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SUMMARY

This paper studies summary measures of the predictive power of a generalized linear model, paying spe-
cial attention to a generalization of the multiple correlation coe�cient from ordinary linear regression. The
population value is the correlation between the response and its conditional expectation given the predictors,
and the sample value is the correlation between the observed response and the model predicted value. We
compare four estimators of the measure in terms of bias, mean squared error and behaviour in the presence
of overparameterization. The sample estimator and a jack-knife estimator usually behave adequately, but a
cross-validation estimator has a large negative bias with large mean squared error. One can use bootstrap
methods to construct con�dence intervals for the population value of the correlation measure and to estimate
the degree to which a model selection procedure may provide an overly optimistic measure of the actual
predictive power. Copyright ? 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

The generalized linear model (GLM) provides a very broad and popular family for statistical
analysis. For a particular choice of GLM, a measure of the model’s predictive power can be
useful for evaluating the practical importance of the predictors and for comparing competing GLMs,
for example, models with di�erent link functions or with di�erent linear predictors. In ordinary
regression for a normal response, the multiple correlation R and the coe�cient of determination
R2 serve this purpose.
No summary measure of predictive power yet proposed for GLMs seems to have achieved the

strong acceptance that R and R2 have for normal regression models. Section 2 summarizes some
measures that have been proposed. Most of these have serious limitations, such as lack of dis-
criminatory power, restrictions in the response distribution, or poor interpretability. This article
discusses a measure that is applicable to all types of GLMs: the correlation between the response
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and its conditional expectation given the predictors. Its sample value is the sample correlation
between the observed response and the model predicted value. Section 3 introduces this measure
and discusses some of its properties. Section 4 uses simulation studies to compare four estimators
of the measure in terms of bias, mean squared error, and behaviour in the presence of overpa-
rameterization. Section 5 illustrates the measure and its use as an aid in evaluating models, with
data from a study of risk factors associated with low infant birth weight. Section 6 discusses the
use of the bootstrap to obtain con�dence intervals for the true measure and to estimate the degree
to which a model selection procedure may provide an overly optimistic measure of the actual
predictive power.
Let Y represent a response variable, and let X represent a vector of predictors. We treat both X

and Y as random, and for statistical inference we assume that the sample (Xi; Yi); i=1; 2; : : : ; n,
is a random sample. When only Y is random, as in many applications, the expected value of the
sample estimator discussed here (like most other measures of association) depend on the selection
of X values. For a GLM, let E(Y |X = x) denote the conditional expectation of Y given X=x and
let g(:) denote the link function, with g[E(Y |X = x)]= �+ �x. Finally, let Ŷ denote the maximum
likelihood (ML) estimate of E(Y |X ) based on this model.

2. SOME MEASURES OF PREDICTIVE POWER

Many summary measures of predictive power have been proposed [1] for GLMs. We now describe
three of the main types of these measures and their shortcomings.

2.1. Measures Based On Ranking Information

These statistics measure the association between the ordered values of the response outcomes and
the �tted values. The most popular measure of this type is the concordance index [2], denoted by
c. Consider those pairs of observations that are untied on Y . The index c equals the proportion of
such pairs for which the predictions Ŷ and the outcomes Y are concordant, the observation with
the larger Y also having the larger Ŷ . For a binary response, c is related to a widely used measure
of diagnostic discrimination, the area under a receiver operating characteristic (ROC) curve [2; 3].
Various software packages, including S-plus [4], STATA and SAS (PROC LOGISTIC), report
this measure.
Appealing features of c are its simple structure and its generality of potential application. Because

c utilizes ranking information only, however, it cannot distinguish between di�erent link functions,
linear predictors, or distributions of the random components that yield the same orderings of the
�tted values. For a binary response with a single linear predictor, for instance, the concordance
index c assumes the same value for logit and complementary log-log link functions, even though
the models are quite di�erent; as long as the predicted values remain monotonic, c also remains
the same when polynomial terms are added to the linear predictor. See Ash and Shwartz [5] for
other criticisms.

