0    1    0 
[20,]    0    0    0    1 
[21,]    1    0    0    0 
[22,]    0    1    0    0 
[23,]    0    0    1    0 
[24,]    0    0    0    1 
[25,]    1    0    0    0 
[26,]    0    1    0    0 
[27,]    0    0    1    0 
[28,]    0    0    0    1 
[29,]    1    0    0    0 
[30,]    0    1    0    0 
[31,]    0    0    1    0 
[32,]    0    0    0    1 
 
 
Each row of the A matrix, when multiplied by the π  vector, results in one of the marginal probabilities or 
its complement.  For example, the first row of A.matrix below, when multiplied by π  gives the probability 
that a randomly chosen observation from group 1 is evaluated as Normal at week (time t0).  The fourth 
row gives its complement. 
 
A.matrix<-matrix(c(1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, # g1 t0=1 
                   1,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, # g1 t1=1 
                   1,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g1 t2=1 
 
               # complement 
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                   0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, # g1 t0=0 
                   0,0,0,0, 0,0,0,0, 1,0,0,0, 1,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 1,0,0,0, # g1 t1=0 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0, 1,0,0,0, # g1 t2=0 
                     
                   0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, # g2 t0=1 
                   0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, # g2 t1=1 
                   0,1,0,0, 0,1,0,0, 0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g2 t2=1 
 
               # complement 
                   0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, # g2 t0=0 
                   0,0,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0, # g2 t1=0 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,0, 0,1,0,0, 0,1,0,0, 0,1,0,0, # g2 t2=0 
                
                   0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, # g3 t0=1 
                   0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, # g3 t1=1 
                   0,0,1,0, 0,0,1,0, 0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g3 t2=1 
 
               # complement 
                   0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, # g3 t0=0 
                   0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,1,0, # g3 t1=0 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,1,0, 0,0,1,0, 0,0,1,0, # g3 t2=0 
                
                   0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, # g4 t0=1 
                   0,0,0,1, 0,0,0,1, 0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,1, 0,0,0,0, 0,0,0,0, # g4 t1=1 
                   0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g4 t2=1 
 
               # complement 
                   0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, # g4 t0=0 
                   0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,1, 0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,1, # g4 t1=0 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,1, 0,0,0,1, 0,0,0,1, 0,0,0,1), # g4 t2=0 
                 
                nr=24,nc=32, byrow=TRUE) 

 
When multiplied by the log of the entries in Aπ , C.matrix gives the logits of the 12 marginal 
probabilities. 
 
C.matrix<-kronecker(diag(4),matrix(c(  

1, 0, 0, -1, 0, 0,    
0, 1, 0, 0, -1, 0,  
0, 0, 1, 0, 0, -1),nr=3,nc=6,byrow=T)) 
 

The function L.fct computes the right hand side of equation 11.8 in Agresti. 
 
L.fct <- function(m) {   
   C.matrix%*%log(A.matrix%*%m) 
} 

 
Now, we put all the above in the call to mph.fit. 
 
fit<-mph.fit(y=Y,Z=Z,ZF=ZF,X=as.matrix(X),L.fct=L.fct) 
 
mph.summary(fit) 

 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 8 ):  Gsq =  34.56933 (p =  3.2025e-05 ) 
    Pearson's Score Stat  (df= 8 ):  Xsq =  31.39204 (p =  0.00011963 ) 
    Generalized Wald Stat (df= 8 ):  Wsq =  31.0137 (p =  0.00013972 ) 
 
 
LINEAR PREDICTOR MODEL RESULTS... 
            BETA StdErr(BETA)   Z-ratio      p-value 
beta1 -0.5264734   0.14818314 -3.552856 3.810725e-04 
beta2  0.9069316   0.09188559  9.870226 0.000000e+00 
beta3  0.8866717   0.14024137  6.322469 2.574170e-10 
beta4 -1.2457301   0.14377651 -8.664351 0.000000e+00 
 
          OBS LINK     ML LINK StdErr(L) LINK RESID 
link1  -1.53147637 -0.88553191 0.1431524 -3.5424542 
link2   0.00000000  0.02139975 0.1114149 -0.1195605 
link3   1.60943791  0.92833142 0.1456704  3.7208456 
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link4  -1.32492541 -1.77220372 0.1580641  1.8976785 
link5  -0.94446161 -0.86527205 0.1129916 -0.4220890 
link6  -0.16034265  0.04165961 0.1320449 -1.3442489 
link7   0.11441035  0.36019844 0.1542620 -1.3096890 
link8   1.29928298  1.26713007 0.1434996  0.1283795 
link9   3.52636052  2.17406086 0.1851307  3.8787830 
link10  0.05001042 -0.52647349 0.1481831  3.2436321 
link11  0.35364004  0.38045817 0.1208956 -0.1390165 
link12  0.73088751  1.28738984 0.1554322 -2.4992189 
 
 
CONVERGENCE STATISTICS... 
    iterations = 100 
    norm.diff  = 0.371203 
    norm.score = 0.000702893 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02  
 
Warning message:  
the condition has length > 1 and only the first element will be used in: if (a$L != 
"NA")  
 
The warning message given is apparently a bug in the mph.summary function, but would not affect results.  
It can be eliminated by changing the line 
 
if (a$L != "NA") { 
 
to  
 
if (!all(is.na(a$L))) { 
 
in the mph.summary function. 
 
Here we see that this model gives a LR statistics of around 34.6.  A much smaller LR statistic comes from 
adding an interaction term in treatment and time, implying that the effect of time varies over time. 
 
X$trtxtime<-X$treat*X$time 
 
fit.ia<-mph.fit(y=Y,Z=Z,ZF=ZF,X=as.matrix(X),L.fct=L.fct) 
mph.summary(fit.ia) 

 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 7 ):  Gsq =  4.23174 (p =  0.75273 ) 
    Pearson's Score Stat  (df= 7 ):  Xsq =  4.09301 (p =  0.769 ) 
    Generalized Wald Stat (df= 7 ):  Wsq =  4.13354 (p =  0.76427 ) 
 
 
LINEAR PREDICTOR MODEL RESULTS... 
             BETA StdErr(BETA)    Z-ratio      p-value 
beta1 -0.04385680    0.1698035 -0.2582797 7.961910e-01 
beta2  0.48265283    0.1163793  4.1472408 3.365061e-05 
beta3 -0.05836195    0.2245202 -0.2599408 7.949095e-01 
beta4 -1.29282486    0.1448600 -8.9246498 0.000000e+00 
beta5  1.00700523    0.1848744  5.4469688 5.123545e-08 
 
          OBS LINK     ML LINK StdErr(L) LINK RESID 
link1  -1.53147637 -1.39504362 0.1788551 -0.7015335 
link2   0.00000000  0.09461445 0.1261114 -0.5590772 
link3   1.60943791  1.58427252 0.2039109  0.1306587 
link4  -1.32492541 -1.33668166 0.1680944  0.0652769 
link5  -0.94446161 -0.85402883 0.1103859 -0.4795432 
link6  -0.16034265 -0.37137600 0.1523241  1.5646063 
link7   0.11441035 -0.10221875 0.1809579  1.3826817 
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link8   1.29928298  1.38743932 0.1510355 -0.3417647 
link9   3.52636052  2.87709738 0.2337484  1.3582751 
link10  0.05001042 -0.04385680 0.1698035  0.6448222 
link11  0.35364004  0.43879603 0.1201678 -0.4368103 
link12  0.73088751  0.92144887 0.1647290 -1.0296818 
 
 
CONVERGENCE STATISTICS... 
    iterations = 100 
    norm.diff  = 1.25822 
    norm.score = 9.27206e-10 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02  
 
 

The beta coefficients correspond to the columns of the X matrix.  Thus, at time t, the estimated odds of 
Normal response for the new drug are exp(–0.06 + 1.01t) times the odds for the standard drug, for each 
diagnosis level. 
 
D.  Marginal Modeling: Maximum Likelihood Approach. Modeling a Repeated 
Multinomial Response  
 
With a repeated multinomial response with I categories, there are I – 1 logits for each observation or 
measurement.  For observation t, the logit takes the form 
 

 logit ( ) , 1,..., 1T
j j j tt j Iα= + = −xβ  (11.3) 

 
For example, for an ordinal response, a proportional odds model uses [ ]logit ( ) logit ( )j tt P Y j= ≤ , a 

cumulative link, and j =β β . 
 
The data in Table 11.4 in Agresti give the results of a randomized clinical trial comparing an active 
hypnotic drug with a placebo in patients who have insomnia.  The response is the reported time to fall 
asleep (with categories < 20 minutes, 20 – 30 minutes, 30 – 60 minutes, or > 60 minutes).  For this data 
set, I copied the data from Agresti’s website, pasted it into a text file called “insomnia.txt”, and added a 
first line of variable headings.  We will not be using the final variable called “count” in this data set. 
 
We read in the data set using read.table. 
 
table.11.4<-read.table("c:/program files/r/rw1080/cda/insomnia.txt", header=T) 

 
To get the sample marginal distributions of the responses within each treatment/occasion group, we can 
use tapply and xtabs.  First, we get the appropriate denominators for the proportions.  The 
denominators will be the number of subjects per group.  Here, we calculate the denominators, then 
expand them into an array the same size as the marginal table. 
 
n<-array(tapply(table.11.4$case,list(treat=table.11.4$treat, time=table.11.4$time), 
length), dim=c(2,4,2)) 

 
Next, we want the array to have each face with the same sample size.  So, we permute the array using 
aperm. 
 
n<-aperm(n, c(3,2,1)) 
n 
 
, , 1 
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     [,1] [,2] [,3] [,4] 
[1,]  120  120  120  120 
[2,]  120  120  120  120 
 
, , 2 
 
     [,1] [,2] [,3] [,4] 
[1,]  119  119  119  119 
[2,]  119  119  119  119 
 
Now, we get the marginal counts using xtabs, and divide these counts by n, which is an array of the 
same size (thus the division can be done). 
 
xtabs(~time+outcome+treat, data=table.11.4)/n  # note that we divide by n 
 
, , treat = 0 
 
    outcome 
time 1          2          3          4          
   0 0.11666667 0.16666667 0.29166667 0.42500000 
   1 0.25833333 0.24166667 0.29166667 0.20833333 
 
, , treat = 1 
 
    outcome 
time 1          2          3          4          
   0 0.10084034 0.16806723 0.33613445 0.39495798 
   1 0.33613445 0.41176471 0.15966387 0.09243697 
 
We next fit the proportional odds model in equation (11.6) in Agresti, using mph.fit.  This model permits 
interaction between occasion and treatment. 
 
The data set has a four-category (I = 4) ordinal response at T = 2 occasions.  We follow the same steps 
as for section C.  First, we “unstack” the data frame table.11.4 so that time is two variables (initial, 
follow-up) instead of one. 
 
table.11.4a<-data.frame(unique(table.11.4[,c("case","treat")]), 
unstack(table.11.4,outcome~time)) 
names(table.11.4a)[3:4]<-c("initial","followup") 

 
> table.11.4a[1:10,] 
 
   case treat initial followup 
1     1     1       1        1 
3     2     1       1        1 
5     3     1       1        1 
7     4     1       1        1 
9     5     1       1        1 
11    6     1       1        1 
13    7     1       1        1 
15    8     1       1        2 
17    9     1       1        2 
19   10     1       1        2 
 
Now, we make the variables factors to help control the ordering of the levels.   
 
table.11.4a$treat<-factor(table.11.4a$treat, levels=c(1,0))     
table.11.4a$initial<-factor(table.11.4a$initial, levels=1:4)     
table.11.4a$followup<-factor(table.11.4a$followup, levels=1:4)     

 
Now, we form the 32 x 1 vector of counts in each cell.  The order of the counts follows that given for the 
levels of the factors, with treat levels changing fastest, and followup changing slowest.  Thus, the first 
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count is for treat=1: active treatment, for initial and follow-up time < 20 minutes (coded 1).  The second 
count is for treat=0, with the same initial and follow-up time. 
 
Y<-c(tapply(table.11.4a$case,table.11.4a[,2:4],length)) 
Y<-ifelse(is.na(Y),0,Y) 
Y 
[1]  7  7 11 14 13  6  9  4  4  4  5  5 23  9 17 11  1  2  2  1  3 18 13 14  0 
[26]  1  2  0  1  2  8 22 
 
The design matrix has “time” changing the slowest and “treat” changing the fastest.  The first three 
columns correspond to the category cut points (<20, 20-30, 30-60 minutes) 
 
X<-data.frame(kronecker(diag(3),rep(1,4)),treat=1:0,time=c(0,0,1,1)) 
X$trtxtime<-X$time*X$treat 
 
   X1 X2 X3 treat time trtxtime 
1   1  0  0     1    0        0 
2   1  0  0     0    0        0 
3   1  0  0     1    1        1 
4   1  0  0     0    1        0 
5   0  1  0     1    0        0 
6   0  1  0     0    0        0 
7   0  1  0     1    1        1 
8   0  1  0     0    1        0 
9   0  0  1     1    0        0 
10  0  0  1     0    0        0 
11  0  0  1     1    1        1 
12  0  0  1     0    1        0 
 
The sampling matrix has a column for each group and a row for each of the 32 cells, where the rows are 
in the same order as the Y vector.  In each column, there is a 1 for each cell that corresponds to a cell for 
the group for that column. 
 
Z<-kronecker(matrix(rep(1,16),nc=1),diag(2)) 
(ZF<-Z) 

 
      [,1] [,2] 
 [1,]    1    0 
 [2,]    0    1 
 [3,]    1    0 
 [4,]    0    1 
 [5,]    1    0 
 [6,]    0    1 
 [7,]    1    0 
 [8,]    0    1 
 [9,]    1    0 
[10,]    0    1 
[11,]    1    0 
[12,]    0    1 
[13,]    1    0 
[14,]    0    1 
[15,]    1    0 
[16,]    0    1 
[17,]    1    0 
[18,]    0    1 
[19,]    1    0 
[20,]    0    1 
[21,]    1    0 
[22,]    0    1 
[23,]    1    0 
[24,]    0    1 
[25,]    1    0 
[26,]    0    1 
[27,]    1    0 
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[28,]    0    1 
[29,]    1    0 
[30,]    0    1 
[31,]    1    0 
[32,]    0    1 
 
Each row of the A matrix, when multiplied by the π  vector, results in one of the cumulative marginal 
probabilities or its complement.  For example, the first row of A.matrix below, when multiplied by π  
gives the probability that a randomly chosen observation from group 1 (active) takes < 20 minutes to fall 
asleep at initial time.  The third row gives its complement. 
 
A.matrix<-matrix(c(1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, 1,0,0,0, 0,0,0,0, # g1 t1=<1 
                   1,0,1,0, 1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g1 t2=<1 
# complement 
                   0,0,1,0, 1,0,1,0, 0,0,1,0, 1,0,1,0, 0,0,1,0, 1,0,1,0, 0,0,1,0, 1,0,1,0, # g1 t1>1 
                   0,0,0,0, 0,0,0,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, # g1 t2>1 
 
                   1,0,1,0, 0,0,0,0, 1,0,1,0, 0,0,0,0, 1,0,1,0, 0,0,0,0, 1,0,1,0, 0,0,0,0, # g1 t1=<2 
                   1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g1 t2=<2 
# complement 
                   0,0,0,0, 1,0,1,0, 0,0,0,0, 1,0,1,0, 0,0,0,0, 1,0,1,0, 0,0,0,0, 1,0,1,0, # g1 t1>2 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, # g1 t2>2 
                    
                   1,0,1,0, 1,0,0,0, 1,0,1,0, 1,0,0,0, 1,0,1,0, 1,0,0,0, 1,0,1,0, 1,0,0,0, # g1 t1=<3 
                   1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 1,0,1,0, 0,0,0,0, 0,0,0,0, # g1 t2=<3 
# complement 
                   0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, 0,0,0,0, 0,0,1,0, # g1 t1>3 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 1,0,1,0, 1,0,1,0, # g1 t2>3 
                    
                    
                   0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, 0,1,0,0, 0,0,0,0, # g2 t1=<1 
                   0,1,0,1, 0,1,0,1, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g2 t2=<1 
# complement 
                   0,0,0,1, 0,1,0,1, 0,0,0,1, 0,1,0,1, 0,0,0,1, 0,1,0,1, 0,0,0,1, 0,1,0,1, # g2 t1>1 
                   0,0,0,0, 0,0,0,0, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, # g2 t2>1 
 
                   0,1,0,1, 0,0,0,0, 0,1,0,1, 0,0,0,0, 0,1,0,1, 0,0,0,0, 0,1,0,1, 0,0,0,0, # g2 t1=<2 
                   0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, # g2 t2=<2 
# complement 
                   0,0,0,0, 0,1,0,1, 0,0,0,0, 0,1,0,1, 0,0,0,0, 0,1,0,1, 0,0,0,0, 0,1,0,1, # g2 t1>2 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, # g2 t2>2 
 
                   0,1,0,1, 0,1,0,0, 0,1,0,1, 0,1,0,0, 0,1,0,1, 0,1,0,0, 0,1,0,1, 0,1,0,0, # g2 t1=<3 
                   0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,1,0,1, 0,0,0,0, 0,0,0,0, # g2 t2=<3 
# complement 
                   0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, 0,0,0,0, 0,0,0,1, # g2 t1>3 
                   0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,1,0,1, 0,1,0,1),# g2 t2>3 
                 
 nr=24,nc=32, byrow=TRUE) 

 
When multiplied by the log of the entries in Aπ , C.matrix gives the cumulative logits of the 12 marginal 
probabilities. 
 
C.matrix<-matrix( 
c(1,0, -1,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0,  # P(time1 =< 1 for group1) 
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 1,0, -1,0, 0,0, 0,0, 0,0, 0,0, # P(time1 =< 1 for group2) 

 
  0,1,  0,-1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, # P(time2 =< 1 for group1) 
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 0,1, 0,-1, 0,0, 0,0, 0,0, 0,0, # P(time2 =< 1 for group2) 

   
  0,0,  0,0, 1,0, -1,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, # P(time1 =< 2 for group1) 
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 1,0, -1,0, 0,0, 0,0, # P(time1 =< 2 for group2) 

 
  0,0,  0,0, 0,1,  0,-1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, # P(time2 =< 2 for group1) 
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1, 0,-1, 0,0, 0,0,  # P(time2 =< 2 for group2) 

   
  0,0,  0,0, 0,0,  0,0, 1,0, -1,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, # P(time1 =< 3 for group1) 
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 1,0, -1,0,  # P(time1 =< 3 for group2) 

 
  0,0,  0,0, 0,0,  0,0, 0,1,  0,-1, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, # P(time2 =< 3 for group1)  
  0,0,  0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,1, 0,-1),  # P(time2 =< 3 for group2) 
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nr=12,nc=24,byrow=T) 

 
The function L.fct computes the right hand side of equation 11.8 in Agresti. 
 
L.fct <- function(m) {   
   C.matrix%*%log(A.matrix%*%m) 
} 

 
Now, we put all the above in the call to mph.fit. 
 
fit<-mph.fit(y=Y,Z=Z,ZF=ZF,X=as.matrix(X),L.fct=L.fct) 
 
mph.summary(fit) 
 
OVERALL GOODNESS OF FIT: TEST of   Ho: h(m)=0 vs. Ha: not Ho... 
    Likelihood Ratio Stat (df= 6 ):  Gsq =  8.0134 (p =  0.23712 ) 
    Pearson's Score Stat  (df= 6 ):  Xsq =  8.18076 (p =  0.22516 ) 
    Generalized Wald Stat (df= 6 ):  Wsq =  7.41296 (p =  0.28434 ) 
 
 
LINEAR PREDICTOR MODEL RESULTS... 
             BETA StdErr(BETA)     Z-ratio      p-value 
beta1 -2.27063692    0.2051665 -11.0672891 0.000000e+00 
beta2 -0.95753227    0.1763571  -5.4295094 5.650918e-08 
beta3  0.31961137    0.1737922   1.8390437 6.590876e-02 
beta4  0.04605101    0.2363701   0.1948258 8.455293e-01 
beta5  1.07393199    0.1624436   6.6111065 3.814571e-11 
beta6  0.66226765    0.2438234   2.7161780 6.604040e-03 
 
         OBS LINK    ML LINK StdErr(L) LINK RESID 
link1  -2.1879222 -2.2245859 0.2045677  0.1583699 
link2  -2.0243818 -2.2706369 0.2051665  1.0392564 
link3  -0.6805684 -0.4883863 0.1740899 -2.6272947 
link4  -1.0546492 -1.1967049 0.1748117  1.1160129 
link5  -1.0001722 -0.9114813 0.1806545 -0.9644973 
link6  -0.9279868 -0.9575323 0.1763571  0.2886920 
link7   1.0874390  0.8247184 0.1749472  2.7610532 
link8   0.0000000  0.1163997 0.1696301 -1.7029460 
link9   0.4265185  0.3656624 0.1731676  0.8818240 
link10  0.3022809  0.3196114 0.1737922 -0.2744260 
link11  2.2842360  2.1018620 0.2054380  0.8657007 
link12  1.3350011  1.3935434 0.1831185 -0.4272090 
 
 
CONVERGENCE STATISTICS... 
    iterations = 100 
    norm.diff  = 1.28461 
    norm.score = 5.21507e-09 
    Original counts used. 
 
FITTING PROGRAM USED:  mph.fit, version 1.0, 6/5/02  
 
The MLE’s of the coefficients follow the order of columns in the design matrix, X.  So, the first three betas 
are the cutoff points.  Beta4 is the treatment coefficient; beta5 is the occasion coefficient; and beta6 is the 
occasion by treatment interaction coefficient.  The interaction coefficient is more than twice its standard 
error.  As Agresti points out, at the initial time, the estimated odds that time to falling asleep for the active 
treatment is below any fixed level is exp(0.046) = 1.04 times the estimated odds for the placebo group.  
However, at the follow-up time, the estimated odds for the active treatment are exp(0.046 + 0.662) = 2.03 
times that for the placebo group.  So, by the follow-up time, those who took the active treatment tend to 
fall asleep more quickly. 
 
E.  Marginal Modeling: GEE Approach. Modeling a Repeated Multinomial 
Response  
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GEE methodology is a generalization of quasi-likelihood for multivariate responses.  As with quasi-
likelihood, one specifies the mean for the set of responses and a link function relating the linear predictor 
to the mean, as well as the variance as a function of the mean and a guess at the correlation structure 
among the responses.  Estimation is accomplished via a set of estimating equations, yielding consistent 
estimates of the coefficients in the linear predictor regardless of the correctness of the correlation 
structure.  However, the standard errors of the estimates will be affected by the specification of the 
correlation structure.  Thus, it is advantageous to try to specify an approximately accurate correlation 
structure. 
 Common correlation structures are independence (no correlation), exchangeable (all pairs of 
responses have the same correlation), and unstructured.  The unstructured correlation matrix requires 
the most new parameters to be estimated, and will not be efficient if there are many responses. 
 GEE differs from ML estimation in that no multivariate distribution has to be specified for the 
multivariate response. Thus, there is no likelihood with GEE.  However, this also means there is no 
likelihood-based inference.  Instead, Wald statistics and their asymptotic distributions are used. 
 
Agresti uses GEE to fit a model to the Longitudinal Mental Depression Example from Table 11.2 (Section 
C, this chapter).  First, we read in the data, and change the binary variables to factors. 
 
# S-PLUS or R 
table.11.2<-read.table("c:/program files/r/rw1080/cda/depress.txt", header=T) 
table.11.2b<-table.11.2 
table.11.2b$diagnose<-ifelse(table.11.2b$diagnose==0,"mild","severe") 
table.11.2b$diagnose<-factor(table.11.2b$diagnose, levels=c("mild","severe")) 
table.11.2b$treat<-ifelse(table.11.2b$treat==0,"standard","new") 
table.11.2b$treat<-factor(table.11.2b$treat,levels=c("standard","new")) 
table.11.2b<-table.11.2b[order(table.11.2b$case),] 

 
Here are the first eight individuals. 
 
table.11.2b[1:24,] 
 
     case diagnose    treat time outcome 
1       1     mild standard    0       1 
2       1     mild standard    1       1 
3       1     mild standard    2       1 
4       2     mild standard    0       1 
5       2     mild standard    1       1 
6       2     mild standard    2       1 
7       3     mild standard    0       1 
8       3     mild standard    1       1 
9       3     mild standard    2       1 
10      4     mild standard    0       1 
11      4     mild standard    1       1 
12      4     mild standard    2       1 
13      5     mild standard    0       1 
14      5     mild standard    1       1 
15      5     mild standard    2       1 
16      6     mild standard    0       1 
17      6     mild standard    1       1 
18      6     mild standard    2       1 
19      7     mild standard    0       1 
20      7     mild standard    1       1 
21      7     mild standard    2       1 
22      8     mild standard    0       1 
23      8     mild standard    1       1 
24      8     mild standard    2       1 
 
S-PLUS and R have libraries yags and gee, which do GEE analyses.  R also has package geepack.  
These are illustrated below. 
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The version of yags for S-PLUS 6.1 does not have a data argument.  Thus, it is necessary to attach the 
data set.   
 
library(yags) 
attach(table.11.2b) # S-PLUS only 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.yags<-yags(outcome~diagnose+ treat*time, id=case, cor.met=I(2^time), 

corstr="exchangeable", family=binomial, alphainit=.05)  
# R: fit.yags<-yags(outcome~diagnose + time*treat, id=case, cor.met=I(2^time), 

family=binomial, corstruct="exchangeable", data=table.11.2b, alphainit=.05) 
 
The argument id gives the variable that holds the individual id’s.  The argument cor.met gives the time 
scale.  The time scale is in weeks (i.e., 1, 2, 4 weeks), which is the antilog base 2 of the time variable in 
the model equation.  The argument corstr (corstruct in R) has options “independence”, 
“exchangeable”, “ar1”, and “unstructured”.  The argument family indicates the mean function and the 
variance function as a relation to the mean.  For the function yags, it is also used to get starting values 
from glm. 
 
Summary results are obtained using summary (S-PLUS) or implicit print (R).  Output is from S-PLUS. 
 
summary(fit.yags) # S-PLUS  
fit.yags # R 
 
 
Coefficients: 
               Estimate Naive S.E.    Naive z Robust S.E.   Robust z  
(Intercept) -0.02809866  0.1625499 -0.1728617   0.1741791 -0.1613205 
   diagnose -1.31391033  0.1448627 -9.0700417   0.1459630 -9.0016667 
      treat -0.05926689  0.2205340 -0.2687427   0.2285569 -0.2593091 
       time  0.48246420  0.1141154  4.2278625   0.1199383  4.0226037 
 treat:time  1.01719312  0.1877051  5.4191017   0.1877014  5.4192084 
 
Estimated Scale Parameter:  0.985392 
Number of Iterations:  2 
 
Working Correlation Parameter(s) 
             [,1]  
[1,] -0.003432732 
 
 
Here we fit an exchangeable correlation structure.  The estimate of the common correlation is very close 
to zero, indicating almost no correlation among responses at the various observation times.  The 
parameter estimates are very close to the MLE’s from Section C of this chapter.  The Robust S.E.’s 
(sand s.e. in R) correspond to the square roots of the “sandwich covariance estimator” on p. 471 of 
Agresti.  The standard errors are “robust” to misspecification of the variance function, as a function of the 
mean.  The Robust z’s use the Robust S.E.’s.  The Naïve S.E.s come from the asymptotic covariance 
matrix in equation (11.10) in Agresti. 
 
The library gee gives similar output.  Here I show the output from S-PLUS. 
 
library(gee) 
attach(table.11.2b) # S-PLUS only 
options(contrasts=c("contr.treatment", "contr.poly")) 
fit.gee<-gee(outcome~diagnose+ treat*time, id=case, family=binomial, 

corstr="exchangeable")  
# R: fit.gee<-gee(outcome~diagnose + time*treat, id=case, family=binomial, 

corstr="exchangeable", data=table.11.2b) 
summary(fit.gee) 

 
 
GEE:  GENERALIZED LINEAR MODELS FOR DEPENDENT DATA 
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 gee S-function, version 5.2 modified 99/06/03 (1998)  
 
Model: 
 Link:                      Logit  
 Variance to Mean Relation: Binomial  
 Correlation Structure:     Exchangeable  
 
 
Coefficients: 
               Estimate Naive S.E.    Naive z Robust S.E.   Robust z  
(Intercept) -0.02809866  0.1625499 -0.1728617   0.1741791 -0.1613205 
   diagnose -1.31391033  0.1448627 -9.0700418   0.1459630 -9.0016667 
      treat -0.05926689  0.2205340 -0.2687427   0.2285569 -0.2593091 
       time  0.48246420  0.1141154  4.2278625   0.1199383  4.0226037 
 treat:time  1.01719312  0.1877051  5.4191018   0.1877014  5.4192084 
 
Estimated Scale Parameter:  0.985392 
Number of Iterations:  2 
 
Working Correlation 
             [,1]         [,2]         [,3]  
[1,]  1.000000000 -0.003432732 -0.003432732 
[2,] -0.003432732  1.000000000 -0.003432732 
[3,] -0.003432732 -0.003432732  1.000000000 
 
 
R also has a package called geepack, with largely identical arguments.  However, it allows different link 
functions for the mean, scale, and correlation.  That is, the scale and correlation can depend on 
covariates, being related to them via link functions. 
 
library(geepack) 
fit.geese<-geese(outcome~diagnose + time*treat, id=case, data=table.11.2b, 
family=binomial, corstr="exch") 
summary(fit.geese) 
 
 
Mean Model: 
 Mean Link:                 logit  
 Variance to Mean Relation: binomial  
 
 Coefficients: 
                  estimate    san.se        wald            p 
(Intercept)    -0.02809866 0.1741402  0.02603594 8.718126e-01 
diagnosesevere -1.31391033 0.1450823 82.01676945 0.000000e+00 
time            0.48246420 0.1205994 16.00442887 6.319448e-05 
treatnew       -0.05926689 0.2288857  0.06704815 7.956842e-01 
time:treatnew   1.01719312 0.1881735 29.22066021 6.458684e-08 
 
Scale Model: 
 Scale Link:                identity  
 
 Estimated Scale Parameters: 
             estimate     san.se     wald p 
(Intercept) 0.9805616 0.06497889 227.7221 0 
 
Correlation Model: 
 Correlation Structure:     exch  
 Correlation Link:          identity  
 
 Estimated Correlation Parameters: 
          estimate     san.se       wald         p 
alpha -0.003432732 0.03007298 0.01302948 0.9091215 
 
Returned Error Value:    0  
Number of clusters:   340   Maximum cluster size: 3  
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The output only gives the robust s.e.s (called san.se, here). 
 
 
F.  Marginal Modeling: GEE Approach. Modeling a Repeated Multinomial Ordinal 
Response  
 
For repeated ordinal responses, GEE can also be used to estimate parameters from the logit model.  For 
example, for the the proportional odds cumulative logit model, we get parameter estimates for the 
cutpoints, as well as the coefficients for the covariates.  We can also get parameter estimates for the 
association parameters in the covariance matrix, relating the responses to one another. 
 The estimating equations are similar to those for univariate responses.  The general form is given 
in section 11.4.4 of Agresti for multinomial responses.  For ordinal responses in particular, the response 
variable iy  changes.  Suppose we have an ordinal response with I = 4 categories and two responses per 
individual.  Then, each iy  is length 2 x (4 – 1) = 6, with elements 1 1 2( (1), (2),..., (3))i i iy y y .  The element 

(1)ity  is equal to 1 if the tth response for individual i is greater than 1.  The element (2)ity  equals 1 if the 
the tth response for individual i is greater than 2, etc.  Thus, an individual with responses 3 and 4 at times 
1 and 2 has (1,1,0,1,1,1)i =y . 
 For the proportional odds model, the vector iμ  gives the probabilities associated with iy .  Thus, 

for the example, 1 2( ( 1),..., ( 3))i i iP y P y= > >μ , where ( ) 1
( ) 1 exp( )T

it j iP y j α β −
> = + + x .  Also, the 

covariance structure of the elements of iy  is put into iV .  Ordinary GEE (GEE1) uses the estimating 
equations in section 11.4.4 of Agresti to estimate the regression coefficients and cut-points, using 
something like Fisher scoring (with intial estimates for the covariance parameters).  Then to estimate the 
covariance parameters, a method of moments update is done, using the Fisher scoring estimates for the 
regression coefficients.  These two steps are repeated until “convergence”.  The “sandwich” estimator of 
the covariance matrix for the regression coefficients is given in section 11.4.4 of Agresti. 
 A different estimation procedure, called GEE2, builds a set of estimating equations for the 
covariance parameters too, updating both sets of parameters simultaneously.  Differences between the 
two estimation methods are found in the Heagerty and Zeger (1996) reference in Agresti.  Certain R and 
S-PLUS functions (namely, ordgee in package geepack, and the function ord.EE for S-PLUS Unix) claim 
to use “the” method of Heagerty and Zeger, which is apparently GEE1, although Heagerty and Zeger 
compare both GEE1 and GEE2.  According to computations from these functions and from SAS’s 
GENMOD, they give different estimates than SAS does.  I illustrate this for the insomnia data from table 
11.4 in Agresti, that was analyzed in Section D of this chapter. 
 
The function ordgee requires the data to be sorted by individual and response within individual.  So, after 
reading in the data, we modify table.11.4 as follows. 
 
table.11.4ord<-table.11.4[order(table.11.4$case, table.11.4$time),] 

 
Then, we make the outcome an ordered factor. 
 
table.11.4ord$outcome<-ordered(table.11.4ord$outcome, levels=1:4) 

 
The arguments for ordgee are similar to those for geese, as they are from the same package.  
Differences include the argument rev, which stands for reverse.  Setting it to TRUE means that we want 
the cutpoints to correspond to the cumulative probabilities, ( )itP y j≤ , not 1 minus the cumulative 
probabilities.  Here, we fit the independence covariance structure to compare with Agresti’s SAS 
GENMOD results. 
 
library(geepack) 
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fit.ordgee<-ordgee(outcome~treat*time, id=case , data = table.11.4ord, corstr = 
"independence", rev=TRUE, control = geese.control(maxit = 100)) # 100 
iterations are specified in order to ensure convergence 

summary(fit.ordgee) 

 
 Mean Model: 
 Mean Link:                 logit  
 Variance to Mean Relation: binomial  
 
 Coefficients: 
             estimate    san.se        wald            p 
Inter:1    -1.8912888 0.3866288 23.92914818 9.994697e-07 
Inter:2    -0.6951357 0.3885746  3.20029850 7.362483e-02 
Inter:3     0.4838944 0.4026376  1.44435030 2.294367e-01 
treat       0.1810109 0.6292888  0.08273884 7.736196e-01 
time        1.2445189 0.6099388  4.16323099 4.131053e-02 
treat:time -0.9370106 0.9445051  0.98419339 3.211657e-01 
 
Scale is fixed. 
 
Correlation Model: 
 Correlation Structure:     independence  
 
Returned Error Value:    0  
Number of clusters:   239   Maximum cluster size: 2 
 
 
Although the cutpoint estimates are roughly similar to those from SAS (–2.26, –0.95, and 0.352, 
respectively), and the time coefficient is somewhat similar across the two programs, the interaction 
parameter estimate is negative in ordgee, but positive in SAS, which may indicate a coding difference 
(however, I have not been able to find it).  Also, the standard errors are much larger in ordgee. 
 
For S-PLUS version 6.2 and above, the correlatedData library (available from the Insightful website) 
can be used to fit marginal models to repeated ordinal data.  The function geeDesign sets up the design 
of the model, and gee.fit is used to do the actual fit. 
 
In the call to geeDesign, we give the formula for the fixed effects structure, and specify the cluster 
variable and the family to be multinomial.  Then, to get an ordinal model, we give the link argument as 
“clogit” for cumulative logit.  The variance argument can be used to specify a design for the variance 
of the ordinal response.  Here, we let it follow the structure of a generalized linear model with a 
multiplicative of a scale parameter.  Thus, the variance of the response is proportional to a function of the 
conditional mean, where the proportionality constant is the dispersion parameter. 
 
library(correlatedData) 
geedes<-geeDesign(outcome~treat*time, cluster=case, family="multinomial", 

link="clogit", data=table.11.4, variance="glm.scale") 
gee.fit(geedes) 

 
GEE: Generalized Estimating Equations 
Model: 
 Family:   multinomial  
 Link  :   clogit  
 
Estimated Parameters:   
  Regression Coefficients: 
             Estimate  Std.Err.      Z      Prob  
         1 -2.2670890 0.2187605 -10.36 0.0000000 
         2 -0.9514617 0.1809171  -5.26 0.0000001 
         3  0.3517398 0.1784232   1.97 0.0486805 
     treat  0.0336100 0.2384374   0.14 0.8879020 
      time  1.0380764 0.1675855   6.19 0.0000000 
treat:time -0.7077588 0.2435197  -2.91 0.0036565 
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  Scale Parameter:  
1.013369  
 
Number of iterations :  6 
Number of observations :  478 
Number of clusters :  239  
 
These estimates match those from SAS.  Also, notice that our scale parameter estimate is close to one, 
which is the theoretical value for a multinomial model. 
 
G.  Markov Chains: Transitional Modeling  
 
Discrete-time Markov chains are discrete-time stochastic processes with a discrete state space.  That 
means that the random variable (potentially) changes states at discrete time points (say, every hour), and 
the states come from a set of discrete (many times, also finite) possible states.  So, if the state of the 
random variable at time t is represented by ty , then the stochastic process is represented by 

0 1 2{ , , ,...}y y y .   
This section deals with first-order Markov chains.  Thus, for all t, the conditional distribution of 

1ty +  given 0 1 2{ , , ,..., }ty y y y  is identical to the distribution of 1ty +  given only ty .  In words, this means that 
in order to predict the state at the next time point, we only need to consider the current state.  Any states 
prior to the current state add nothing to predictability of the next state.  This is sometimes called the 
Markov property. 

The conditional probability, 1 |( | ) ( )t t j iP Y j Y i tπ−= = = , is called a one-step transition probability, 

because it is the probability of transition from state i at time t – 1 to state j at time t one time-step away.  
The sum of these probabilities over j is equal to 1 because at time t, the process must take on one of the 
possible states, even if it remains at its current state.  Because of the Markov property, the joint 
distribution for a first-order Markov chain depends only on the one-step transition probabilities and on the 
marginal distribution for the initial state of the process. 

Because association is only present between pairs of adjacent, consecutive states, a first-order 
Markov chain can be fit to a sample of realizations from the chain by fitting the loglinear model 

0 1 1 2 1( , ,..., )T TY Y YY Y Y−  for T realizations.  This model says that, for example, at any combination of states at 
the time points 2,…, T, the odds ratios describing the association between 0Y  and 1Y  are the same. 
 
To illustrate how these models are fit, we fit several loglinear models to the Respiratory Illness data 
(Table 11.7 in Agresti).  This was a longitudinal study of the effects of air pollution on respiratory illness in 
children, with yearly assessments done on children from age 9 to age 12.  At each measurement, a child 
was classified according to the presence or absence of wheeze.  Thus, the data represent a four-way 
contingency table, with two categories per dimension (presence, absence). 
 
First, we read in the data. 
 
table.11.7<-data.frame(expand.grid(Y12=c(1,0), Y11=c(1,0), Y10=c(1,0), Y9=c(1,0)),  
        count=c(94,30,15,28,14,9,12,63,19,15,10,44,17,42,35,572)) 
 
A first-order Markov chain (MC) would assume an association between the response at 9 years and the 
response at 10 years, and the prediction at 11 years would be independent of the reponse at 9 years, 
given the response at 10 years.  The prediction at 12 years would be independent of the response at 9 
years and at 10 years, given the response at 11 years.  That is, once we know the previous year, we 
don’t need any other years to predict the response at a given year. 
 
Here is a fit of the first-order MC model, using loglm from MASS.  loglm is a front-end to loglin, which 
is much more complicated to use.  The syntax is the same for R and S-PLUS.  I have specified the 
arguments param=TRUE and fit=TRUE to get the parameter estimates and fitted values, respectively, as 
attributes. 
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library(MASS) 
(fit.loglm1<-loglm(count~Y9*Y10 + Y10*Y11 + Y11*Y12, data=table.11.7, param=TRUE, 

fit=TRUE)) 
 
Statistics: 
                      X^2 df P(> X^2) 
Likelihood Ratio 122.9025  8        0 
Pearson          129.5971  8        0 
 
The LR statistic is very high at 122.9, on 8 degrees of freedom. 
 
A second-order MC model assumes that the prediction at 12 years is independent of the response at 9 
years, given both the responses at 10 years and at 11 years.  This model is fit by 
 
(fit.loglm2<-loglm(count~Y9*Y10*Y11 + Y10*Y11*Y12, data=table.11.7, param=TRUE, 
fit=TRUE)) 

 
Statistics: 
                      X^2 df     P(> X^2) 
Likelihood Ratio 23.86324  4 8.507772e-05 
Pearson          26.67938  4 2.307740e-05 
 
Again, the LR statistic is high at 23.9, on 4 degrees of freedom. 
 
The loglinear model with all pairwise associations gives the following. 
 
(fit.loglm3<-loglm(count~ Y9*Y10 + Y11*Y12 + Y9*Y11 + Y10*Y12 + Y9*Y12 + Y10*Y11, 

data=table.11.7, param=TRUE, fit=TRUE)) 

 
Statistics: 
                      X^2 df  P(> X^2) 
Likelihood Ratio 1.458592  5 0.9177982 
Pearson          1.446029  5 0.9192127 
 
To get the parameter estimates, we call fit.loglm3$param.  To get the conditional log odds ratios of 
Table 11.8 in Agresti, we do the same manipulating that we did in Chapter 8.  For example, at each 
combination of 9 and 10-year responses, the odds of wheezing at 12 years old are  
 
exp(fit.loglm3$param$Y11.Y12[1,1] + fit.loglm3$param$Y11.Y12[2,2] - 
(fit.loglm3$param$Y11.Y12[1,2] + fit.loglm3$param$Y11.Y12[2,1])) 
 
[1] 6.358584 
 
times higher than the odds of wheezing at 11 years old.  (The anti-log of this odds ratio gives the log odds 
ratio in Table 11.8). 
 
The loglinear model with all pairwise associations, but constrained to have the one-year pair associations 
identical, and the greater-than-one-year associations identical fits well too.  To fit this model, we create 
two new variables that represent, respectively, the one-year association and the greater-than-one-year 
association. These variables just count the number of such associations. 
 
oneyear<-cbind(table.11.7$Y9*table.11.7$Y10, table.11.7$Y10*table.11.7$Y11, 

table.11.7$Y11*table.11.7$Y12) 
gtoneyear<-cbind(table.11.7$Y9*table.11.7$Y11, table.11.7$Y9*table.11.7$Y12, 

table.11.7$Y10*table.11.7$Y12) 
table.11.7$oneyear<-rowSums(oneyear) 
table.11.7$gtoneyear<-rowSums(gtoneyear) 

 



 

 

223

We will treat the two new variables as continuous instead of categorical.  So, we can’t use loglm to do 
the fitting (which is IPF).  We will use glm instead.  With glm, the factors in the model are not considered 
categorical. 
 
options(contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only 
(fit.glm4<-glm(count~Y9 + Y10 + Y11 + Y12 + oneyear + gtoneyear, data=table.11.7, 
family=poisson)) 
 
Coefficients: 
(Intercept)           Y9          Y10          Y11          Y12      oneyear   
      6.349       -2.227       -2.569       -2.687       -2.684        1.752   
 
  gtoneyear   
      1.036   
 
Degrees of Freedom: 15 Total (i.e. Null);  9 Residual 
Null Deviance:      2050  
Residual Deviance: 2.269        AIC: 99.47 
 
The parameter estimates here, conveniently, represent the conditional log odds ratios.  The odds ratio 
above is now less than 6.0. 
 
exp(coef(fit.glm4))["oneyear"] 
 
 oneyear  
5.766295 
 
 
Transitional Models with Explanatory Variables 
 
Transitional models can include explanatory variables.  If the response is binary, the explanatory 
variables can be included in a logistic regression model regressing the current response on previous 
responses as well as the explanatory variables.  The density for the tth sequential response (out of T 
responses) is then 
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Thus, previous responses are treated as explanatory variables too.  The product of the T terms for a 
given subject constitutes their contribution to the likelihood function.  This model is called a regressive 
logistic model.  This model can be fit using glm, treating multiple responses by an individual as separate 
data lines. 
 