2.2. Measures Based On a Variation Function

In ordinary linear regression with the normal model assuming constant variance, the coe�cient of
determination, R2, describes the proportion of variance in Y explained by the model. It has been
applied to other types of responses. For binary outcomes, for instance, let �̂i denote the model-based
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ML estimate of the probability of a positive response for subject i, and let �y denote the sample
proportion of positive responses. The sample measure [6] is de�ned as R2 = 1− [∑n

i=1(yi− �̂i)2]=
[
∑n

i=1(yi− �y)2]. Some have criticized the use of R2 for non-normal GLMs because of restrictions
in possible values to the lower end of the usual [0; 1] scale and sensitivity to the prevalence of
the outcome [7]. Others have argued, however, that sensitivity to prevalence is a strength [8],
that a model with a low value of R2 may still be helpful for prediction [5], and that R2 captures
information [5] not reected by c.
For an arbitrary measure of variation D(:), a natural extension [6; 9] of R2 takes the form∑n

i=1 D(Yi)−
∑n

i=1 D(Yi|Xi)∑n
i=1 D(Yi)

where D(Yi) denotes the variation for the ith observation and D(Yi|Xi) denotes the variation for
the ith observation given the �xed value Xi of X . For a binary response, the proposed variation
functions include squared error, prediction error, entropy and linear error [6]. For a categorical
response, proposed variation functions include the Gini concentration measure and the entropy mea-
sure [9; 10]. Variation measures have also been proposed for other variants of the usual continuous
response, such as a variety of measures for censored responses in survival analysis [11; 12].
Like c, an appealing aspect of measures based on variation functions is their simple structure,

one that is well familiar to those who use R2 for normal data. A disadvantage is that their numerical
values can be di�cult to interpret, depending on the choice of variation function. Although the
measures may be useful in a comparative sense, many biostatisticians and most of the medical
scienti�c community would �nd it di�cult to envision what a 50 per cent reduction in entropy
represents, for instance.

2.3. Measures Based on the Likelihood Function

Let ‘ denote the likelihood function and let L= log ‘ denote the log-likelihood. Let LM = log ‘M
denote the maximized log-likelihood under the model of interest. Let LS denote the maximized
log-likelihood under the saturated model, which has as many parameters as observations, and let
L0 denote the maximized log-likelihood under the null model, which has only an intercept term.
Let DM =−2(LM−LS) and D0 =− 2(L0−LS) denote the deviances for the model of interest and
the null model. A summary measure based on the likelihood function is [10; 14; 15]

D=
LM−L0
LS−L0 =

D0−DM
D0

the proportional reduction in deviance due to the model of interest. Because of the monotone
increase in LM as a function of the complexity of the model, D shares this property with R2 for
normal models. This is appealing, particularly for comparing predictive power of nested models.
One can also regard this measure as a proportional reduction in variation measure (Section 2.2),

identifying a subject’s contribution to the deviance as the component of the variation measure. Its
numerical value can be di�cult to interpret, however, since the log-likelihood is often not a natural
scale for interpretation. The population value of this measure, namely the limit of D as n→∞,
can be interpreted (B. Zheng, unpublished dissertation, 1997) [16; 17] as the ratio of the expected
Kullback–Leibler distance between the model of interest and the null model to that between the
saturated model and the null model, where the expectation is taken with respect to the distribution
of X .
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As with all association measures, the magnitude of D depends on the level of aggregation of
the observations. We mention this here to caution how one obtains the deviance for the saturated
model. For a binary response with categorical predictors, for instance, D assumes di�erent values
according to whether one speci�es the individual observations as the binary (Bernoulli) outcomes
for individual subjects or the grouped binomial counts. This is due to the di�erence in LS in the two
cases. For the individual binary outcomes, LS = 0, whereas for the grouped data LS is a function
of the sample proportions. The population values of D can be considerably di�erent. For grouped
observations with categorical predictors, for instance, this value equals 1 when model-speci�ed
probabilities are equal to the true population probabilities even though predictions for individual
binary observations are far from perfect. For most purposes, D based on the grouped data is not
an appropriate measure of predictive power, and we recommend basing D on the likelihood for
the ungrouped data.
A variety of other likelihood-based measures have also been proposed. For instance, for a