Next, I fit a first-order regressive logistic model to Table 11.9 in Agresti.  This data set is from the same 
study of air pollution and health as Table 11.7.  Children were evaluated annually on the presence of 
respiratory illness from age 7 to 10.  A predictor is the presence/absence of maternal smoking (s = 0 for 
no smoking; s = 1 for regular smoking).  The first-order regressive model uses the previous response as 
a predictor, along with maternal smoking and age.  Thus, there are three responses per individual (for 
ages 8, 9, and 10).  These are treated as separate observations in a glm fit.  The process is the same in 
S-PLUS as in R. 
 
The first object is a contingency table, like Table 11.9. 
 
table.11.9.ref<-data.frame(expand.grid(Y10=c(0,1), Y9=c(0,1), Y8=c(0,1), Y7=c(0,1), 

mat.smoke=c(0,1)), count=c(237,10,15,4,16,2,7,3,24,3,3,2,6,2,5,11,118, 
6,8,2,11,1,6,4,7,3,3,1,4,2,4,7)) 

 
Next, we represent all 12 possible combinations of the values of the predictor variables. 
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table.11.9<-data.frame(expand.grid(previous=c(0,1), t=8:10, mat.smoke=c(0,1))) 

 
Each row of table.11.9 has a certain proportion of “presence” responses.  The proportion comes from 
table.11.9.ref. Here is the count vector that represents the number of “presence” responses for each 
row. 
 
count.yes<-c( 
sum(table.11.9.ref[table.11.9.ref$Y8==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y7==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y7==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y8==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y8==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y9==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==1 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y9==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y7==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y7==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y8==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y8==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y9==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==1 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y9==1,"count"]) 
) 
 
Here is the same for “absence” responses. 
 
count.no<-c( 
sum(table.11.9.ref[table.11.9.ref$Y8==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y7==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y7==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y8==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y8==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y9==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==0 & table.11.9.ref$mat.smoke==0 & table.11.9.ref$Y9==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y7==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y8==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y7==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y8==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y9==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y8==1,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y9==0,"count"]), 
sum(table.11.9.ref[table.11.9.ref$Y10==0 & table.11.9.ref$mat.smoke==1 & table.11.9.ref$Y9==1,"count"]) 
) 

 
This is used to compute the proportions. 
 
table.11.9$prop<-count.yes/(total<-count.yes+count.no) 
 
fit.glm5<-glm(prop ~ previous + t + mat.smoke, data=table.11.9, family=binomial, 

weight=total) 
summary(fit.glm5) 
 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.29256    0.84603  -0.346   0.7295     
previous     2.21107    0.15819  13.977   <2e-16 *** 
t           -0.24281    0.09466  -2.565   0.0103 *   
mat.smoke    0.29596    0.15634   1.893   0.0583 .   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 207.2212  on 11  degrees of freedom 
Residual deviance:   3.1186  on  8  degrees of freedom 
AIC: 64.392 
 
Number of Fisher Scoring iterations: 3 
 
The previous response has a strong effect.  Conditional on the previous response, and t, the child’s age, 
maternal smoking has a positive effect that is close to significant. 
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Recall that a LRT on any single coefficient is obtained by fitting another model without that coefficient, 
and subtracting residual deviances. 
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Chapter 12 – Random Effects: Generalized Linear Mixed 
Models for Categorical Responses  

 
A.  Summary of Chapter 12, Agresti   
 
 When observations occur in clusters, we can model the dependence within a cluster using 
(latent) random effects.  With this model, there are as many random effects as observations.  They take 
the same value for each observation in a cluster, but take different values across clusters.  A cluster can 
be an observation itself, in which case the random effects will differ across observations.  In a random 
effects model, the random effects apply to a sample of clusters instead of to a fixed set of clusters.  That 
is, the cluster effects are considered randomly sampled from a distribution of such effects, and the actual 
realization of clusters will tend to differ across samples.    

Random effects models are similar to the marginal models of Chapter 11 in that both models 
incorporate dependence among observations.  However, with the marginal models the dependence is 
averaged over, and the marginal probability distribution is of more interest.  With random effects models, 
we model the probability distribution within each cluster.  Also, the (positive) correlation between 
observations within a cluster is assumed to have arose because the random effects vary across clusters. 

 
 Generalized linear mixed models (GLIMMs) extend generalized linear models (GLIMs) to 
incorporate random effects.  Conditional on the random effect, a GLIMM resembles a GLIM.  For 
observation t in cluster i, the linear predictor is 

 ( ) T T
it it it ig μ = +x z uβ  (12.1) 

 
for link function g and conditional mean itμ .  The random effect vector, ui, is assumed to have a 
multivariate normal distribution ( , )N Σ0 , where Σ  describes the covariances among the elements of ui.  
Conditional on ui, the observations {yit} are independent over i and t.  With the random effect appearing 
on the scale of the explanatory variables, subject-specific random effects can represent heterogeneity 
caused by omitting certain explanatory variables.  Random effects can also represent random 
measurement error in the explanatory variables. 
  Because the ui are random effects, their inclusion only increases the number of parameters in 
the model by the number of unique elements in their covariance matrix.  On the other hand, if they were 
fixed effects, then the number of parameters would increase with the number of clusters.  In that case, 
one can condition on the sufficient statistics for ui, making the resulting conditional likelihood independent 
of them.  Maximizing this likelihood for β  gives consistent estimates.  Advantages of using a conditional 
likelihood include not having to specify a distribution for the random effects.  Also, if the clusters are not 
randomly sampled (such as for a retrospective study), then conditional likelihood estimation is 
appropriate.  However, conditioning removes the source of variability needed to estimate between-cluster 
effects (such as explanatory variable effects that are not repeated within clusters).  Recall that conditional 
MLE only allows estimation of within-cluster effects (such a treatment effect within pairs in a matched-
pairs design).  Also, a conditional model will not allow prediction of the individual random effects.  Finally, 
sufficient statistics for the ui have to exist to use the approach. 
 
 The fixed effects parameters β , both within-cluster and between-cluster, in a GLIMM have 
conditional interpretations, given the random effect.  For example, in a cross-over drug trial, where each 
subject takes both the control drug and experimental drug, the drug effect (a within-subject effect), 
conditional on the subject’s random effect is the coefficient that multplies the drug dummy variable.  Also, 
in a multi-center drug trial, with a random center effect, where each center has patients who take the 
control drug as well as patients who take the experimental drug, the drug effect (a between-center effect), 
again conditional on a given center’s random effect is the coefficient that multiples the drug dummy 
variable.  This is only true when the control and experimental patient come from the same center.  Thus, 
comparisons are done at a fixed value of the random effect.  In contrast, effects in marginal models are 
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averaged over all clusters.  When the link function is nonlinear, these effects are often smaller in 
magnitude than their analogous cluster-specific effects.  The approximate relationship between the two 
parameters in a logistic-normal model has been shown to be that the marginal model coefficient is about 

2 1/ 2[1 0.6 ]σ −+  of the conditional coefficient, making it smaller in magnitude.  Agresti’s Figure 12.1 
illustrates this attenuation. 
 With a multinomial outcome (ordinal or nominal), a random effects model is represented via the 
obvious extension.  That is, one adds a random effect to the linear predictor in the same way as for a 
binomial outcome. 
 
 
B.  Logit GLIMM for Binary Matched Pairs 
 
When g in (12.1) is the logit link, and itμ  is the conditional expectation of a Bernoulli random variable 
given ui, then we have the logit GLIMM.  Clustering occurs if the data are paired, so that each (matched) 
pair is a cluster.  Suppose cluster i of n contains the matched pair 1 2( , )i iy y , where ity  = 1 or 0, and given 
ui, 
 

 [ ]logit ( 1| )it i t iP Y u x uα β= = + +  (12.2) 
 
where 1 0x =  and 2 1x = , and 2~ (0, )iu N σ .  Then, we have a logit GLIMM for binary matched pairs.  
The two elements of the pair are independent given ui.  So, their only dependence occurs through this 
random effect.  If we compute the log odds ratio of responding 1 in each of the two pairs, we get β .  That 
is,  
 

 [ ] [ ]2 1logit ( 1| ) logit ( 1| )i i i iP Y u P Y u β= − = =  
 
within each cluster.  Thus, β  is called the cluster-specific log odds ratio.  The model in (12.2) is called a 
random intercept model because the intercept of the linear predictor is a random effect instead of a fixed 
constant.   
 
The marginal distribution of 

1

n
t iti

Y y
=

=∑  is binomial with index n and probability parameter 

( ) ( )[ ]{ }exp 1 expt tE x U x Uα β α β+ + + + + , with expectation with respect to U a 2(0, )N σ  random 

variable.  The model implies a non-negative correlation between 1Y  and 2Y , with greater association 

resulting from greater heterogeneity (larger 2σ ).  Greater heterogeneity means that all the ui are spread 
apart, where there are both large positive and large negative values.  Large positive values of ui make it 
more likely that 1 2( , )i iy y  are both 1.  Large negative values of ui make it more likely that 1 2( , )i iy y  are 
both 0.  This correspondence between the two elements of the match pair traverses to a correspondence 
between the two sums 1Y  and 2Y , leading to higher positive association. 
 
The 2 x 2 population-averaged table represents the frequency distribution of 1 2( , )i iy y .  When the sample 
log odds ratio is non-negative, then the MLE of β  can be shown to be equal to 21 12log( / )n n , which is the 
conditional MLE, using conditional maximum likelihood estimation as discussed in Agresti’s chapter 10.  
A sample log odds ratio that is negative means that the estimate of the variance, 2σ , is zero, implying 
independence.  Then, the MLE of β  is identical to that from the marginal model for matched pairs. 
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Agresti uses the Prime Minister Ratings data to illustrate a random intercept model.  The matched pairs 
are the clusters.  The data are available in table form from Agresti’s website.   I copied the data and 
placed it into a text file called primeminister.txt.  Then, I read it into R/S-PLUS. 
 
(table.12.1<-read.table("primeminister.txt",col.names=c("case", "occasion", 
"response", "count"))) 

 
  case occasion response count 
1    1        0        1   794 
2    1        1        1   794 
3    2        0        1   150 
4    2        1        0   150 
5    3        0        0    86 
6    3        1        1    86 
7    4        0        0   570 
8    4        1        0   570 
 
Now, we should make a new data frame that contains the correct number of cases, 3200.  This can be 
accomplished by repeating the 2nd and 3rd columns of each pair of rows, count number of times.  Then, 
we ensure that the case variable counts sequently in doubles.  Thus, 
 
temp1<-cbind(case=rep(1:794,each=2),table.12.1[rep(1:2,794),2:3]) 
temp2<-cbind(case=rep(795:(794+150),each=2),table.12.1[rep(3:4,150),2:3]) 
temp3<-cbind(case=rep(945:(944+86),each=2),table.12.1[rep(5:6,86),2:3]) 
temp4<-cbind(case=rep(1031:(1030+570),each=2),table.12.1[rep(7:8,570),2:3]) 

 
table.12.1a<-rbind(temp1,temp2,temp3,temp4) 

 
Now, I turn case into a factor. 
 
table.12.1a$case<-factor(table.12.1a$case) 

 
There are several functions in R from different packages that fit generalized linear mixed models, 
including random intercept models.  One function that is common to both R and S-PLUS is glmmPQL in 
the MASS library.  This function fits the model using the penalized quasi-likelihood approximation to 
maximum likelihood, which is not always accurate for binary data.  Here, it is a little off.  In the formula, 
we specify that there is a random intercept (random=~1) and that it corresponds to each case value. 
 
library(MASS) 
fit.glmmPQL<-glmmPQL(response~occasion, random=~1 | case , family=binomial, 
data=table.12.1a) 
 
summary(fit.glmmPQL) # R output 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: table.12.1a  
       AIC      BIC    logLik 
  17249.61 17273.89 -8620.803 
 
Random effects: 
 Formula: ~1 | case 
        (Intercept)  Residual 
StdDev:    3.263896 0.5414447 
 
Variance function: 
 Structure: fixed weights 
 Formula: ~invwt  
Fixed effects: response ~ occasion  
                 Value  Std.Error   DF   t-value p-value 
(Intercept)  0.8499475 0.10012885 1599  8.488538       0 
occasion    -0.5688280 0.07295128 1599 -7.797368       0 
 Correlation:  
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         (Intr) 
occasion -0.376 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-2.1613715 -0.4746219  0.3097340  0.4117406  2.0973320  
 
Number of Observations: 3200 
Number of Groups: 1600  
 
The MLE for the (cluster-specific) log odds ratio of approval (beta) is –0.569, with SE = 0.073, so that the 
estimated odds of approval at the second survey are exp(–0.569) = 0.57 times that at the first survey.  
The estimate of the standard deviation of the random effects is 3.26. 
 
Other R functions that fit GLIMMs use other types of approximations (namely, maximization of the 
numerically integrated likelihood -- integrated over the normal distrubtion of the random effects).  The 
repeated library has a function called glmm. 
 
library(repeated) 
fit.glmm<-glmm(response~occasion , nest=case, family=binomial, data=table.12.1a) 

 
summary(fit.glmm) 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)   1.3190     0.1111   11.87  < 2e-16 *** 
occasion     -0.5540     0.1332   -4.16 3.18e-05 *** 
sd            4.6830     0.1759   26.62  < 2e-16 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 4373.2  on 3199  degrees of freedom 
Residual deviance: 3501.1  on 3197  degrees of freedom 
AIC: 3507.1 
 
Number of Fisher Scoring iterations: 20 
 
In the call, the argument nest specifies the cluster variable. 
 
In the output, the MLE for the (cluster-specific) log odds ratio of approval (beta) is –0.554, with SE = 
0.133, so that the estimated odds of approval at the second survey are exp(–0.554) = 0.57 times that at 
the first survey.  The estimate of the standard deviation of the random effects is 4.68.  These numbers 
are closer to what SAS NLMIXED gets for Agresti.  (In fact, it is the same fitting algorithm as NLMIXED). 
 
The R package glmmML also fits GLIMMs by maximizing the numerically integrated likelihood 
 
library(glmmML) 
(fit.glmmML<-glmmML(response~occasion, cluster=table.12.1a$case, family=binomial, 
data=table.12.1a)) 

 
 
               coef se(coef)      z Pr(>|z|) 
(Intercept)  1.3404   0.2495  5.372 7.78e-08 
occasion    -0.5563   0.1353 -4.113 3.91e-05 
 
Standard deviation in mixing distribution:  5.138  
Std. Error:                                 0.4339  
 
Residual deviance: 3502 on 3197 degrees of freedom      AIC: 3508 
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In the call, the argument cluster specifies the cluster variable.  Apparently, the variable is not taken from 
the data frame, and must be referenced (e.g., by using the $). 
 
In the output, the MLE for the (cluster-specific) log odds ratio of approval (beta) is –0.556, with SE = 
0.135, so that the estimated odds of approval at the second survey are exp(–0.556) = 0.57 times that at 
the first survey.  The estimate of the standard deviation of the random effects is 5.14.  These numbers 
are closest to what SAS NLMIXED gives.  Using the approximate relationship given in Section A, this 
implies a marginal effect of about –0.135. 
 
Another R function called glmm in package GLMMGibbs fits GLIMMs via MCMC sampling.  
 

The extension of (12.2) to more than 2 observations in each cluster is sometimes called the 
Rasch Model.  In this case the model would look like 

 
 [ ]logit ( 1| )it i t iP Y u uβ= = +  (12.3) 

 

for t = 1,…,T.  Note that the log odds ratio of responding 1 at t = 1 versus t = 2 , for a given subject i is the 
difference, 1 2β β− .  This is not the same as the population-averaged log odds ratio, which would be 

[ ] [ ]1 2logit ( 1) logit ( 1)P Y P Y= − = , and is the subject of marginal models. 
 
 
C.  Examples of Random Effects Models for Binary Data 
 
1.  Small Area Estimation of Binomial Proportions 
 
Small area estimation models are random effects models.  These models treat each area as a cluster 
with its own random effect coming from a common distribution of the random effects. The model 
estimates each area’s mean by borrowing information from other areas. The borrowing takes place 
through the parameters of the common distribution.  The resulting estimates of the area means are 
shrunk toward the population mean.  The amount of shrinkage is controlled by the size of the estimated 
variance of the random effects distribution, and the size of the area.  A lower variance and lower size 
result in less shrinkage. 
 
Let itY  be tth binary response for the ith area, t = 1,…,Ti.  Conditional on the random effect, ui ~ 

2(0, )N σ , 
 [ ]logit ( 1| )it i iP Y u uα= = +  (12.4) 

 
so that the estimate of ( 1| )i it iP Y uπ = =  is a function of the predicted random effect, îu , which is 
estimated by its marginal posterior mean. 
 
Table 12.2 in Agresti gives data on simulated voting proportions in the 1996 presidential election for each 
of the 50 states.  The states are the areas. 
 
After reading in the data (which are available on Agresti’s web site for the text), we fit a random intercept 
model using glmmPQL from the MASS library (available in both S-PLUS and R).  The response is the 
observed proportion, with “case” weights as the number of observations per state. 
 
table.12.2<-read.table("vote.txt",col.names=c("y","n")) 
table.12.2$state<-1:nrow(table.12.2) 
 
library(MASS) 
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fit.glmmPQL<-glmmPQL(y/n~1, random=~1 | state , weights=n, family=binomial, 
data=table.12.2) 
summary(fit.glmmPQL) 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: table.12.2  
       AIC      BIC    logLik 
  84.34555 90.14103 -39.17278 
 
Random effects: 
 Formula: ~1 | case 
        (Intercept)  Residual 
StdDev:   0.3030006 0.9451296 
 
Variance function: 
 Structure: fixed weights 
 Formula: ~invwt  
Fixed effects: y/n ~ 1  
                Value Std.Error DF  t-value p-value 
(Intercept) 0.1582088 0.0677359 51 2.335671  0.0235 
 
Standardized Within-Group Residuals: 
         Min           Q1          Med           Q3          Max  
-2.216914105 -0.480966832 -0.009083338  0.313103383  1.794107257  
 
Number of Observations: 51 
Number of Groups: 51 
 
The estimate of the standard deviation of the random effects is 0.303, and is relatively small.  So, the 
state estimates will show a lot of shrinkage to the population mean.  We can get the state estimates using 
the fitted function 
 
exp(fitted(fit.glmmPQL))/(1+exp(fitted(fit.glmmPQL))) 

 
To use the glmm function in the repeated package in R, we have to construct the response so that it is a 
two-column matrix of the number of successes and failures.  
 
library(repeated) 
fit.glmm<-glmm(cbind(y,n-y)~1 , nest=state, family=binomial, data=table.12.2) 
summary(fit.glmm) 

 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  0.16615    0.04553   3.650 0.000263 *** 
sd           0.28593    0.04441   6.439 1.21e-10 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 95.671  on 50  degrees of freedom 
Residual deviance: 77.284  on 49  degrees of freedom 
AIC: 262.2 
 
Number of Fisher Scoring iterations: 10 
 
Normal mixing variance: 0.08175857 
 
The estimates are similar to those from glmmPQL, but not identical. 
 
 
2.  Modeling Repeated Binary Responses 
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We can add covariates to model (12.3), and then consider the multiple questions or items for an 
individual as part of a single cluster.  Agresti illustrates fitting this model using the abortion data in Table 
10.13.  In that data set, each subject (cluster) answered three yes/no questions.  Subjects were classified 
by sex.  A random effects logistic model for the response assumes a positive correlation between 
responses from the three questions by a single individual.   
We start with the previous data frame called table.10.13 (see chapter 10, above).   
 
table.10.13 
 
  gender question1 question2 question3 count  
1      M         Y         Y         Y   342 
2      F         Y         Y         Y   440 
3      M         N         Y         Y     6 
4      F         N         Y         Y    14 
5      M         Y         N         Y    11 
6      F         Y         N         Y    14 
7      M         N         N         Y    19 
 
etc 
 
We reshape the data so that it is in “long” format instead of “wide” format.  In R, one can use the function 
reshape or stack for this; in S-PLUS, one can use the function menuStackColumns.  reshape is definitely 
easier to use than menuStackColumns. 
 
menuStackColumns(target=table.10.13a,source=table.10.13,group.col.name="question",targ

et.col.spec="response", source.col.spec=c("question1","question2","question3"), 
rep.source.col.spec=c("gender","count"),rep.target.col.spec=list(gender="gender",co
unt="count"),show.p=F) 

#R: table.10.13a<-reshape(table.10.13, varying=c("question1","question2", 
"question3"), drop="symm", direction="long", v.names="response", 
timevar="question") 

 
In the next command, I reverse the levels of the factor, question, so that when I fit the model, the last 
coefficient is set to zero instead of the first, for identifiability constraints. 
 
table.10.13a$question<-factor(table.10.13a$question, levels=rev(c("question1", 

"question2","question3"))) 
#R: table.10.13a$question<-factor(table.10.13a$question,levels=3:1) 
 
Now, I create a new table that replicates the respective rows according to the counts in each cell.  I also 
create an id variable that indexes the subject, and I make response into a 0/1-valued variable instead of a 
factor, so that we can fit a binomial model. 
 
table.10.13b<-table.10.13a[rep(1:nrow(table.10.13a),table.10.13a$count), 

c("response","gender","question")] 
table.10.13b$id<-factor(rep(1:1850,3)) 
table.10.13b$response<-c(unclass(table.10.13b$response)-1) 

 
Now, I fit the random effects model, with id as the cluster.  First, I use the function glmmPQL in the MASS 
library in both S-PLUS and R, then I use the function glmmML, in the R package, glmmML. 
 
The function glmmPQL uses penalized quasi-likelihood estimation (maximizing a LaPlace approximation to 
the likelihood function), which can be inaccurate for binary data (see Agresti p. 524). 
 
options(contrasts=c("contr.treatment", "contr.poly")) # S-PLUS only 
 
library(MASS) 
fit.glmmPQL<-glmmPQL(response~gender+question, random=~1|id, family=binomial, 

data=table.10.13b) 
summary(fit.glmmPQL) 
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Linear mixed-effects model fit by maximum likelihood 
 Data: table.10.13b  
       AIC      BIC    logLik  
  32091.19 32130.92 -16039.59 
 
Random effects: 
 Formula:  ~ 1 | id 
        (Intercept)  Residual  
StdDev:    4.308437 0.4507951 
 
Variance function: 
 Structure: fixed weights 
 Formula:  ~ invwt  
Fixed effects: response ~ gender + question  
                       Value Std.Error   DF   t-value p-value  
      (Intercept) -0.5108888 0.1710876 3698  -2.98612  0.0028 
           gender  0.0064619 0.2215622 1848   0.02917  0.9767 
questionquestion2  0.3067315 0.0722624 3698   4.24469  <.0001 
questionquestion1  0.8677367 0.0727694 3698  11.92447  <.0001 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med        Q3      Max  
 -3.997665 -0.2546468 -0.2182912 0.2840273 3.835893 
 
Number of Observations: 5550 
Number of Groups: 1850  
 
These estimates and their standard errors are somewhat off from SAS’s NLMIXED estimates, but match 
those of SAS’s GLIMMIX macro (see Agresti’s comment on p. 524).  Using glmmML gives estimates and 
SE’s more similar to those from SAS.  Both functions maximize the integrated likelihood. 
 
library(glmmML) 
(fit.glmmML<-glmmML(response~gender+question, cluster=table.10.13b$id, 
family=binomial, data=table.10.13b)) 
 
                coef se(coef)       z Pr(>|z|) 
(Intercept) -0.06137   0.1803 -0.3404 7.34e-01 
genderF     -0.03620   0.1986 -0.1823 8.55e-01 
question2    0.30681   0.1606  1.9102 5.61e-02 
question1    0.83473   0.1601  5.2122 1.87e-07 
 
Standard deviation in mixing distribution:  6.348  
Std. Error:                                 0.1981  
 
Residual deviance: 4571 on 5545 degrees of freedom      AIC: 4581 
 
Thus, regardless of gender, the estimated odds of supporting legalized abortion for item 1 equal 
exp(0.83) = 2.3 times the estimated odds for item 3.  The estimated standard deviation of the random 
effects distribution is 6.3, here (somewhat smaller than NLMIXED’s 8.6, with a much smaller standard 
error).  A higher standard deviation indicates greater heterogeneity among subjects, but high association 
within responses from a given subject. 
 
The methods from Chapter 11 can be used to fit a marginal model to this data set (GEE and MLE). 
 
We can obtain the fitted cell frequencies by numerically integrating over the distribution of the random 
effects, and then multiplying the result by the number of observations in the stratum (here, male or 
female).  So, the probability that we estimate is the joint probability of a particular set of responses 
averaged over individuals.  This is  
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The probabilities ( | )it it iP Y y u=  are defined in equation (12.10) in Agresti (p. 504), and the density of u is 
normal.  So, we numerically integrate.  The function in R/S-PLUS to integrate is called integrate, and is 
very easy to use, theoretically.  Another function that works correctly for this problem is in the R package 
rmutil, and is called int.  For either, we first define the function to be numerically integrated.  Here, I 
compute the probability of a positive response for each of the three questions, for a female respondent.  
Then, to get the expected frequency for that cell of the contingency table, we multiply the estimated 
probability by 1037, the number of female observations. 
 
First, we get the estimates of the parameters from the fit.  Then, we set a variable called female to 1, to 
indicate a female. 
 
beta.coef<-

c(fit.glmmPQL$coefficients$fixed[c("questionquestion1","questionquestion2")],0) 
#R: beta.coef<-c(fit.glmmML$coef[c("question1","question2")],0) 
female<-1 

 
invlogit<-function (x) {exp(x)/(1+exp(x))} 

 
The function, called f, is different depending on whether we use the fitted result from glmmPQL or glmmML. 
 
# glmmPQL 
f<-function(u){ 
    prod(invlogit(u+beta.coef+fit.glmmPQL$coefficients$fixed["(Intercept)"]+ 
 fit.glmmPQL$coefficients$fixed["gender"]*female))*dnorm(u,0,exp(attr(fit.glmmPQL$ap

Var,"Pars")["reStruct.id"]) 
) 
} 
 
# glmmML (R only) 
f<-function(u){ 
    prod(invlogit(u+fit.glmmML$coef["(Intercept)"]+ beta.coef + 
    fit.glmmML$coef["genderF"]*female))*dnorm(u,0,fit.glmmML$sigma) 
} 

 
The expected frequency results from calling int or integrate with this function, and multiplying by 1037.  It 
gives about 439.4, which is close to the observed frequency of 440.  Agresti gets 436.5. 
 
# R only 
library(rmutil) 
1037*int(f) 
[1] 439.3701 
 
 
result<-integrate(f,lower=-Inf,upper=Inf) # this gives an incorrect answer. 
1037*result$integral 

 
Agresti also illustrates repeated binary responses via a longitudinal study, the mental depression data 
from Chapter 11 (Table 11.2).  Thus, the three repeated measurements occur at distinct calendar times.  
Let yit be observation t for subject i (1 = normal; 0 = abnormal).  Then, conditional on the random effect 
for subject i 

[ ] 1 2 3 4logit ( 1| )it i iP Y u s d t dt uα β β β β= = + + + + +  
 
where s is the severity of diagnosis (1 = severe, 0 = mild) and d is the drug treatment (1 = new, 0 = 
standard).  The coefficients have subject-specific interpretations. 
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The data are already in the object table.11.2 (see above).  Here, we fit a random intercept model using 
the R function glmmML in the glmmML package, the R function glmm in the repeated package, and the 
function glmmPQL in the MASS library. 
 
First, the glmmML R function, because it gives the “correct” MLEs. 
library(glmmML) 
(fit.glmmML<-glmmML(outcome~diagnose+treat*time, cluster=table.11.2$case, 
family=binomial, data=table.11.2)) 

 
                coef se(coef)       z Pr(>|z|) 
(Intercept) -0.02795   0.1641 -0.1703 8.65e-01 
diagnose    -1.31521   0.1546 -8.5046 0.00e+00 
treat       -0.05970   0.2225 -0.2684 7.88e-01 
time         0.48284   0.1160  4.1638 3.13e-05 
treat:time   1.01842   0.1924  5.2930 1.20e-07 
 
Standard deviation in mixing distribution:  0.06581  
Std. Error:                                 1.242  
 
Residual deviance: 1162 on 1014 degrees of freedom      AIC: 1174 
 
As Agresti notes, the subject-specific parameter estimates are very close to the GEE and ML marginal 
estimates.  The reason he gives is that the estimate of the standard deviation of the random effects 
distribution is close to zero (0.07), implying little heterogeneity among subjects.  Thus, the derived 
pairwise correlation among observations on the same subject is not high (see equation (12.6) in Agresti). 
 
Now, we fit the same model using glmm in the repeated R package. 
 
library(repeated) 
fit.glmm<-glmm(outcome~diagnose+treat*time, nest=case, family=binomial, 
data=table.11.2, points=10) 
 
Coefficients: 
(Intercept)     diagnose        treat         time           sd   treat:time   
   -0.02741     -1.33422     -0.06115      0.48917      0.26182      1.03267   
 
Degrees of Freedom: 1019 Total (i.e. Null);  1014 Residual 
Null Deviance:      1412  
Residual Deviance: 1162         AIC: 1174  
Normal mixing variance: 0.06854993 

 
Notice that it estimates the variance of the random effects distribution to be 0.07 instead of the standard 
deviation. 
 
summary(fit.glmm) 

 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept) -0.02741    0.16514  -0.166 0.868150     
diagnose    -1.33422    0.14783  -9.025  < 2e-16 *** 
treat       -0.06115    0.22378  -0.273 0.784652     
time         0.48917    0.11560   4.231 2.32e-05 *** 
sd           0.26182    0.07263   3.605 0.000313 *** 
treat:time   1.03267    0.19017   5.430 5.62e-08 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 1411.9  on 1019  degrees of freedom 
Residual deviance: 1161.7  on 1014  degrees of freedom 
AIC: 1173.7 
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The function glmmPQL in the MASS library does the same. 
 
library(MASS) 
fit.glmmPQL<-glmmPQL(outcome~diagnose+treat*time, random=~1|case, family=binomial, 
data=table.11.2) 
summary(fit.glmmPQL) 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: table.11.2  
       AIC      BIC    logLik 
  4611.546 4646.039 -2298.773 
 
Random effects: 
 Formula: ~1 | case 
        (Intercept)  Residual 
StdDev:   0.3151588 0.9719163 
 
Variance function: 
 Structure: fixed weights 
 Formula: ~invwt  
Fixed effects: outcome ~ diagnose + treat * time  
                 Value Std.Error  DF   t-value p-value 
(Intercept) -0.0263963 0.1627507 678 -0.162189  0.8712 
diagnose    -1.3170725 0.1469893 337 -8.960329  0.0000 
treat       -0.0614527 0.2194690 337 -0.280006  0.7796 
time         0.4825385 0.1118404 678  4.314528  0.0000 
treat:time   1.0209475 0.1843255 678  5.538828  0.0000 
 
Number of Observations: 1020 
Number of Groups: 340 
 
For predictions, we can use the function int again, from the rmutil R package, and the results from 
fit.glmmML.  Here, I compute the expected number of cases in the cell (N, N, N) for severe diagnosis 
(1), New drug (1). 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
diagnosis<-1 
drug<-1 
beta.coef<-(fit.glmmML$coef["time"] + drug*fit.glmmML$coef["treat:time"])*0:2 
 
f<-function(u){ 

prod(invlogit(u+fit.glmmML$coef["(Intercept)"]+ 
fit.glmmML$coef["diagnose"]*diagnosis+beta.coef))*dnorm(u,0,fit.glmmML$sigma) 

} 
 
library(rmutil) 
340*int(f) 
[1] 8.583693 
 
Compare this to the observed 7 cases. 
 
 
3.  Modeling Heterogeneity among Multicenter Clinical Trials 
 
When a clinical trial is run across several centers, the treatment effects within the centers can be 
regarded as random effects, sampled from a population of such center effects.  Inference is then 
extended to the population distribution.  In addition, because the center effects borrow information from 
each other via their parent population distribution, the treatment effect within each center is estimated 
with more precision than if it had been estimated independently of the remaining centers. 
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Agresti uses the clinical trial data from Chapter 6 (Table 6.9, repeated in Table 12.5), comparing a drug to 
a control, to illustrate fitting a logistic-normal model to multicenter clinical trial data.  For a subject in 
center i using treatment t (1 = drug, 2 = control), let yit = 1 denote success.  A general model includes a 
treatment-by-center interaction: 

 
[ ]

[ ]
1

2

logit ( 1| , ) ( ) / 2

logit ( 1| , ) ( ) / 2

i i i i i

i i i i i

P Y u b b u

P Y u b b u

α β

α β

= = + + +

= = − + +
 

 
where 2~ (0, )i au N σ  and 2~ (0, )i bb N σ , all independent of one another.  With this model, ibβ +  is the 
center-specific log odds ratio for the ith center, and β  is the expected center-specific log odds ratio.  

Thus, we have random center effects and random treatment-by-center effects.  When 2
bσ  = 0, the log 

odds ratio between treatment and response is constant over centers. 
 
Recall that we read these data into S-PLUS/R as a data frame in Section E of Chapter 6.  I make a few 
changes to this data frame so that we have the coding used by Agresti.   
 
table.6.9$TreatC<-ifelse(table.6.9$Treatment=="Drug",.5,-.5) 
table.6.9$RespC<-ifelse(table.6.9$Response=="Success",1,0) 
 
Now, I expand the data frame so that each row is repeated Freq times. 
 
table.6.9a<-table.6.9[rep(1:nrow(table.6.9),table.6.9$Freq), c("RespC","TreatC", 
"Center")] 

 
To fit the random intercepts model as well as the random treatment-by-center interaction, I use glmmPQL 
in the MASS library, because it is the only function that allows specifying more than one cluster variable.  
It is available in both S-PLUS and R.  I show R output. 
 
First, I fit the model with random intercepts in Center. 
 
library(MASS) 
fit.glmmPQL.int<- 
glmmPQL(RespC~TreatC, random=~1|Center, family=binomial, data=table.6.9a) 
summary(fit.glmmPQL.int) 

 
Linear mixed-effects model fit by maximum likelihood 
 Data: table.6.9a  
       AIC      BIC    logLik 
  1271.560 1285.998 -631.7799 
 
Random effects: 
 Formula: ~1 | Center 
        (Intercept)  Residual 
StdDev:    1.323061 0.9652609 
 
Variance function: 
 Structure: fixed weights 
 Formula: ~invwt  
Fixed effects: RespC ~ TreatC  
                 Value Std.Error  DF   t-value p-value 
(Intercept) -0.7799349 0.5019781 264 -1.553723  0.1214 
TreatC       0.7210237 0.2864029 264  2.517515  0.0124 
 Correlation:  
       (Intr) 
TreatC -0.012 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-2.0633991 -0.6235402 -0.3736916  0.7461471  3.5571301  



 

 

238

 
Number of Observations: 273 
Number of Groups: 8  
 
The estimate of 0.721 (SE = 0.286) is a little off from Agresti’s MLE of 0.739 (SE = 0.300).  Note Agresti’s 
discussion of penalized quasi-likelihood in Section 12.6.4. 
 
Now, I fit the treatment-by-center interaction as well. 
 
fit.glmmPQL.ia<- 
glmmPQL(RespC~TreatC, random=~TreatC|Center, family=binomial, data=table.6.9a) 
summary(fit.glmmPQL.ia) 

 
Linear mixed-effects model fit by maximum likelihood 
 Data: table.6.9a  
       AIC      BIC    logLik 
  1278.671 1300.328 -633.3354 
 
Random effects: 
 Formula: ~TreatC | Center 
 Structure: General positive-definite, Log-Cholesky parametrization 
            StdDev    Corr   
(Intercept) 1.3489277 (Intr) 
TreatC      0.3083281 -0.867 
Residual    0.9627373        
 
Variance function: 
 Structure: fixed weights 
 Formula: ~invwt  
Fixed effects: RespC ~ TreatC  
                 Value Std.Error  DF   t-value p-value 
(Intercept) -0.8130185 0.5116942 264 -1.588876  0.1133 
TreatC       0.8084582 0.3120634 264  2.590686  0.0101 
 Correlation:  
       (Intr) 
TreatC -0.332 
 
Standardized Within-Group Residuals: 
       Min         Q1        Med         Q3        Max  
-1.8942090 -0.6317714 -0.3874070  0.7163946  3.9731951  
 
Number of Observations: 273 
Number of Groups: 8 
 
The treatment effect is estimated to be 0.81 (SE = 0.312), slightly different than the MLE of 0.746 (SE = 
0.325.  Note, again, that glmmPQL apparently estimates the variance of the center-specific treatment 
coefficients to be around 0.15 (well, here 0.09), not the standard deviation.  This variance represents 
variability in the log odds ratios across centers.  The fact that the standard deviation is estimated to be 
quite small indicates that the log odds ratios are probably similar and that the standard errors of the 
treatment association parameter are similar across models. 
 
Predicted odds ratios for either model are easy to obtain.  The predict or fitted method for glmmPQL 
(really, lme) gives the predicted logits.  A simple transformation gives the predicted odds ratios.  More 
direct is to extract the estimated coefficients of the logit model using coef, and multiplying these by the 
design matrix.  Below, I do this for each treatment separately, get the inverse logits, and take the ratio of 
the two results. 
 
Here are the coefficient estimates for the interaction model.  These include both the fixed and random 
parts for each center. 
 
coef(fit.glmmPQL.ia) 
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  (Intercept)    TreatC 
a  -0.8998236 0.7692297 
b   0.9721856 0.4584772 
c   0.1236859 0.6716927 
d  -2.1502939 1.0664178 
e  -1.4833405 0.9778767 
f  -2.4923268 1.1419009 
g  -1.5186057 0.9455523 
h   0.9443708 0.4365184 
 
Now, I get the predicted odds ratios. 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
 
odds.treat<-invlogit(as.matrix(coef(fit.glmmPQL.ia))%*%c(1,.5)) 
odds.control<-invlogit(as.matrix(coef(fit.glmmPQL.ia))%*%c(1,-.5)) 
 
odds.treat/odds.control 

 
        [,1] 
  a 1.725004 
  b 1.134493 
  c 1.370664 
  d 2.589480 
  e 2.210855 
  f 2.860352 
  g 2.164892 
  h 1.130364 
 
Unfortunately, these predicted odds ratios are quite a bit off from those of SAS NLMIXED (compare to 
Table 12.5 in Agresti).  It is unclear whether this is due to the use of PQL as an estimation technique or 
whether there is a mistake in the computation above. 
 
 
4.  Capture-Recapture Modeling to Predict Population Size 
 
The standard capture-recapture experiment to estimate the size of a population uses two or more 
sources.  Each source is a sample from the population.  After the first sample is taken, the elements are 
recorded and returned to the population.  After the second sample is taken, the elements are recorded 
and returned.  The second sample might recapture some elements that were sampled first.  For T 
samples from the population, a 2T contingency table records how many elements had each of the various 
capture patterns (e.g., captured at occasion 1, not captured at occasion 2, etc).  However, the cell 
representing non-capture at any occasion is an unknown.  Knowing this cell value would provide us with 
the population size. 
 
The probability of capture at a given occasion can be heterogeneous across sources.  One model to 
represent heterogeneous capture probabilities is a random effects logit model, with random subject 
effects.  Thus, for subject i, let 1( ,..., )T

i i iTy y=y , where 1ity =  denotes capture in sample t, and 0ity =  
denotes non-capture, and i = 1 ,…, N, with N unknown.  Then, a logistic-normal model could be  
 

 [ ]logit ( 1| )it i i tP Y u u β= = +  

 
where ui are independent 2(0, )N σ .  The larger the value of tβ , the larger the probability of capture at 
occasion t.  The larger is σ , the greater the heterogeneity among capture probabilities. 
 
To get the likelihood, we can integrate the random effect from the probability mass function conditional on 
the random effect,  
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then treat the yi‘s as multinomial draws, with probabilities given by 2( ) ( | ) ( | )i i i iu

p p u p u duσ= ∫y y , 

and index N.  Maximizing this likelihood gives the MLE of N, and the other parameters.  This is 
straightforward to do in S-PLUS or R, using a function like optim.  However, to match the estimate 
obtained by Agresti, I will also illustrate a conditional approach that Agresti used in Coull and Agresti, 
1999 (see references in Agresti). 
 
First, we should enter the data from Table 12.6.  I do this in several steps so that I can the data in 
different forms throughout this section. 
 
Here, I enter the 0/1 patterns, separately from the counts. 
 
temp<-matrix(c( 
c(0,0,1,0,0,0), 
c(0,1,0,0,0,0), 
c(0,1,1,0,0,0), 
c(1,0,0,0,0,0), 
c(1,0,1,0,0,0), 
c(1,1,0,0,0,0), 
c(1,1,1,0,0,0), 
 
…………… etc., see code file 
 
c(0,0,0,1,1,1), 
c(0,0,1,1,1,1), 
c(0,1,0,1,1,1), 
c(0,1,1,1,1,1), 
c(1,0,0,1,1,1), 
c(1,0,1,1,1,1), 
c(1,1,0,1,1,1), 
c(1,1,1,1,1,1)), byrow=T,nc=6) 
 
counts<-c(3,6,0,5,1,0,0,3,2,3,0,0,1,0,0,4,2,3,1,0,1,0,0,1,0,0,0,0,0,0,0,4, 
1,1,1,2,0,2,0,4,0,3,0,1,0,2,0,2,0,1,0,1,0,1,0,1,1,1,0,0,0,1,2) 
 
Now, I put everything into a data frame, and add names. 
 
table.12.6<-data.frame(temp,counts) 
names(table.12.6)<-c(paste("Survey",c(3:1,6:4),sep=""),"counts") 
 
Next, I repeat the temp rows, counts times, to get the right number of rows. 
 
table.12.6a<-table.12.6[rep(1:nrow(table.12.6),table.12.6$counts),1:6] 
row.names(table.12.6a)<-1:nrow(table.12.6a) 
 
Next, I change the shape of the data frame so that it is “long” instead of “wide”.  In R, the function 
reshape is very easy to use. In S-PLUS, one can use menuStackColumns.  I present reshape 
primarily. 
 
#S-PLUS: table.12.6a$id<-1:nrow(table.12.6a) 
table.12.6b<-reshape(table.12.6a,direction="long", 
varying=list(names(table.12.6a)), timevar="Survey",v.names="Capture") 
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#S-PLUS: menuStackColumns(source=table.12.6a,target=table.12.6b, 
source.col.spec=names(table.12.6a)[1:6],group.col.name="Survey", 
target.col.spec="Capture",rep.source.col.spec="id",show.p=F) 

#S-PLUS: names(table.12.6b)<-c("Capture", "id", "Survey" ) 

 
Then, I make Survey a factor, as we will be using it as such in fitting models. 
 
table.12.6b$Survey<-factor(table.12.6b$Survey) 
 
Now, I fit a model to just the known data.  The resulting parameter estimates are used as starting values 
for the maximization. 
 
library(MASS) 
fit.glmmPQL<-glmmPQL(Capture~Survey-1, random=~1|id, family=binomial, 
data=table.12.6b) 
beta.coef<-fit.glmmPQL$coef$fixed 
 
Now, I create the negative log likelihood for the unknown parameters, including the unknown size, N.  The 
function is called func2, and takes as a single argument, a vector of the unknown parameters.  I use the 
log of N instead of N.  Also, the function as written can only be used in R because it uses int.  To use in 
S-PLUS, try to replace the line int(f) with integrate(f,lower=-Inf,upper=Inf). 
 
temp2<-rbind(rep(0,6),temp) # add the all-zero row 
invlogit.i<-function (x,i) {exp(i*x)/(1+exp(x))} 
 
func2<-function(y) { 
 
    counts<-c(exp(y[8]),3,6,0,5,1,0,0,3,2,3,0,0,1,0,0,4,2,3,1,0,1,0,0,1, 

0,0,0,0,0,0,0,4,1,1,1,2,0,2,0,4,0,3,0,1,0,2,0,2,0,1,0,1,0,1,0,1,1,  
1,0,0,0,1,2) 

 
    require(rmutil) # R only 
  
    probs<-apply(temp2,1,function(x){ 
        i<-x 
        f<-function(u){ 
            prod(invlogit.i(y[1:6]+u,i))*dnorm(u,0,exp((y[7]))) 
        } 
        int(f)  
    }) 
 
#S-PLUS:   probs<-apply(temp2,1,function(x,y){ 
#        f<-function(u,x,y){ 
#            prod(invlogit.i(y[1:6]+u,x))*dnorm(u,0,exp((y[7]))) 
#        } 
#        integrate(f,lower=-Inf,upper=Inf,x=x,y=y)$integral 
#    },y=y) 
 
    -lgamma(sum(counts)+1) +sum(lgamma(counts+1)) - sum(counts*log(probs)) 
} 
 
 
Now, I get the MLEs. 
 
result<-optim(par=c(beta.coef,log(fit.glmmPQL$sigma),log(18)),func2, 
control=list(trace=6,REPORT=1),method="BFGS") 
result.values<-result$par 
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c(result.values[1:6],exp(result.values[7:8])) 
 
   Survey1    Survey2    Survey3    Survey4    Survey5    Survey6             
-1.4378836 -0.9094129 -1.7539897 -0.6751367 -1.2273151 -1.0325512  0.9075391 20.9831241 

 
The last value (plus 68) is N, and the penultimate value is σ .  These are close to those obtained by 
Agresti, 24+68 and 0.97, respectively. 
 
Next, I compute the profile-likelihood confidence interval, using the function plkhci, which is only 
available in the R package, Bhat.  To obtain the interval in S-PLUS, one could use a brute force method 
by inputting different values of the missing cell count, and obtaining the log likelihood. 
 
Recall that to use the function plkhci, we create a list with the labels, starting values, and lower and 
upper bounds.  Then, we input this list as an argument, followed by the negative log-likelihood function, 
and the label of the parameter being profiled.  A confidence interval is returned.  Here, it is about (74, 
141), similar to that obtained by Agresti (75, 154). 
 
library(Bhat) 
 
x <- list(label=c("beta1","beta2","beta3","beta4","beta5","beta6", 
"lsig","lN"), est=result.values, low=c(rep(-4,6),-1,-10), upp=c(rep(4,6), 2, 
10)) 
 
ans<-plkhci(x,func2,"lN",prob=0.95) 
exp(ans)+68 
[1]  73.39961 141.07961 
 
Another way to estimate N is to use a conditional estimation.  Here, we estimate the binomial likelihood of 
observing n = 68 successes (captures) in N trials, when the probability of success is 0..0

ˆ1 ( )Cπ− θ , where 

Ĉθ  maximizes the conditional likelihood  
 

 0 11 1
1 1 1 0 1( ; | ) ( ) ( )nn

observedL n n π π′ ′∝θ θ θ  
 
where { }( ) ( )

observed
π π π

∈
′ = ∑i i ii

θ θ , 2
|( ) ( | )uu

p u duπ π σ= ∫i iθ , and i ranges only over the observed 

patterns.  The estimate of N is then { }0 0
ˆ1 ( )Cn π− θ . 

 
First, I write the function for the negative conditional log likelihood, as a function of the unknown 
parameters, observed counts, observed number of captures, and observed patterns. 
 
func<-function(Beta,counts,n,matrix.i) { 
 
    require(rmutil) # R only 
  
    probs<-apply(matrix.i,1,function(x){ 
        i<-x 
        f<-function(u){ 
            prod(invlogit.i(Beta[1:6]+u,i))*dnorm(u,0,exp(Beta[7])) 
        } 
        int(f) # S-PLUS: integrate(f, lower=-Inf, upper=Inf) 
    }) 
    -sum(counts*log(probs/sum(probs))) 
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} 
 
Now, we minimize the negative log likelihood and obtain the MLEs of the parameters.  The MLE of N is 
obtained using the expression given above. 
 
junk<-optim(par=c(beta.coef,log(fit.glmmPQL$sigma)),fn=func, 
control=list(trace=2), method="BFGS", counts=counts, n=68,matrix.i=temp) 
 
beta.coef.000<-junk$par[1:6] 
sigma.000<-exp(junk$par[7]) 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
 
prob.000000<-function(u){ 
    prod(1-invlogit(beta.coef.000+u))*dnorm(u,0,sigma.000) 
} 
 
library(rmutil) 
68/(1-int(prob.000000)) 
[1] 92.00398 
 
Thus, the total estimated size of the population is 92 snowshoe hares. 
 
Other programs and functions for capture-recapture include WISP, which works under R 2.0, and is 
available from http://www.ruwpa.st-and.ac.uk/estimating.abundance/WiSP/ .  Also, the vegan package for 
R 2.0 contains functions for estimating species abundance.  The function specpool can be used for this 
problem. 
 
D.  Random Effects Models for Multinomial Data 
 
No new principles are introduced with the extension of random effects models for multinomial data.  As 
with binary data, one adds one or more random effects to the linear predictor for the cumulative logit or 
adjacent-categories logit model, for example.  However, in terms of model fitting, it is harder to do the 
estimation because there are more probabilities to estimate.  And, there are much fewer options available 
in R or S-PLUS.  In fact, the only available package option as of the date of this writing for fitting 
multinomial random effects models is the R function logitord, in the repeated package, which claims to 
fit random effects ordinal regression models, with dropout.   However, the function does not work well for 
the examples in Agresti’s text, and indeed, even for the examples provided in the function’s own help file.  
There it gives NaN’s for log likelihood values, and SEs that are too large to be believable. 
 
Thus, to fit these models in S, we are apparently forced to either link our own compiled code to the 
software, or use a brute force method, by directly maximizing the numerically integrated likelihood.  Here, 
I illustrate the latter, but it can be painfully slow especially if starting values are not close to the maximizer.  
Incidentally, there is always a third option, which is to use the system function to invoke a windows batch 
file for an executable program that fits multinomial random effects models (e.g., the downloadable MIXOR 
program).  This option is relatively easy to use by reading the help file for system, but as this manual 
discusses the use of S, I will not illustrate that method. 
 
Agresti uses the insomnia data to fit a cumulative logit model with random intercept.  The form is a 
proportional odds model, and so we can obtain starting values by first fitting a proportional odds model 
without random effects.  We can use the function polr in the MASS library (in both R and S-PLUS).  After 
reading in the data, we negate the variables to be used in the model because polr fits the “negatives” of 
their coefficients (see Section C of Chapter 7 of this manual). 
 
table.11.4<-read.table("c:/program files/r/rw1080/cda/insomnia.txt", header=T) 
table.11.4$outcome<-factor(table.11.4$outcome) # polr wants a response factor 
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table.11.4$treat<--table.11.4$treat 
table.11.4$time<--table.11.4$time 
 
library(MASS) 
fit<-polr(outcome~treat*time, data=table.11.4) 

 
We will use the optim function to do the maximization.  For this we want the data in “wide” format, with 
one column for each occasion response. 
 
table.11.4a<-reshape(table.11.4, direction="wide", v.names = "outcome", timevar = 
"time", idvar = "case",drop="count") 
# make sure all numeric columns, and exclude case 
table.11.4a<-apply(table.11.4a,2,as.numeric)[,-1]     

 
# S-PLUS 
# junk<-structure(.Data= 
# menuUnstackColumns(source=table.11.4, source.col.spec=c("outcome"), group=c("time"), 

show.p=F),names=c("outcome.0","outcome.1")) 
# table.11.4a<-data.frame(treat=c(rep(-1,238/2),rep(0,(478-238)/2)),junk) 
 
Now, we define the objective function to be the log of the product of the category probabilities (see 
Agresti’s equation (7.6)) 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
 
func<-function(Beta,matrix.i) { # three alphas, three betas, one log sigma 
 
    require(rmutil) # R only 
  
    probs<-apply(matrix.i,1,function(x){ 
    # S-PLUS: probs<-apply(matrix.i,1,function(x,Beta){ 
 
        f<-function(u){ 
        # S-PLUS: f<-function(u,Beta){ 
 
        treat<-x[1] 
 
        prob1.0<-prob1.1<-prob2.0<-prob2.1<-prob3.0<-prob3.1<-prob4.0<-prob4.1<-1 
 
        if(x[2]==1) prob1.0<-invlogit(Beta[1] + Beta[5]*treat + u)  

else if(x[2]==2) prob2.0<-invlogit(Beta[2] + Beta[5]*treat + u) - 
invlogit(Beta[1] + Beta[5]*treat + u) 
else if(x[2]==3) prob3.0<-invlogit(Beta[3] + Beta[5]*treat + u) - 
invlogit(Beta[2] + Beta[5]*treat + u) 
else if(x[2]==4) prob4.0<-1-invlogit(Beta[3] + Beta[5]*treat + u) 

if(x[3]==1) prob1.1<-invlogit(Beta[1] + Beta[4] + Beta[5]*treat + Beta[6]*treat 
+ u) 

else if(x[3]==2) prob2.1<-invlogit(Beta[2] + Beta[4] + Beta[5]*treat + 
Beta[6]*treat + u) - invlogit(Beta[1] + Beta[4] + Beta[5]*treat + 
Beta[6]*treat + u) 
else if(x[3]==3) prob3.1<-invlogit(Beta[3] + Beta[4] + Beta[5]*treat + 
Beta[6]*treat + u) - invlogit(Beta[2] + Beta[4] + Beta[5]*treat + 
Beta[6]*treat + u) 
else if(x[3]==4) prob4.1<-1-invlogit(Beta[3] + Beta[4] + Beta[5]*treat + 
Beta[6]*treat + u) 

  
prob1.0*prob1.1*prob2.0*prob2.1*prob3.0*prob3.1*prob4.0*prob4.1*dnorm(u,0,exp(Beta[7])
)} 
       int(f) 
       # S-PLUS: integrate(f,-Inf,Inf,Beta=Beta) 
    }) 
    # S-PLUS: },Beta=Beta) 
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    -sum(log(probs)) 
} 

 
Now, we use the optim function.  Here, I start the optimization at the estimates from polr, but to have it 
converge in any reasonable amount of time, you have to start very close to the maximizer, which appears 
to be c(-3.4858986, -1.4830128, 0.5606742,1.602,.058,1.081,log(1.9)) 
 
optim(par=c(fit$zeta,fit$coefficients[c("time","treat","treat:time")],.5), fn=func, 
control=list(trace=2,REPORT=1), method="BFGS", matrix.i= as.matrix(table.11.4a)) 

 
$par 
[1] -3.48824875 -1.48407698  0.56211694  1.60158887  0.05754634  1.08140528 
[7]  0.64423760 
 
$value 
[1] 592.9728 
 
$counts 
function gradient  
      20        4  
 
$convergence 
[1] 0 
 
$message 
NULL 
 
Fitting adjacent-categories logit model follows the same idea, by defining the likelihood as a product of 
probabilities within each category. 
 
E.  Multivariate Random Effects Models for Binary Data 
 
One form of multivariate random effects is the presence of both a random intercept and a random slope 
for a regression that “varies” across clusters, like individuals.  Another type is nested random effects, 
where for example, one can have random effects for schools and random effects for students within 
schools.  Finally, one can have a model with more than one response variable, where each response 
variable has an associated random subject effect, say. 
 
1.  Bivariate Binary Response 
 
Agresti gives an example of a bivariate binary response where schoolboys were interviewed twice, 
several months apart, and asked about their self-perceived membership in the leading crowd (yes or no) 
and asked about whether they sometimes felt they needed to go against their principles in order to fit in to 
that crowd (yes or no).  Thus, the two binary responses are called Membership and Attitude.  There are 
subject random effects for each variable. 
 
Following Agresti, for subject i, let itvy  be the response at interview time t on variable v.  Then, we use 
the logit model 

 [ ]logit ( 1| )itv iv tv ivP Y u uβ= = +  
where (uiAtt, uiMem) ~ ( , )N Σ0 .  Thus, the correlation between Membership and Attitude is considered to 
be possibly nonzero. 
 
The data in Table 12.8 in Agresti are available on his website.  Here I read in the data set after copying it 
and saving it as a text file called “crowd.txt”. 
 
table.12.8<-read.table("c:/program files/r/rw2000/cda/crowd.txt", header=T) 
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There is no library function for either R or S-PLUS (yet) that automatically fits multivariate logit models 
with random effects via maximum likelihood or any other method.  There are several ways we might do 
the fitting.  One straightforward method is to maximize the integrated likelihood, where integration is over 
the distribution of the bivariate random effects (of course, we use numerical integration).  Multivariate 
Gaussian quadrature can be accomplished either via the adapt function in the adapt library or using a 
simple 2D numerical integration function, called GL.integrate.2D, from Diego Kuonen, and modified 
slightly below. 
 
GL.integrate.2D <-function(fct, low, upp, order=10,...) 
{ 
YW.list<-as.list(1:2) 
for(i in 1:2) { 
    name.YW<-paste("GL.YW", abs(low[i]), abs(upp[i]), order, 
        sep=".") 
    if(!exists(name.YW)){ 
        assign(name.YW, GL.YW(order, 
            xrange=c(low[i],upp[i])), 
            pos=1, immediate=T) # for S-PLUS, use where=1 instead of pos=1 
        } 
    YW.list[[i]]<-get(name.YW) 
    } 
 
point<-expand.grid(YW.list[[1]][,1], YW.list[[2]][,1])   
 
#fcteval<-outer2(YW.list[[1]][,1], YW.list[[2]][,1], fct,...) # original 
fcteval<-apply(point,1,fct,...) # added by LAT 
fcteval<-matrix(fcteval,nr=order,nc=order,byrow=F) # added by LAT 
sum(YW.list[[1]][,2]*apply(YW.list[[2]][,2]*fcteval,2,sum)) 
} 

 
The points and the weights for the Gaussian quadrature are computed using the function GL.YW, also 
from Kuonen, and included in the code files for this manual. 
 
We can perform the optimization using the function optim.  We have seven parameters:  the four 
coefficients describing the time x variable combinations and the three parameters in the covariance 
matrix.  I parameterize the covariance matrix using the correlation coefficient instead of the covariance in 
order to constrain the matrix to be positive definite.  I also use the conditional representation of the pdf. 
 
Here I define the function that will be maximized (called func below).  As before, all the parameters are 
contained within one vector, called Beta here.  I integrate the bivariate normal distribution from –10 to 10, 
which is approximate.  The following is the function as called within R.  The function for S-PLUS is within 
the S-PLUS code file for this manual. 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
 
func<-function(Beta,matrix.i) {  
 
    require(adapt)  # R only 
    require(mvtnorm) # R only 
  
    sigma11<-exp(Beta[5]) 
    sigma22<-exp(Beta[6]) 
 
    probs<-apply(matrix.i,1,function(x){ 
 
        f<-function(u){ 
 
        mem1<-x[1] 
        att1<-x[2] 
        mem2<-x[3] 
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        att2<-x[4] 
 
        prob.mem1<-invlogit(Beta[1]+ u[1]) 
        prob.mem2<-invlogit(Beta[2]+ u[1]) 
 
        prob.att1<-invlogit(Beta[3]+ u[2]) 
        prob.att2<-invlogit(Beta[4]+ u[2]) 
 
        log.prob<-mem1*log(prob.mem1) + (1-mem1)*log(1-prob.mem1) +  

  mem2*log(prob.mem2) + (1-mem2)*log(1-prob.mem2) + att1*log(prob.att1) +  
 (1-att1)*log(1-prob.att1) + att2*log(prob.att2) + (1-att2)*log(1-prob.att2)  

 
exp(log.prob)*exp(dnorm(u[1], mean=0, sd=sigma11,log=T))* exp(dnorm(u[2], 
mean=u[1]*Beta[7]*sigma22/sigma11, sd=sigma22*sqrt(1-Beta[7]^2),log=T)) 

        } 
 
        GL.integrate.2D(fct=f, low=rep(-10,2), upp=rep(10,2)) 
        
    }) 
 
    -sum(matrix.i[,5]*log(probs)) 
} 
 
For the call to optim, I start at the beta coefficients that are fitted by PROC NLMIXED in SAS.  I also use 
the variance values given by Agresti. 
 
res<-optim(par=c(-1.105,-.74,.21,.39,log(3.1),log(1.5),.3), 
fn=func,control=list(trace=6,REPORT=1), method="L-BFGS-B", hessian=T, lower=c(rep(-
Inf,6),-.99), upper=c(rep(Inf,6),.99), matrix.i=as.matrix(table.12.8)) 
 
res 
 
$par 
[1] -1.1399494 -0.7738794  0.3423025  0.5568294  1.0738703  0.5967430  0.2884974 
 
$value 
[1] 8544.888 
 
$counts 
function gradient  
      15       15  
 
$convergence 
[1] 0 
 
$message 
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" 
 
 
Unfortunately, starting at values far from the solution appear to converge to values far from those above.  
It is possible that other types of optimization methods, such as an extension of the “EM algorithm” would 
perform better, but I have not tried. 
 
Since we asked for the approximate second derivative matrix, we can extract it to try to approximate the 
standard errors. 
 
se<-sqrt(diag(solve(res$hessian))) 
names(se)<-c("beta1m","beta2m","beta1a","beta2a","log(Sm)","log(Sa)","rho") 
se 
    beta1m     beta2m     beta1a     beta2a    log(Sm)    log(Sa)        rho  
0.08210803 0.08047563 0.06241528 0.06142253 0.03845709 0.02673202 0.02877469  
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Another option is to take advantage of an existing function for generalized linear mixed models, such as 
glmmPQL from library MASS, and do some tricks to emulate a multivariate response with multivariate 
random effects.  A couple of emails from the R-news newsgroup deal with fitting these models, and one 
references a write-up in the multilevel website (http://multilevel.ioe.ac.uk/softrev/reviewmixed.pdf) which 
explains how to fit a bivariate normal response (not repeated measures) with random effects, using lme.  I 
applied this method to glmmPQL (which uses lme) for a bivariate binary response.   
 
Here, I set up the original data set so that have one column for “response”, and add two additional 
indicator columns that indicate from which variable the response comes.  I also add a time indicator 
variable that indicates whether the response is measured at time 1 or time 2. 
 
data1<-table.12.8[rep(1:nrow(table.12.8),table.12.8$count),] 
data1<-cbind(id=1:nrow(data1),data1[,1:4]) 
data1<-reshape(data1, direction="long", varying= list(c("mem1","att1","mem2","att2")),  
v.names="response", timevar="occasion") 
# S-PLUS: menuStackColumns(target=data1.2, source=data1, source.col.spec= 

c("mem1","att1","mem2","att2"), target.col.spec="response", 
rep.source.col.spec="id",rep.target.col.spec ="id", group.col.p=F, show.p=F) 
 
data2<-cbind(data1$response, data1$id,rep(c(1,0,1,0), each=nrow(data1)/4), 
rep(c(0,1,0,1), each=nrow(data1)/4), rep(c(1,1,0,0),each=nrow(data1)/4)) 
#S-PLUS:  data2<-cbind(data1.2$response, data1.2$id,rep(c(1,0,1,0), 

each=nrow(data1.2)/4), rep(c(0,1,0,1), each=nrow(data1.2)/4), rep(c(1,1,0,0), 
each=nrow(data1.2)/4)) 
 
data2<-as.data.frame(data2) 
names(data2)<-c("response","id","var1","var2","time") 

 
Here are the first 10 rows of data2 
 
data2[1:10,] 
 
   response id var1 var2 time 
1         1  1    1    0    1 
2         1  2    1    0    1 
3         1  3    1    0    1 
4         1  4    1    0    1 
5         1  5    1    0    1 
6         1  6    1    0    1 
7         1  7    1    0    1 
8         1  8    1    0    1 
9         1  9    1    0    1 
10        1 10    1    0    1 
 
So, these first 10 observations are for variable 1 (membership) at time 1 (first interview).  In the call to 
glmmPQL, I remove the intercept in both the fixed and random specifications.  I do so in the random 
specification in order to get different random intercepts for each variable.  I also do not include a single 
fixed term for “time”.  Unfortunately, the algorithm only runs for four iterations on this data set before 
hitting a NaN in the likelihood at iteration 5. 
 
# S-PLUS: library(MASS) 
temp<-glmmPQL(response~-1 + var1 + var2 + var1:time + var2:time, data=data2, family= 
binomial, random=~-1+var1+var2|id)    # only runs for 4 iterations in R version 
summary(temp) 
 
Linear mixed-effects model fit by maximum likelihood 
 Data: data2  
       AIC     BIC    logLik  
  63897.46 63957.6 -31940.73 
 
Random effects: 
 Formula:  ~ -1 + var1 + var2 | id 
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 Structure: General positive-definite 
           StdDev  Corr  
    var1 2.034878 var1  
    var2 1.578995 0.265 
Residual 0.771258       
 
Variance function: 
 Structure: fixed weights 
 Formula:  ~ invwt  
Fixed effects: response ~ -1 + var1 + var2 + var1:time + var2:time  
               Value  Std.Error    DF   t-value p-value  
     var1 -0.4992500 0.05009042 10191 -9.966977  <.0001 
     var2  0.3585770 0.04156703 10191  8.626476  <.0001 
var1:time -0.2922856 0.05012462 10191 -5.831177  <.0001 
var2:time -0.1699343 0.04392112 10191 -3.869079  0.0001 
 
Standardized Within-Group Residuals: 
       Min        Q1        Med        Q3     Max  
 -1.531963 -0.586571 -0.3687342 0.5954922 1.60645 
 
Number of Observations: 13592 
Number of Groups: 3398  
 
Nonetheless, the coefficient estimates are –0.4992 – 0.2923 = – 0.7915 for membership at first interview 
(compare to –1.105 with SAS), –0.4992 for membership at second interview (compare to –0.7398 with 
SAS), 0.3586 – 0.1699 = 0.1887 for attitude at first interview (compared to 0.2139 with SAS), and 0.3586 
for attitude at second interview (compared to 0.3897 with SAS).  Standard errors are close to those from 
SAS for the attitude coefficients, but are almost half those from SAS for the membership coefficients. 
 
The estimate of the standard deviation of the random effect for membership is 2.03 (compared to 2.78 
from SAS) and for attitude is 1.58 (compared to 1.48 from SAS).  The estimated correlation between the 
random effects is 0.265 (compared to 0.33 from SAS).  The “residual” estimate is an estimate of the scale 
parameter for the binomial.  Here it is less than the theoretical value of 1.0. 
 
It has been mentioned in the literature that penalized quasi-likelihood can give standard errors that are 
too low when the random-effects variances are large.  In fact for this example, the SAS estimate (which 
uses ML) of the random-effect variance for membership is 7.73, which probably qualifies as large if it is 
close to the actual variance.  This might explain the discrepancies in standard errors. 
 
 
2.  Clustered Ordinal Outcomes 
 
One can also fit continuation-ratio logit models with random effects by considering the set of frequencies 
of the cumulative ordinal responses within a cluster as a sequence of independent binomial variates.  
Following Agresti, for observation t in cluster i, let ( | , )ij it it ijP Y j Y j uω = = ≥ .  Let nij be the number of 

subjects in cluster i making response j, and 
1

I
i ijj

n n
=

=∑  for I responses.  Then, the nijs can be 

considered independent binomial( ,i ih ijh j
n n ω

<
−∑ ) variates (j = 1,…, I – 1). 

 
To illustrate fitting this model with S software, I use the same data set as Agresti’s Table 12.9.  This study 
examines the developmental effects of ethylene glycol by administering four doses to pregnant rodents 
within litters.  There are three possible ordered outcomes for the fetus: dead, malformed, and normal.  
The continuation-ratio model fits the probability of death, as well as the probability of malformation given 
alive (i.e., malformed or normal). 
 
Following Agresti, for litter i in dose group d, let ( )1logit( )i dϖ  be the continuation-ratio logit for the 

probability of death and ( )2logit( )i dϖ  the continuation-ratio logit for the conditional probability of 
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malformation given survival.  Also, let xd be the dosage for group d.  In the model, we use litter-specific 
random effects: ( ) ( )1 ( )2( , )i d i d i du u=u sampled from a ( , )dN Σ0 .  The bivariate random effect allows 
differing amounts of dispersion for the two probabilities.  We also fit separate fixed dose effects for the 
two logits, ( ) ( )logit( )i d j i d j j j du xϖ α β= + + , where j is the index for the logit. 
 
Here I read in the data from Table 12.9, which I have placed in a text file called toxic.txt.  This file has 
column headings: litter, dose, dead, malformed, and normal.  The last 3 columns come directly from the 
numbers in Table 12.9 (I will have the data posted on the main website for this manual). 
 
table.12.9<-read.table("c:/toxic.txt", header=T) 
doses<-c(0,.75,1.5,3) 
 
The next set of functions define the objective function to be maximized, that is the likelihood.  I illustrate a 
likelihood that assumes no correlation between the two random effects.  It is much faster to estimate, and 
is the likelihood estimated by Agresti.  One can use either the adapt function (in the R library adapt) to 
do the numerical integration in the likelihood, or one can use GL.integrate.2D, from Diego Kuonen (a 
modified version is given above, as well as in the posted script file).  GL.integrate.2D is faster.  The S-
PLUS script uses GL.integrate.2D (see S-PLUS script for details).  I integrate from –5 to 5, which 
appears to be adequate. 
 
invlogit<-function (x) {exp(x)/(1+exp(x))} 
 
func.common.sig<-function(Beta,matrix.i) {  
 
    require(adapt)  # with R only 
    require(mvtnorm)   # with R only 
     
    probs<-apply(matrix.i,1,function(x){ 
        f<-function(u){ 
 
        sigma.dead<-exp(Beta[5]) 
        sigma.mal<-exp(Beta[6]) 
 
        dose<-doses[x[2]] 
        dead<-x[3] 
        mal<-x[4] 
        normal<-x[5] 
        n<-sum(x[3:5]) 
 
        prob.dead<-invlogit(Beta[1]*dose + Beta[2] + u[1]) 
        prob.mal.given.alive<-invlogit(Beta[3]*dose + Beta[4] + u[2]) 
 
        log.prob<-dead*log(prob.dead)  + mal*log(prob.mal.given.alive) +  
        (normal)*log(1-prob.mal.given.alive)  + (n-dead)*log(1-prob.dead) 
         
        exp(log.prob)*exp(dnorm(u[1], mean=0, sd=sigma.dead,log=T))* 
            exp(dnorm(u[2],mean=u[1]*Beta[7]*sigma.mal/sigma.dead, 
sd=sigma.mal*sqrt(1-Beta[7]^2), log=T)) 
        } 
#        adapt(ndim=2,lower=rep(-5,2), upper=rep(5,2), eps=.001,functn=f)$value 
        GL.integrate.2D(fct=f, low=rep(-5,2), upp=rep(5,2)) 
         
    }) 
 
    -sum(log(probs)) 
} 
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Now, I estimate some starting values, using a continuation-ratio model without random effects.  We can 
do this with vglm from library VGAM in R (discussed in Section 7F of ths manual).  Note that I use 
aggregate to eliminate the litter column. 
 
library(VGAM) 
table.12.9a<-aggregate(table.12.9,by=list(dose=table.12.9$dose),FUN=sum) 
# type rm(logit) if the command below gives an error about logit function 
fit.vglm<-vglm(cbind( dead, malformed,normal )~doses,family=sratio(link ="logit", 
parallel = F), data=table.12.9a) 

 
Now, I estimate the random effects model using optim (maximum likelihood).  I permute the starting 
values to correspond to the ordering used in the func.common.sig function.  I also use logs of the 
standard deviations. 
 
res<-optim(par=c(coef(fit.vglm)[c(3,1,4,2)],log(1),log(1),0), 
fn=func.common.sig, method="L-BFGS-B", hessian=T, lower=c(rep(-Inf,6),-.99), 
upper=c(rep(Inf,6),.99), matrix.i=as.matrix(table.12.9)) 
 
iterations 18 
function evaluations 22 
norm of the final projected gradient 0.00255419 
final function value 465.634 
 
X = 0.0589047 -4.44258 1.70543 -4.3003 -0.0415667 0.442632 0.0381847  
F = 465.634 
final  value 465.634452  
converged 
 
The MLEs are 
 
c(res$par[1:4],sigma1=exp(res$par[5]),sigma2=exp(res$par[6]),rho=res$par[7]) 
 
      doses:1 (Intercept):1       doses:2 (Intercept):2        sigma1  
   0.05890473   -4.44257580    1.70543299   -4.30029525    0.95928532  
 
       sigma2           rho  
   1.55679960    0.03818472 
 
These are mostly quite similar to those from Coull and Agresti (cited in Agresti).  However, their MLE for 
sigma1 is about 0.55. 
 
You can also get the approximate standard errors if hessian=T was specified in the optim function.  I 
report the standard errors on the logs of the standard deviations.   
 
sqrt(diag(solve(res$hessian))) 
 
      doses:1 (Intercept):1       doses:2 (Intercept):2                
    0.2289091     0.4135260     0.2428424     0.4738901     0.2187893  
                             
    0.1355963     0.3843808 
 
Because the standard error for the dose effect on death (0.23) is greater in magnitude than its estimate 
(0.06), we can conclude that there is no evidence of a dose effect on probability of death.  However, 
according to the MLEs, the estimated odds of malformation given survival multiply by exp(1.71) = 5.5 for 
every additional g/kg of ethylene glycol.  Based on the estimates of the standard deviations of the random 
effects, the litter effect is also stronger on malformation given survival than it is on death. 
 
In the R script, I give a version of the objective function where distinct covariance matrices are used (it is 
called “func”).  This takes quite a while to estimate. 
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Chapter 13 – Other Mixture Models for Categorical Data  
 
 A.  Summary of Chapter 13, Agresti   
 
The models used to describe heterogeneity or overdispersion in Chapter 12 are mixture models, with 
Normal mixing distributions (distribution for the random effects).  Chapter 13 describes mixture models 
with non-Normal mixing distributions, including nonparametric mixing distributions.  Latent class models 
use a categorical mixing distribution.  Nonparametric random effect models use unspecified distributions 
on a finite set of mass points.  You can use this type of distribution if you don’t want to make any 
assumptions about the form of the random effects distribution.  However, because the locations and 
probabilities of the mass points are parameters that have to be estimated, I am not sure non-parametric is 
not technically a misnomer.  Certainly, these are not parameters of interest, though.   
 
Beta-binomial models, negative binomial regression (as gamma mixtures of poisons), and Poisson 
regression with random effects are all discussed as parametric alternatives to binary GLMMS and 
Poisson models. 
  
 
B.  Latent Class Models    
 
 

Latent class models use a categorical mixing distribution, with “latent” categories. Given 
knowledge of this latent categorical variable, the observed categorical response variables are 
independent.  Thus, for a randomly selected individual with observed responses, 1( ,..., )Ty y  on T 
random variables, given that we know which category of a latent random variable Z the individual falls in,  

 

1 1 1 1( ,..., | ) ( | ) ( | )T T T TP Y y Y y Z z P Y y Z z P Y y Z z= = = = = = = =  
 
Summing over the distribution of the latent variable, we get the joint probability of the observed 
responses. 
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Theoretically, one can imagine an underlying variable or class that describes a set of observed 
responses.  Agresti notes that latent class analysis is the analog of factor analysis for category response 
variables.  But, even if such a factor can’t be imagined, one can still fit a latent class model to a set of 
observed categorical responses that appear to be overdispersed with respect to a particular parametric 
distribution. 
 
If each response has I categories, then the model assumes a multinomial distribution over the ITcells, with 
probabilities in (13.1) and corresponding counts {

1... Ty yn }.  The EM algorithm can be used to obtain MLEs 
of the probabilities.  The algorithm iterates between calculating pseudocounts for the unobserved table, 
which are 

1... Ty yn  for each value of Z.  Then, the pseudocounts are treated as data in fitting a loglinear 
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model 1 2( , ,..., )TY Z Y Z Y Z , in order to get estimates of expected counts 
1 ,..., ,Ty y Zμ .  Then, updated 

pseudocounts at the (s+1) iteration are obtained using the formula 
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One can use the converged estimates of fitted probabilities to calculate the MLEs of the latent class 
model parameters: the conditional probabilities ( | )t tP Y y Z z= =  (there are qT(I – 1) of these) and the q 

marginal probabilities ( )P Z z= . 
 
 
1.  Latent Class Models for Reader Agreement 
 
Agresti uses the pathologist data set (with additional pathologists) as an example of a latent class model 
fit to ratings data.  Each pathologist rated 118 slides on the precence or absence of carcinoma in the 
uterine cervix.  Two latent classes are proposed: one for those slides whose true rating is positive, and 
one for those slides whose true rating is negative. 
 
Since the data are not available on Agresti’s website, I create a matrix of the patterns of ratings given by 
the seven pathologists, along with their frequencies, then expand the patterns by the frequency 
corresponding to each pattern.  To generate the patterns, I use the function combn in the R library 
combinat.  This function produces all possible samples of a given size from a finite set.  Here, the finite 
set is (1,…,7) for the 7 pathologists.  Each sample tells which pathologists rated the slide a 1 (cancer). 
 
library(combinat) 
table.13.1<-matrix(0,nc=7,nr=2^7) # start with all zeroes (negatives) 
 
i<-1 
sapply(1:6, function(y) { 
    nrows<-ncol(cols<-combn(1:7,y)) 
    sapply(1:nrows, function(x) { 
        table.13.1[i,cols[,x]]<<-1 # place a 1 in these columns, for ith row 
        i<<-i+1 # increment the row each time 
        }) 
}) 
 
table.13.1[2^7,]<-rep(1,7)  # add the all 1 row 
 
 
Now, I add the frequencies. 
 
table.13.1.full<-cbind(table.13.1,counts<-c(2,6,0,0,2,0,0, 
2,0,0,0,0,0,0,0,4,0,1,0,0,0,0, 0,0,0, 0,0, 0, 0,0,2,0,1, 0,0,0,0, 0,0,0,0,0,0, 
0,0,0,0, 0,0,0, 0,5,0, 0,0,0, 0,0,0, 0,0,0, 0,0,0,0,0, 0,0,1, 0,7,0, 
0,0,0,0,1, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,13, 0,0,2,0,1, 
0,0,0,0,0, 0,0,0,0,0, 0,0,10,0,5,3, 0,0,34,16)) 
 
Remove the patterns with zero frequencies, and expand the patterns by the frequencies. 
 
table.13.1<-table.13.1.full[table.13.1.full[,8]!=0,] 
table.13.1<-table.13.1[rep(1:nrow(table.13.1), table.13.1[,8]),] 
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Function lca 
 
There are several R functions to fit latent class models.  First, I use the lca function in the R library 
e1071.  I enter as arguments the result of a tabulation of the patterns, using countpattern, and the 
number of classes (k) and iterations. 
 
library(e1071) 
summary(res.lca<-lca(countpattern(table.13.1[,1:7]),k=2,niter=15)) 
 
 
LCA-Result 
---------- 
 
Datapoints: 118  
Classes:    2  
 
Goodness of fit statistics: 
 
Number of parameters, estimated model: 15  
Number of parameters, saturated model: 127  
Log-Likelihood, estimated model:       -317.2574  
Log-Likelihood, saturated model:       -286.0741  
 
Information Criteria: 
 
BIC, estimated model: 706.0751  
BIC, saturated model: 1178.025  
 
TestStatistics: 
 
Likelihood ratio:   62.36662   p-val: 0.9999602  
Pearson Chi^2:      92.6522   p-val: 0.9083178  
Degress of freedom: 112  
 
Although Agresti presents the results for three latent classes, the fit of this model using the lca function 
is somewhat unstable, as it does not appear to converge reliably.  Actually, this is true for four classes as 
well.   So, I use the two-class model for obtaining predicted counts and probabilities of positive diagnosis 
for each pathologist. 
 
To obtain predicted probabilities of a positive diagnosis for each pathologist, for the two-class model, we 
can extract the p attribute from res.lca.   
 
round(res.lca$p,3) 
 
      1     2     3     4     5     6     7 
1 1.000 0.983 0.761 0.541 0.979 0.423 1.000 
2 0.117 0.354 0.000 0.000 0.223 0.000 0.117 
 
 
To obtain fitted counts, one can use these predicted conditional probabilities.  For example, the 
conditional probability of positive ratings by all seven pathologists given class 1 is the product of the first 
row of probabilities above.  The analogous conditional probability for class 2 is the product of the second 
row.  Thus, the unconditional probability of all positives is the sum of each of these products times the 
corresponding probability of the class: res.lca$classprob: 
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sum(counts)*(prod(res.lca$p[1,])*res.lca$classprob[1] + 
prod(res.lca$p[2,])*res.lca$classprob[2]) # counts comes from above 
 
[1] 9.9024 
 
 
Function mmlcr 
 
The package mmlcr (mixed-mode latent class regression) fits latent class regression models, including 
longitudinal models.  The idea is that different latent classes could have different longitudinal trajectories 
or different regressions, involving the same form of regression, but with different coefficients.  Also, 
multiple responses can be modeled.  The different “responses” here are the seven pathologist ratings, 
and the “individuals” are the 118 slides.  So, we build a new data frame out of table.13.1. 
 
table.13.1.df<-data.frame(table.13.1[,1:7]) 
names(table.13.1.df)<-paste("p",1:7,sep="") 
table.13.1.df<-sapply(table.13.1.df, as.factor) # make responses factors 
 
# add an id variable 
table.13.1.df<-data.frame(table.13.1.df[,1:7],id=1:nrow(table.13.1.df)) 
 
Now we fit a 2-class model using the function mmlcr.  The outer argument gives a formula that 
describes class membership through covariates (i.e., what covariates predict latent class?).  Here, we 
don’t have covariates.  The components argument is a list of the responses.  Each response is a 
multinomial variable (binomial) evaluated once. 
 
library(mmlcr) 
 
# 2-class model 
res.mmlcr<-mmlcr(outer = ~ 1 | id, components=list( 
list(formula=p1~1, class= "multinomonce"), 
list(formula=p2~1, class="multinomonce"), 
list(formula=p3~1, class="multinomonce"), 
list(formula=p4~1, class="multinomonce"), 
list(formula=p5~1, class="multinomonce"), 
list(formula=p6~1, class="multinomonce"), 
list(formula=p7~1, class="multinomonce")), data=table.13.1.df, n.groups=2) 
 
res.mmlcr 
 
Coefficients: 
  (Intercept) 
1 0.000000000 
2 0.005047976 
 
Class Percentages: 
   1    2  
49.9 50.1  
 
AIC: 666.8835  
BIC: 737.6324  
loglikelihood: -318.4418 
 
Fitting more classes appears to be more stable with mmlcr.  For example, fitting three classes gives 
 
res3.mmlcr<-mmlcr(outer = ~ 1 | id, components=list( 
list(formula=p1~1, class= "multinomonce"), 
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list(formula=p2~1, class="multinomonce"), 
list(formula=p3~1, class="multinomonce"), 
list(formula=p4~1, class="multinomonce"), 
list(formula=p5~1, class="multinomonce"), 
list(formula=p6~1, class="multinomonce"), 
list(formula=p7~1, class="multinomonce")), data=table.13.1.df, n.groups=3) 
 
res3.mmlcr 
 
Coefficients: 
  (Intercept) 
1    0.000000 
2    0.897036 
3    0.726677 
 
Class Percentages: 
   1    2    3  
18.1 44.4 37.5  
 
AIC: 652.6177  
BIC: 761.0994  
loglikelihood: -303.3089 
 
Predicted probabilities are somewhat more of a mystery out of mmlcr.  You might think that the fitted 
component of the mmlcr object would give predicted probabilities of carcinoma from each pathologist for 
each of the classes, as in Agresti’s Table 13.3.  But, for example, 
 
unique(sapply(res3.mmlcr$components,function(x) round(x$fitted-1,3))) # I use 
fitted – 1 because I used labels of 1,2 instead of 0,1 for absence/presence 
 
       [,1]  [,2]  [,3]  [,4]  [,5]  [,6]  [,7] 
 [1,] 0.058 0.142 0.000 0.000 0.056 0.000 0.000 
 [2,] 0.119 0.256 0.000 0.008 0.149 0.000 0.085 
 [3,] 0.391 0.765 0.000 0.043 0.564 0.000 0.463 
 [4,] 0.466 0.905 0.000 0.052 0.679 0.000 0.568 
 [5,] 0.517 1.000 0.000 0.059 0.756 0.000 0.638 
 [6,] 0.514 0.994 0.000 0.058 0.751 0.000 0.633 
 [7,] 0.632 0.995 0.204 0.184 0.814 0.114 0.724 
 [8,] 1.000 0.981 0.859 0.587 1.000 0.477 1.000 
 [9,] 0.940 0.983 0.753 0.522 0.970 0.418 0.955 
 
The above gives 9 “classes” of probabilities, of which there appear to be 3 sets of similar probabilities, 
notably rows 1 and 2; rows 3, 4, 5, 6, and 7; and rows 8 and 9.   These correspond roughly to the three 
sets of predicted probabilities in Agresti’s Table 13.3.   
 
Once the predicted carcinoma probabilities are obtained, expected counts can be gotten using the class 
percentages, as in the illustration for the function lca. 
 
 
Function flexmix 
 
The function flexmix in the R package of the same name fits finite mixtures of latent class regressions 
(generalized linear models) using an EM algorithm.  To use it, we first reshape table.13.1 into the “long” 
format, and make the time variable the pathologist.  An “id” variable indicates the subject (here, slides). 
 
table.13.1.df<-data.frame(table.13.1[,1:7]) 
names(table.13.1.df)<-paste("p",1:7,sep="") 
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table.13.1.long<-reshape(table.13.1.df, varying=list(names(table.13.1.df)), 
direction="long", v.names="response", timevar="pathologist") 
 
Then, we make the variable pathologist a factor. 
table.13.1.long$pathologist<-factor(table.13.1.long$pathologist) 
 
Now, we use stepFlexmix, which operates just like the function flexmix, but is easier to use for 
multiple binary responses, like we have.  (The “step” part applies when we want to do stepwise fits for 
several different numbers of components).  First, we fit 2 components (k = 2). 
 
library(flexmix) 
 
fit1<-stepFlexmix(cbind(response,1-response)~pathologist|id, 
data=table.13.1.long, k=2, model=FLXglm(family="binomial"), nrep=5) 
 
summary(fit1) 
 
       prior size post>0 ratio 
Comp.1 0.499  413    462 0.894 
Comp.2 0.501  413    455 0.908 
 
'log Lik.' -317.2573 (df=15) 
AIC: 664.5146   BIC: 735.2635  
 
 
The summary function applied to the flexmix object gives the estimates of the component probabilities 
(prior), plus the number of observations assigned to each component (size).  (The size must be 
divided by 7, to account for the 7 pathologists ratings per subject).   The column “post > 0” tells you 
how many observations had posterior probabilities for the indicated component greater than a delta 
(again, must divide this column by 7 for this example), and “ratio” tells you the ratio of size to “post > 
0”.  If components are well-separated, then many observations will have high posterior probabilities for 
one component, but low posterior probabilities for any other components.  So, a high ratio will indicate 
well-separated components.  We have fairly well-separated components for the pathologist example. 
 
Calling cluster(fit1)will give the component assignments. 
 
Now, we fit three components.   
 
fit2<-stepFlexmix(cbind(response,1-response)~pathologist|id, 
data=table.13.1.long, k=3, model=FLXglm(family="binomial"), nrep=5) 
 
summary(fit2) 
 
       prior size post>0 ratio 
Comp.1 0.445  357    406 0.879 
Comp.2 0.182  161    217 0.742 
Comp.3 0.374  308    364 0.846 
 
'log Lik.' -293.7051 (df=23) 
AIC: 633.4101   BIC: 741.8918  
 
Finally, the plot method for flexmix objects provides a rootogram. 
 
 
2.  Latent Class Models for Capture-Recapture 
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Latent class models can be used to estimate population size for a capture-recapture model.  In Chapter 
12, we used a generalized linear mixed model for this estimation.  This model assumed a continuous 
mixture of capture probabilities.  A two-class latent class model, for example, assumes two classes of 
capture probabilities.  Each subject belongs in at most one class, and every subject in a class has the 
same capture probabilities. 
 
For the snowshoe hares data in Table 12.6 in Agresti, we fit a two-class latent model using R.  There are 
T = 6 occasions, and 2T = 64 cells, for each latent class.   We proceed by building the design matrix.  The 
full design matrix will have 128 rows, for the 64 cells for each class.  There will be one column for each 
occasion, plus a column for a class variable, and a column for an intercept.  We also add columns for the 
interaction between occasion and class. 
 
i<-rep(1,128) 
x<-as.integer(gl(2,64,128))-1 
a<-as.integer(gl(2,32,128))-1 
b<-as.integer(gl(2,16,128))-1 
c<-as.integer(gl(2,8 ,128))-1 
d<-as.integer(gl(2,4 ,128))-1 
e<-as.integer(gl(2,2 ,128))-1 
f<-as.integer(gl(2,1 ,128))-1      
 
X<-cbind(i,x,a,b,c,d,e,f,x*cbind(a,b,c,d,e,f)) 
 
colnames(X)<-
c("Int","X","A","B","C","D","E","F","AX","BX","CX","DX","EX","FX") 
 
The vector counts gives the frequencies for all rows except the all-zero row. 
 
counts<-c(3,6,0,5,1,0,0,3,2,3,0,0,1,0,0,4,2,3,1,0,1,0,0,1,0,0,0,0,0,0,0, 
4,1,1,1,2,0,2,0,4,0,3,0,1,0,2,0,2,0,1,0,1,0,1,0,1,1,1,0,0,0,1,2) 
 
Now, we proceed in one of two ways.  Of course, one way is to program the EM algorithm using the 
formula in section 13.1 of Agresti.  Here, I try to take advantage of some existing R functions, namely the 
emgllm function from the gllm library.  As explained in its help file, this function “fits log-linear models for 
incomplete contingency tables, including some latent class models, via an EM approach.”  Here, though, 
we are missing one cell’s count.  So, we place this function into the function optim, and try to estimate 
the missing count by minimizing the deviance.   
 
library(gllm) 
 
func<-function(y,s,X,counts){ 
    emgllm(c(y,counts),s,X,maxit=1)$deviance  # we only need 1 iteration 
    } 
 
The function emgllm takes several arguments, including a vector of cell indices, which we call “s”.  There 
are 64 cells, divided into two classes; so, s is given by 
 
s<-c(1:64,1:64) 
     
The first argument of emgllm is the vector of counts for the 64 cells.  The first element of this vector is 
what we are estimating (the all-zero response).  So, we leave this element as a variable called y.  Now, 
we perform the optimization.  In this case, the starting value can be just about anything.  I use 2.  The 
limits on the estimated count range from 0 to 100. 
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optim(par=c(2),func,control=list(REPORT=1,trace=3), lower=c(0), upper=c(100), 
method="L-BFGS-B", s=s, X=X, counts=counts) 
 
F = 58.3138 
final  value 58.313787  
converged 
$par 
[1] 7.066193 
 
$value 
[1] 58.31379 
 
$counts 
function gradient  
       8        8  
 
$convergence 
[1] 0 
 
$message 
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" 
 
The estimated count is 7, which added to the the existing 68 gives a grand total of N=75 species, not 
quite the 85 obtained by Agresti.  So, I try a second approach.  With this approach, I write out the 
likelihood as per equations (13.2) and (13.1) in Agresti.  Then, I calculate the deviance for optimization 
purposes.  The parameters to optimize include the 12 conditional probabilities, ( | )t tP Y y Z z= = , the 
class probabilities (just one, for two classes), and the missing count.  The 14 paramters are denoted by y, 
in the function below.  X is the design matrix (see below). counts has been defined above. 
 
func<-function(y, X, counts) { 
 
    n.s<-c(exp(y[14]),counts) 
                         
    z <- y[13]     
    x<-1-y[1:12]     
  
    res<-apply(X,1,function(w){ exp(sum(log(w*y[1:6] + (1-w)*x[1:6])))*z +  
exp(sum(log(w*y[7:12] + (1-w)*x[7:12])))*(1-z) 
    }) 
 
    xg0 <- n.s[n.s > 0] 
    ll0 <- sum(xg0 * log(xg0/sum(n.s)))  # saturated likelihood 
     
    ll<-n.s%*%log(res) 
 
    -2 * (ll0 - ll) 
    
} 
 
 
First, I use the function lca (from R library e1071) to get starting values for the probabilities.  Then, I 
minimize the deviance using optim. 
. 
library(e1071) 
res<-lca(countpattern(temp[rep(1:63,counts),]),k=2) # starting values 
 
X<-X[1:64,c("A","B","C","D","E","F")] # see above for definition of X 
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result<-optim(par=c(as.numeric(res$p), res$classprob[1] ,log(20)),func, 
control=list(fnscale=-1,trace=3,REPORT=1), lower=c(rep(0.001,13),0), 
upper=c(rep(.999,13),100),X=X,counts=counts, method="L-BFGS-B") 
$par 
 [1] 0.1527328 0.2362195 0.1979381 0.1757010 0.2273388 0.1983629 0.4912584 
 [8] 0.6181195 0.1576153 0.9990000 0.4043050 0.6391747 0.7564954 2.8362536 
 
$value 
[1] -41.23511 
 
$counts 
function gradient  
      39       39  
 
$convergence 
[1] 0 
 
$message 
[1] "CONVERGENCE: REL_REDUCTION_OF_F <= FACTR*EPSMCH" 
 
 
This result appears somewhat better, at least for estimating the missing count.  It’s estimate is exp(2.84), 
which is about 17.   This number added to 68, gives an estimate for the total as 85, the same as Agresti 
obtained. 
 
C.  Nonparametric Random Effects Models    
 
1.  Logit Models with Unspecified Random Effects Distribution 
 
The R package npmlreg performs nonparametric maximum likelihood estimation for generalized linear 
mixed models.  The random effects distribution does not have to be specified a priori; however, the 
number of mass points must be pre-specified.  The marginal likelihood is approximated using a finite 
mixture model, whose number of components equals the number of pre-specified mass points.  The 
model can then be fitted using EM or other method for estimating finite mixture models.  Thus, there is no 
numerical integration involved in the estimation.  However, because there are no parametric distributional 
boundaries for the random effects distribution, the ML estimate can include positive probability at infinity, 
making it impossible to estimate a variance component. 
 
Agresti fits a two-point nonparametric mixture distribution to the repeated binary measures in the attitudes 
toward abortion data (table.10.13b, above).  We can fit this model using the function allvc which fits 
two-level hierarchical models.  The form of the arguments is similar to that used by glmmPQL or lme, for 
example, where random effects are provided in a separate argument.  Here we give a random intercept 
for each individual (id). 
 
library(npmlreg) 
res<-allvc(response ~ gender + question, random = ~1|id,   
           family=binomial(link=logit),  data=table.10.13b, k=2) 
summary(res) 
 
Coefficients: 
             Estimate Std. Error     t value 
genderF   -0.02853461  0.1266663  -0.2252738 
question2  0.30735602  0.1607048   1.9125504 
question1  0.82846663  0.1591966   5.2040482 
MASS1     -3.17213911  0.1513071 -20.9648995 
MASS2      2.99145775  0.1497641  19.9744601 
 



 

 

261

Mixture proportions: 
    MASS1      MASS2   
0.5289031  0.4710969   
-2 log L:           4563.3     Convergence at iteration  9 
 
The estimated two-point mixture distribution has mass points at about -3 and +3, with roughly equal 
probabilities.  The function produces graphs of the trajectories that the estimates take as they converge to 
the final mass point estimates.  The convergence appears to be relatively fast.  Individual predicted 
probabilities range from very high to very low, with not many in between, due to the two separated 
random effects points.  These are quite different from predictions from glmmPQL.  A fit with three mass 
points puts the points at about -6, 0, and +6. 
 
 
2.  Nonparametric Mixing of Logistic Regressions 
 
Adding a continuous covariate is not much more involved.  We can use the npmlreg R package again, 
but this time we will use the alldist function instead of allvc because we will have only one level.  
We will also discuss the relative magnitude of the deviance reported by alldist (and allvc). 
 
Table 13.4 in Agresti gives the number of protozoa exposed to a certain dose of poison, and the number 
that died.  We read the data into R, first using counts. 
 
table.13.4<-data.frame(dose=seq(4.7,5.4,.1),n=c(55,49,60,55,53,53,51,50), 
dead=c(0,8,18,18,22,37,47,50)) 
 
In order to have alldist give the correct coefficient magnitudes, we expand the counts to create 
table.13.4a. 
 
table.13.4a<-rbind(data.frame(dose=rep(table.13.4$dose,table.13.4$dead), 
response=1), data.frame(dose=rep(table.13.4$dose, table.13.4$n-
table.13.4$dead), response=0)) 
 
library(npmlreg) 
res<-alldist(response~log(dose), random=~1, family=binomial(link=logit), k=2, 
data=table.13.4a) 
summary(res) 
 
Coefficients: 
           Estimate Std. Error   t value 
log(dose)  124.8910   15.42261  8.097919 
MASS1     -205.8665   25.42324 -8.097573 
MASS2     -196.3324   24.25993 -8.092867 
 
Mixture proportions: 
    MASS1      MASS2   
0.6561909  0.3438091   
-2 log L:           354.7     Convergence at iteration  50 
 
One thing to notice is the deviance, which alldist reports as 354.7 (res$deviance), and Agresti 
reports as 3.4, coming from SAS.  This is likely due to a negative constant factor not being included in the 
log likelihood from alldist.  This is apparent when you fit an ordinary logistic, and note that the 
difference in deviances equals 21.3, which Agresti reports.   
 
# ordinary logistic fit using alldist 
res2<-alldist(response~log(dose), random=~1,family=binomial(link=logit), k=1, 
data=table.13.4a) 
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res2$deviance-res$deviance 
 
[1] 21.28307 
 
res2$df.residual-res$df.residual 
 
[1] 2 
 
Predictions are obtained by fitting the binomial, instead of the binary responses. 
 
res3<-alldist(cbind(dead,n-dead)~log(dose), random=~1, family= 
binomial(link=logit), k=2, data=table.13.4) 
ypred<-sort(predict.glmmNPML(res3,  type = "response")) 
 
Now, we plot the observed proportions (circles) and a spline fit to the predictions, on the same graph. 
 
plot(ldose<-log(table.13.4$dose), 
table.13.4$dead/table.13.4$n,xlab="Log(dose)",ylab="P(death)",bty="L",axes=F) 
axis(2) 
axis(1, at=c(1.548,1.6,1.65,1.69,1.75), 
labels=as.character(c(1.55,1.6,1.65,1.7,1.75))) 
lines(smooth.spline(ldose,ypred,spar=.05)) 
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3.  Rasch Mixture Model 
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The Rasch model for a binary response for subject i and response t is 
 

 ( )logit 1| , 1,...,it i i tP Y u u t Tβ= = + =⎡ ⎤⎣ ⎦  

 
A Rasch mixture model assumes that the unobserved latent variable ui has the discrete distribution 
 

 ( ) , 1,...,k kP U a k qρ= = =  

 
The marginal probability of a sequence of responses ( )1,..., Ty y  is 
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This expression is then used in the appropriate multinomial likelihood in order to do estimation.  Agresti 
states that once q = (T + 1)/2, the model gives the same fit as the quasi-symmetry model of Chapter 10. 
 
Agresti uses the pathologist data, as well as some capture-recapture data to fit a Rasch mixture model.  
The pathologist data come from Table 13.1, which previously we put into a data frame called 
table.13.1.  The “long” version of table.13.1 we called table.13.1.long.  This version has a 
column for “id”, the slide. 
 
We can use allvc from the npmlreg R package.  It is very straightforward to fit a Rasch mixture model 
with 3 mass points (argument k).  I use sum-to-zero contrasts for the beta coefficients in order to match 
Agresti’s output. 
 
options(contrasts=c("contr.sum", "contr.poly")) # sum-to-zero contrasts 
 
library(npmlreg) 
summary(fit.rm<-allvc(response~pathologist, random=~1|id, 
family=binomial(link=logit), k=3, data=table.13.1.long)) 
 
Coefficients: 
              Estimate Std. Error    t value 
pathologist1  1.476153  0.4312912   3.422637 
pathologist2  3.513361  0.5064987   6.936565 
pathologist3 -1.868961  0.4434189  -4.214887 
pathologist4 -3.154055  0.4621194  -6.825196 
pathologist5  2.255030  0.4512639   4.997143 
pathologist6 -3.697682  0.4659513  -7.935769 
MASS1        -5.244664  0.4780734 -10.970416 
MASS2        -1.015508  0.3261387  -3.113731 
MASS3         3.632482  0.4124120   8.807897 
 
Mixture proportions: 
    MASS1      MASS2      MASS3   
0.3710929  0.1944598  0.4344473   
-2 log L:           599.6     Convergence at iteration  18 
 
From the output, pathologist B (pathologist2) tends to make a carcinoma diagnosis most often.  The 
numbers in Table 13.3 in Agresti give the estimated probabilities of a carcinoma diagnosis, conditional on 
each of the three latent classes.   They are obtained by plugging the coefficient estimates above into the 
formula on p. 550 in Agresti. 
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4.  Log-linear Models for Capture-Recapture 
 
The Cormack log-linear model for capture-recapture is a marginal model with capture probabilities 
averaged over subjects.  With T capture occasions, there are 2T – 1 observed cells.  The idea is to 
estimate the unobserved cell count from the observed cell counts, using the estimated log-linear 
parameters. 
 
We fit several log-linear models to the snowshoe hare data in Table 12.6 in Agresti.  Two R packages 
that fit these models effortlessly are the repeated library and the Rcapture library, the latter being 
naturally more comprehensive.  Rcapture has an associated reference article that explains many more 
features than what I will use (see the package’s help file). 
 
I will set up the data to work first with the capture function from the repeated library.  Below are the 
counts. 
 
counts<-c(0,3,6,0,5,1,0,0,3,2,3,0,0,1,0,0,4,2,3,1,0,1,0,0,1,0,0,0,0,0,0, 
0,4,1,1,1, 2,0,2,0,4,0,3,0,1,0,2,0,2,0,1,0,1,0,1,0,1,1,1,0,0,0,1,2) 
 
Now, we call up repeated, and then “eval” an expression called “setup”, which forms a matrix with each 
row representing a capture history across the n = 6 occasions (1 = capture; 0 = no capture).  This matrix 
is constructed by “cbind”ing n = 6 column vectors: p1…p6. 
 
library(repeated) 
 
n<-6 # number of occasions 
eval(setup) 
cbind(p1,p2,p3,p4,p5,p6) # shows the matrix of capture histories 
 
Because of the order of the rows in the above matrix, I reorder the counts vector to correspond to the 
correct capture histories.  The next four lines do this, and call the new counts vector, new.counts. 
 
reindex<-c(1, 5, 3, 7, 2, 6, 4, 8) 
index<-outer(seq(0,56,by=8),reindex,"+") 
index<-index[reindex,] 
new.counts<-counts[as.numeric(index)] 
 
 
First, we fit a model of mutual independence of occasions.  As you can see, the “workhorse” is just the 
glm function with poisson family, as it is for log-linear models fit in previous chapters.  Notice the case 
weights argument is pw.  pw is a vector generated by the eval of setup.  It gives a weight of 1 to 
observable histories, and a weight of 0 to the unobservable history.  However, setup puts the 0 last, and 
according to our new.counts vector, we need it first.  Hence, the call to rev. 
 
z0 <- glm(new.counts~(p1+p2+p3+p4+p5+p6), family=poisson, weights=rev(pw))  
 
Next, the call to capture prints out the estimated abundance after each occasion.  It is not really useful 
for a closed population with independent occasions.  You may consult the references in the help file for 
explanation of the remaining columns. 
 
capture(z0,n) 
 
     i    N(i) Phi(i-1)      P(i)        B(i-1) 
[1,] 1 75.0662        1 0.5737096  7.506620e+01 
[2,] 2 75.0662        1 0.6936038 -1.421085e-14 
[3,] 3 75.0662        1 0.6536391  0.000000e+00 
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[4,] 4 75.0662        1 0.7335685 -1.421085e-14 
[5,] 5 75.0662        1 0.6269959  0.000000e+00 
[6,] 6 75.0662        1 0.7868548  0.000000e+00 
 
Finally, the estimated abundance from the log-linear model is found by adding the estimated count in the 
first cell to the number of observed captures (68). 
 
z0$fit[1]+68 
 
75.0662 
 
A model with all two-factor associations gives 
 
z1 <- glm(new.counts~(p1+p2+p3+p4+p5+p6)^2, family=poisson, weights=rev(pw)) 
capture(z1,n) 
 
     i     N(i)  Phi(i-1)      P(i)        B(i-1) 
[1,] 1 81.77645 1.0000000 0.8899998  8.177645e+01 
[2,] 2 76.92659 0.9406936 0.8877724 -1.421085e-14 
[3,] 3 75.48739 0.9627109 0.8954631  1.429333e+00 
[4,] 4 78.28810 0.9816676 0.9102879  4.184571e+00 
[5,] 5 82.96017 1.0059834 0.8606738  4.203642e+00 
[6,] 6 97.85445 1.0000000 0.9072763  1.489428e+01 
 
 
In the above matrix, the N(i) column gives the estimate of the total population at the ith period.  Phi(i-
1) gives the probability that an individual survives from the (i-1)th to the ith period.  P(i) gives the 
probability of capture.  B(i-1) gives the number of individuals added to the population between the (i-
1)th and ith periods. 
 
The following, of course, gives the estimate of total abundance. 
 
z1$fit[1]+68 
 
104.7810 
 
 
Using Rcapture, we can fit a number of models that allow for different types of association among 
occasions.  A special case of a quasi-symmetry model where each pair of occasions has the same 
association (exchangeable association) can be fit using the closedp function from Rcapture.  This 
function takes as its first argument, the matrix of capture histories, with the last column either including 
the frequencies of each capture history (dfreq=TRUE) or not (dfreq=FALSE).  (Note that there are 
functions in Rcapture that will generate this matrix for you.) 
 
library(Rcapture) 
 
fit.cap<-closedp(cbind(p1,p2,p3,p4,p5,p6,new.counts),dfreq=TRUE) 
 
Number of captured units: 68  
 
Abundance estimations and model fits: 
              abundance  stderr  deviance  df      AIC 
M0                 75.4     3.5    68.516  61  154.707 
Mt                 75.1     3.4    58.314  56  154.505 
Mh Chao            79.8     6.4    58.023  58  150.214 
Mh Poisson2        81.5     5.7    59.107  60  147.298 
Mh Darroch         90.4    11.6    61.600  60  149.791 
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Mth Chao           79.6     6.3    47.115  52  151.305 
Mth Poisson2       81.1     5.6    48.137  55  146.327 
Mth Darroch        90.5    11.7    50.706  55  148.896 
Mb                 72.2     3.1    67.133  60  155.323 
Mbh                78.1    13.1    63.988  59  154.179 
 
Note: 1 eta parameter has been set to zero in the Mh Chao model 
 
The function will output abundance estimates for a variety of models.  The documentation, in addition to 
the JASA article, explains them.  Here, we will focus on the Mth Darroch model.  This is the 
exchangeable association model.  The abundance estimate is 90.5 hares.  To get a profile likelihood 
confidence interval (along with a plot), we can use profileCI function with the Mth Darroch method. 
 
profileCI(cbind(p1,p2,p3,p4,p5,p6,new.counts), dfreq=TRUE, m="Mth", 
h="Darroch") 
 
Number of captured units: 68  
 
95% Profile likelihood confidence interval: 
             abundance     InfCL     SupCL 
Mth Darroch         88  73.64514  121.1492 
 
The abundance estimate from the profileCI function differs from the one given by closedp. 
 
We could, in fact, estimate abundance for the exchangeable model using only glm.  To do this we must 
add another term to the formula that represents the association.  The Darroch, et al (1993) article 
referenced in Agresti shows that this term for each capture history is the sum of the capture indicators 
“choose” 2 (pairs); which is zero when the sum is less than 2.  Thus,  
 
assoc<-choose(n=rowSums(cbind(p1,p2,p3,p4,p5,p6)),k=2) 
(z1 <- glm(new.counts~p1+p2+p3+p4+p5+p6+assoc, family=poisson, weights= 
rev(pw))) 
 
Coefficients: 
(Intercept)           p1           p2           p3           p4           p5   
     3.1119      -1.4126      -1.9646      -1.7696      -2.1758      -1.6464   
         p6        assoc   
    -2.4932       0.2225   
 
Degrees of Freedom: 62 Total (i.e. Null);  55 Residual 
Null Deviance:      112.8  
Residual Deviance: 50.71        AIC: 148.9 
 
z1$fit[1] + 68 
 
90.4641 
 
This is the same fit as 
 
fit.cap$glmMthD 
 
Coefficients: 
 (Intercept)  mXMthD.beta1  mXMthD.beta2  mXMthD.beta3  mXMthD.beta4   
       3.112        -1.413        -1.965        -1.770        -2.176   
mXMthD.beta5  mXMthD.beta6    mXMthD.tau   
      -1.646        -2.493         0.445   
 
Degrees of Freedom: 62 Total (i.e. Null);  55 Residual 
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Null Deviance:      112.8  
Residual Deviance: 50.71        AIC: 148.9 
 
but where mXMthD.tau is two times assoc parameter estimate. 
 
 
5.  Nonparametric Mixtures and Quasi-symmetry 
 
Agresti shows that a distribution-free approach for the random effects with the Rasch mixture model 
implies the quasi-symmetry loglinear model marginally.  The loglinear model will have terms for main 
effects for all T responses, plus a term for unique values of the sum of the 0/1 responses (the quasi-
symmetry term).  We illustrate using the data on opinions about legalized abortion analyzed in Section 
13.2.1. 
 
We had these data in a data frame called table.10.13. 
 
table.10.13 
 
   gender question1 question2 question3 count  symm 
1       M         Y         Y         Y   342 Y,Y,Y 
2       F         Y         Y         Y   440 Y,Y,Y 
3       M         N         Y         Y     6 N,Y,Y 
4       F         N         Y         Y    14 N,Y,Y 
5       M         Y         N         Y    11 N,Y,Y 
6       F         Y         N         Y    14 N,Y,Y 
7       M         N         N         Y    19 N,N,Y 
8       F         N         N         Y    22 N,N,Y 
9       M         Y         Y         N    26 N,Y,Y 
10      F         Y         Y         N    25 N,Y,Y 
11      M         N         Y         N    21 N,N,Y 
12      F         N         Y         N    18 N,N,Y 
13      M         Y         N         N    32 N,N,Y 
14      F         Y         N         N    47 N,N,Y 
15      M         N         N         N   356 N,N,N 
16      F         N         N         N   457 N,N,N 
 
We will convert columns 2 through 4 into 0/1 variables. 
 
table.10.13c<-table.10.13[,2:4] 
table.10.13c<-as.data.frame(lapply(table.10.13c,function(x) as.numeric(x)-1)) 
 
Then, we add a term for quasi-symmetry, called symm.  It will contain the row sums for each cell 
combination. 
 
symm<-as.factor(rowSums(table.10.13c)) 
table.10.13c<-data.frame(table.10.13c, count=table.10.13$count, gender= 
table.10.13$gender, symm=symm) 
 
Then, we call glm to fit the loglinear model.  I don’t use an intercept to match equation (13.7) in Agresti. 
summary(glm(count~-1+question1+question2+question3+gender+symm, 
family=poisson, data=table.10.13c)) 
 
Coefficients: (1 not defined because of singularities) 
          Estimate Std. Error z value Pr(>|z|)     
question1  0.43689    0.09137   4.781 1.74e-06 *** 
question2 -0.08420    0.09202  -0.915     0.36     
question3 -0.39156    0.09512  -4.117 3.84e-05 *** 
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genderM    5.87852    0.04381 134.176  < 2e-16 *** 
genderF    6.12188    0.04067 150.537  < 2e-16 *** 
symm1     -2.77704    0.08653 -32.094  < 2e-16 *** 
symm2     -3.26477    0.10747 -30.379  < 2e-16 *** 
symm3           NA         NA      NA       NA     
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 17076.229  on 16  degrees of freedom 
Residual deviance:    10.156  on  9  degrees of freedom 
AIC: 112.84 
  
Note also that for the symm sum, only the values 1 and 2 provide additional information.  The value 0 
provides no more information than does knowing the fact that all three responses are 0.  Similarly, the 
value 3 provides no more information than does knowing that all three responses are 1.  Thus, we have 
no estimates for terms corresponding to these values. 
 
 
D.  Beta-Binomial Models 
 
For a binomial random variable, Y, with index n and probability π , if π  is distributed beta with mean μ =  

/( )α α β+  and variance (1 ) /(1 )μ μ θ θ− + , where θ = 1/( )α β+ , then marginally, Y has a beta-
binomial distribution with mean nμ  and variance (1 )[1 ( 1) /(1 )]n nμ μ θ θ− + − + .  One can incorporate 
covariates or predictors within a beta-binomial model via a link function of μ .  For example, for 

covariates x, one could model the relationship 0logit( ) Tμ α= + xβ . 
 
The beta-binomial can be used to model overdispersed counts.  (One can see that the variance of a beta-
binomial count is at least as large as the variance of a binomial count.)  Another way to model 
overdispersed counts is to use quasi-likelihood with variance function similar to the beta-binomial 
variance.  See equation (13.10) in Agresti, which also defines the “overdispersion parameter”. 
 
Estimation of θ  and β  (and 0α ) can be done using maximum likelihood, alternating between fixing θ  

and maximizing over β , and vice versa.  Alternatively, one can use an approach due to Williams that 
alternates between solving the quasi-likelihood equation for β  for a given value of the “overdispersion 
parameter”, and solving for the overdispersion parameter using an equation that sets the Pearson chi-
squared statistic equal to the residual degrees of freedom for the model.  Finally, perhaps the simplest 
approach was introduced in Chapter 4, where the variance function is defined as ( ) (1 )v nμ φ μ μ= − , 

and the overdispersion parameter, φ , is estimated using 2ˆ /X dfφ = . 
 
In Chapter 4, we fit an overdispersed binomial model to the teratology data in Table 4.5 in Agresti.  We 
did that using quasi-likelihood with variance function ( ) (1 )v nμ φ μ μ= − .  Here we will fit beta-binomial 
models, as well as quasi-likelihood models with variance function similar to the beta-binomial variance. 
First, we read in the data from a text file, and set it up as a data frame. 
 
table.4.5<-read.table("teratology.txt", col.names=c("","group", "litter.size", 
"num.dead"))[,-1] 
table.4.5$group<-as.factor(table.4.5$group) 
 
group<-table.4.5$group 
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Now, we can fit a beta-binomial model, with estimation of parameters via maximum likelihood (or some 
other variant that uses the beta-binomial likelihood directly).  We will use three R packages: VGAM, gnlm, 
and aod (analysis of overdispersion).  The last one has not yet been used in the manual.   
 
We have used the vglm function from VGAM before.  Here, we just change the family argument to 
betabinomial(zero=2, irho=.2).  The zero argument indicates which of the two parameters (if 
any) should have zero covariates.  The parameters in reference are the mean (mu) and the correlation 
parameter (rho).  One can also model the logit of the correlation parameter to depend on covariates given 
after the ~ in the formula argument (in that case use zero=NULL).  The argument irho specifies the 
initial value for rho. 
 
The formula in the first argument gives the linear model for the logit, here of just mu, and not also of rho.  
Incidentally, there are also arguments within betabinomial to change the link function from logit to 
another link (using lmu and lrho). 
 
library(VGAM) 
fit.bb<-vglm(cbind(num.dead,litter.size-num.dead) ~ group, 
betabinomial(zero=2, irho=.2), data=table.4.5, trace=TRUE) 
 
summary(fit.bb) 
 
Coefficients: 
                Value Std. Error t value 
(Intercept):1  1.3459    0.24412  5.5132 
(Intercept):2 -1.1459    0.32408 -3.5360 
group2        -3.1143    0.51836 -6.0079 
group3        -3.8678    0.86346 -4.4794 
group4        -3.9225    0.68357 -5.7383 
 
Number of linear predictors:  2  
 
Names of linear predictors: logit(mu), logit(rho) 
 
Dispersion Parameter for betabinomial family:   1 
 
Log-likelihood: -219.3454 on 111 degrees of freedom 
 
Number of Iterations: 7 
 
 
So, we have two linear predictors.  The (Intercept):2 value is the logit of rho.  Thus, rho is estimated 
as the inverse logit of -1.1459. 
 
logit(-1.146, inverse=T) 
 
[1] 0.2412205 
 
The R package gnlm has a general function called gnlr which fits many likelihoods, including beta-
binomial.  We’ve seen this function in other chapters.  For the argument mu, we will use a function.  The 
function must have an argument, p, for “parameter” (see the help file for using a function of the elements 
of vector p).  Our function for mu also has an argument, linear, which is where the linear predictor goes.  
Here, we use the (anti) logit function from VGAM, hence the require call.  We could have used any 
(inverse) link function, but we use logit here.  The arguments, pmu and pshape give initial values.  The 
initial values for the coefficients in the linear predictor will come from the previous fit we did.  
 
library(gnlm) 
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require(VGAM)   # for logit function 
 
mu <- function(p, linear) logit(linear,inverse=T) 
 
gnlr(cbind(table.4.5$num.dead,table.4.5$litter.size-table.4.5$num.dead), 
distribution="beta binomial",  linear=~group, mu=mu, pmu= 
coefficients(fit.bb)[c(1,3:5)], pshape=.25) 
 
beta binomial distribution 
 
Response: cbind(table.4.5$num.dead, table.4.5$litter.size - 
table.4.5$num.dead)  
 
Log likelihood function: 
{ 
    m <- mu1(p) 
    s <- exp(sh1(p)) 
    t <- s * m 
    u <- s * (1 - m) 
    -sum(wt * (lbeta(y[, 1] + t, y[, 2] + u) - lbeta(t, u))) 
} 
 
Location function: 
logit(linear, inverse = T) 
Linear part: 
~group 
 
Log shape function: 
p[1] * rep(1, n) 
 
-Log likelihood    93.45675  
Degrees of freedom 53  
AIC                98.45675  
Iterations         11  
 
Location parameters: 
             estimate      se 
(Intercept)     1.346  0.2482 
group2         -3.114  0.5018 
group3         -3.868  0.8081 
group4         -3.923  0.6675 
 
Shape parameters: 
      estimate      se 
p[1]     1.146  0.3299 
 
From the output, the shape parameter estimate is claimed to be the log of the correlation parameter.  
However, from our last fit, we see that it is really the negative of the logit of the correlation parameter.  
That is, -logit(0.24) = p[1]. 
 
Finally the R package aod has a function called betabin, which can fit a beta-binomial likelihood.  The 
random argument is actually a formula for the dispersion parameter (Agresti’s rho).  For example, if we 
had specified ~group, then we would get a different dispersion parameter per group.  Here, we make the 
formula constant. 
 
library(aod) 
betabin(cbind(num.dead,litter.size-num.dead)~group,random=~1,data=table.4.5) 
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Beta-binomial model 
------------------- 
 
Fixed-effect coefficients: 
              Estimate Std. Error    z value Pr(> |z|) 
(Intercept)  1.346e+00  2.481e-01  5.425e+00 5.799e-08 
group2      -3.115e+00  5.020e-01 -6.205e+00 5.485e-10 
group3      -3.869e+00  8.088e-01 -4.784e+00 1.722e-06 
group4      -3.924e+00  6.682e-01 -5.872e+00 4.293e-09 
 
Overdispersion coefficients: 
                 Estimate Std. Error   z value   Pr(> z) 
phi.(Intercept) 2.412e-01  6.036e-02 3.996e+00 3.222e-05 
 
Log-likelihood statistics 
   Log-lik      nbpar    df res.   Deviance        AIC       AICc  
-9.346e+01          5         53  1.154e+02  1.969e+02  1.981e+02 
 
 
To fit the quasi-likelihoods that Agresti fits, we can also use package aod.  The function quasibin in 
aod can fit the QL(1) model, with beta-binomial variance. 
 
require(aod) 
quasibin(cbind(num.dead,litter.size-num.dead)~group,data=table.4.5) # QL(1) 
 
Quasi-likelihood generalized linear model 
----------------------------------------- 
 
Fixed-effect coefficients: 
            Estimate Std. Error z value Pr(>|z|) 
(Intercept)   1.2124     0.2233  5.4294   < 1e-4 
group2       -3.3696     0.5626 -5.9893   < 1e-4 
group3       -4.5853     1.3028 -3.5197    4e-04 
group4       -4.2502     0.8484 -5.0097   < 1e-4 
 
Overdispersion parameter: 
   phi  
0.1923  
 
Pearson's chi-squared goodness-of-fit statistic = 54.0007  
 
The function bnlr in R package gnlm fits binomial non-linear regression models with a variety of link 
functions.  With the logit link, we get the Binomial ML results in Table 13.5 in Agresti. 
 
library(gnlm) 
(fit.ml<-bnlr(cbind(table.4.5$num.dead,table.4.5$litter.size-
table.4.5$num.dead), link="logit", mu=~group,pmu=c(1,1,1,1)))   
 
binomial distribution 
 
Response: cbind(table.4.5$num.dead, table.4.5$litter.size - 
table.4.5$num.dead)  
 
Log likelihood function: 
{ 
    m <- plogis(mu1(p)) 
    -sum(wt * (y[, 1] * log(m) + y[, 2] * log(1 - m))) 
} 
 



 

 

272

Location function: 
~group 
 
-Log likelihood    122.4613  
Degrees of freedom 54  
AIC                126.4613  
Iterations         20  
 
Location parameters: 
             estimate      se 
(Intercept)     1.144  0.1292 
group2         -3.323  0.3308 
group3         -4.476  0.7310 
group4         -4.130  0.4761 
 
Correlations: 
        1        2        3        4 
1  1.0000 -0.39060 -0.17676 -0.27138 
2 -0.3906  1.00000  0.06904  0.10600 
3 -0.1768  0.06904  1.00000  0.04797 
4 -0.2714  0.10600  0.04797  1.00000 
 
 
For any of these fits, the probability of death is much lower for any of the treatments (group2, group3, and 
group4) than for the placebo (Intercept only). 
 
Agresti mentions a diagnostic used to determine whether the beta-binomial variance function is more 
appropriate with a quasi-likelihood model than is the simpler variance function.  If a plot of the 
standardized Pearson residuals for the ordinary binomial model against the indices ni shows an 
increasing trend in spread as ni increases, then a beta-binomial variance function might be more suitable.   
 
Next, I show this plot for the teratology data.  I compute the standardized residuals from the fit.ml 
object, as it fit an ordinary binomial.  For bnlr, the call function, there is no simple way to extract 
standardized Pearson residuals (as there is with glm objects).  So, I must do a little “hand” calculation. 
 
logit.inverse<-function(x) exp(x)/(1+exp(x)) 
n<-table.4.5$litter.size 
Pi<-logit.inverse(fitted(fit.ml)/n) 
r<-table.4.5$num.dead-n*Pi 
std.pear.res<-r/sqrt(n*Pi*(1-Pi)) 
 
plot(n, std.pear.res, ylim=c(-4,4), ylab="Standardized residuals", 
xlab="Litter size", bty="L") 
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From the plot, it is pretty apparent that the spread of the residuals increases with litter size.  Thus, the 
beta-binomial variance function might be most appropriate. 
 
 
E.  Negative Binomial Regression 
 
A regression model for count data (e.g., Poisson regression) might show overdispersion (variance of 
response exceeds the mean) if some relevant explanatory variables aren’t in the model.  The Negative 
Binomial is a gamma mixture of Poissons so that given a rate, say λ , the count Y has a Poisson 
distribution with mean λ , and λ  has a gamma distribution with shape and scale parameters, k and μ .  
The marginal distribution for Y, then, is negative binomial with mean μ  and dispersion parameter k-1.  As 
dispersion goes to zero, the negative binomial becomes a Poisson.  We saw the negative binomial 
probability distribution function in Chapter 4. 
 
Negative binomial regression models have (a function of) μ  depend on predictor variables.  For a fixed k, 
the negative binomial is in the exponential family.  Thus, one can use IRLS for estimation of regression 
parameters, given k, then alternate to estimate k, iterating between them until convergence. 
 
Table 13.6 in Agresti gives responses from 1308 persons to the question: Within the past 12 months, how 
many people have you known personally who were victims of homicide?  The table shows responses by 
race (1149 whites and 159 blacks).  Agresti notes that the sample response means for each race (p. 561) 
are roughly double the sample variances. 
 
 
A Poisson generalized linear model can be fit using glm in both R and S-PLUS.  Agresti gives the results 
from that fit, and shows underfitting of counts at response = 0.  There are actually several R packages 
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with functions for fitting negative binomial regression models, and special cases.  Probably the most 
typically used is glm.nb in MASS, which I use below. 
 
The data from Table 13.6 are on Agresti’s website.  However, I have also saved the data in a file called 
homicide.txt on my website (where you got this manual).  So, we read it in, and use only columns 1, 
2, and 4. 
 
homicide.fr<-read.table("homicide.txt", header=TRUE) 
homicide.fr<-homicide.fr[,c(1,2,4)] 
 
Then, I do a little manipulation to put it in a form useable by glm.nb, so that response is a column, and 
the frequency of that response by race is recorded. 
 
homicide.fr<-data.frame(freq=c(homicide.fr[,1],homicide.fr[,2]), 
response=rep(homicide.fr[,3],2), race=rep(c("white","black"),each=7)) 
homicide.fr$race<-factor(homicide.fr$race, levels=c("white","black")) 
 
homicide.fr 
 
   freq response  race 
1  1070        0 white 
2    60        1 white 
3    14        2 white 
4     4        3 white 
5     0        4 white 
6     0        5 white 
7     1        6 white 
8   119        0 black 
9    16        1 black 
10   12        2 black 
11    7        3 black 
12    3        4 black 
13    2        5 black 
14    0        6 black 
 
Then, we fit the negative binomial model, with a log link for the mean, using the frequencies as weights. 
 
require(MASS) 
fit.nb<-glm.nb(response~race, data=homicide.fr, weights=freq, link=log) 
summary(fit.nb) 
 
 
Coefficients: 
            Estimate Std. Error z value Pr(>|z|)     
(Intercept)  -2.3832     0.1172 -20.335  < 2e-16 *** 
raceblack     1.7331     0.2385   7.268 3.66e-13 *** 
--- 
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
(Dispersion parameter for Negative Binomial(0.2023) family taken to be 1) 
 
    Null deviance: 471.57  on 10  degrees of freedom 
Residual deviance: 412.60  on  9  degrees of freedom 
AIC: 1001.8 
 
Number of Fisher Scoring iterations: 1 
 
Correlation of Coefficients: 
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          (Intercept) 
raceblack -0.49       
 
 
              Theta:  0.2023  
          Std. Err.:  0.0409 
 
As discussed in Agresti, the fitted coefficient of 1.733 is the log of the ratio of the sample response means 
for black and white (i.e., 1.733 = log(0.522/0.092).  The estimated value of theta, 0.2023, is the same as 
the estimate of k, in Agresti’s text.  This can be used to estimate the variance of the response, per race, 
as shown in Agresti. 
 
The predicted mean response per race is the sample mean: 
 
unique(predict(fit.nb, type="response")) 
[1] 0.09225413 0.52201258 
 
We can also get predicted counts per response for each race, using the density function (probability 
function) for the negative binomial.  For whites, they are: 
 
round(dnbinom(0:6, size=fit.nb$theta, mu=.092)*1149,1) 
 
[1] 1065.1   67.4   12.7    2.9    0.7    0.2    0.1 
 
And, for blacks they are: 
 
round(dnbinom(0:6, size=fit.nb$theta, mu=.522)*159,1) 
 
 
[1] 122.8  17.9   7.8   4.1   2.4   1.4   0.9 
 
Compare these to Table 13.6 in Agresti. 
 
F.  Poisson Regression with Random Effects 
 
A common generalized linear mixed model for count responses is the Poisson regression model with 
random intercept.  As before, the random intercept is often given a normal distribution.  Thus, the mean 
for observation t in cluster i is 
 

 [ ]log ( | ) T
it i it iE Y u u= +x β   

 
where 2~ (0, )iu N σ  
 
Conditional on ui, yit has a Poisson distribution.  Marginally, the distribution has variance greater than the 
mean whenever σ  > zero.  The ordinary Poisson model results when the normal variance is zero, that is, 
no random effects. 
 
To compare with the previous section, we fit a Poisson generalized linear mixed model to the Homicide 
data found on Agresti’s website.  We had previously put that text file into a data frame called 
homicide.fr.  To use some of the functions for fitting a generalized linear mixed model, we “expand” 
the data frame so that each row corresponds to one subject, called ID. 
 
homicideA.fr<-data.frame(homicide.fr[rep(1:14,homicide.fr$freq),2:3], 
ID=factor(1:sum(homicide.fr$freq))) 
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There are several R/S functions for fitting Poisson generalized linear mixed models.  One function whose 
default results match those of SAS NLMIXED (which are given in Agresti) is the function glmmML, in the R 
package of the same name.  Here, I use it on the homicideA.fr data frame, with the Gaussian 
quadrature method. 
 
require(glmmML) 
res.glmmML<-glmmML(response ~ race, cluster=ID,family=poisson, method="ghq", 
data= homicideA.fr) 
 
              coef se(coef)       z Pr(>|z|) 
(Intercept) -3.689   0.2452 -15.046 0.00e+00 
raceblack    1.890   0.2453   7.705 1.31e-14 
 
Scale parameter in mixing distribution:  1.632 gaussian  
Std. Error:                              0.1588  
 
Residual deviance: 728.1 on 1305 degrees of freedom     AIC: 734.1 
 
The fitted marginal means and variances can be obtained by accessing the coefficients (e.g., 
res.glmmML$coefficients and res.glmmML$sigma).  The fitted counts from the model, however, 
are not obtained from a Poisson distribution because the marginal distribution is not Poisson. 
 
Additional R functions that can be used to fit Poisson generalized linear mixed models are glmer from 
the lme4 package and glmmPQL from the MASS package.  Here are some example calls. 
 
require(lme4) 
glmer(response ~ race + (1 | ID) , family = poisson(log), data = homicideA.fr, 
nAGQ=2, REML=F,verbose=T) 
 
require(MASS) 
glmmPQL(response~race, random=~1|ID, data=homicideA.fr, family=poisson(log), 
verbose=T, start=c(-3.7,1.9)) 