normal response with constant variance, R2 = 1 − (‘0=‘M)2=n, and one might consider using the
measure 1− (‘0=‘M)2=n more generally [18; 19]. For the Cox model for survival data with censored
response, simulation studies have suggested that this measure performs well [19], whereas the
measure [20] D (with a correction for the number of parameters in the model) may increase with
the amount of censoring [12]. An adjustment to 1− (‘0=‘M)2=n has been proposed [21] so it can
attain the value 1. For binary outcomes, yet other likelihood-based measures have been proposed
[22], such as 1−(L0=LM)(2=n)L0 . Again, these measures have the disadvantage that the log-likelihood
or likelihood raised to some power may not be a natural scale for interpretation.

2.4. Other Measures

Other measures apply only for speci�c sorts of data rather than all GLMs. For a binary response,
for instance, a measure of predictive ability is the fraction of incorrectly classi�ed responses, called
the prediction error rate [6]. One obtains the predicted probability from a �tted model and predicts
Y =1 if it is greater than a cut-o� point and predicts Y=0 otherwise. Similar indices could be
de�ned for any type of data, but an obvious disadvantage is the dependence on the choice of
the cut-o� point and the failure to distinguish between widely dissimilar predicted values with
reference to that cut-o� point.

3. A CORRELATION MEASURE OF PREDICTIVE POWER FOR GLMs

This section presents a measure of predictive power for a GLM that we feel is often more useful
than the measures just described. Regarding a model as providing good predictions of a response Y
if Ŷ correlates strongly with Y , we suggest the correlation between Y and Ŷ as a simple measure
of predictive power for a GLM. The corresponding population measure is the correlation between
Y and the conditional mean of Y , which we denote by cor(Y; E(Y |X )).
In ordinary linear regression, for which the conditional variance var(Y |X ) is assumed to be

constant, the multiple correlation coe�cient between the response and the predictors is R= [1 −
var(Y |X )
var(Y ) ]

1=2. In that case [23], cor(Y; E(Y |X ))=R. Thus, cor(Y; E(Y |X )) then relates to the pro-
portion of variability explained by a model. For the single predictor case, cor(Y; E(Y |X ))=
|�|√{ var(X )var(Y )}. The measure then has intuitive appeal: the larger the e�ect size, the stronger the
correlation.
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We prefer cor(Y; E(Y |X )) to its square because of the appeal of working on the original scale
and, in particular, its proportionality to the e�ect size. Although our emphasis in this paper is
on the correlation scale, we realize that many statisticians prefer to summarize predictive power
using its square, and we note that analogous results hold for that measure. Although restrictions
on values of response variables may imply limitations on possible values for either measure [7],
we suggest using them in a comparative sense for di�erent models applied to the same data set,
for which such limitations have less relevance.
For an arbitrary GLM, it is straightforward to see that cor(Y; E(Y |X )) is invariant to a location-

scale transformation on X . In addition

cov(Y; E(Y |X ))=E[Y E(Y |X )]− EY E(E(Y |X ))= var(E(Y |X ))

cor(Y; E(Y |X ))= cov(Y; E(Y |X ))
[var(Y )var(E(Y |X ))]1=2 =

[
1− E[var(Y |X )]

var(Y )

]1=2

That is, cor(Y; E(Y |X )) equals the positive square root of the average proportion of variance ex-
plained by the predictors, which generalizes the corresponding relationship between cor(Y; E(Y |X ))
and R in ordinary linear regression.
Some properties that hold for simple (normal) linear regression do not hold more generally. In

linear regression, this measure equals the square root of R2 as de�ned in Section 2.2, but for an
arbitrary GLM,

√
R2 need not equal the correlation between the response and the model predicted

value. Also, for an arbitrary GLM the measure cor(Y; E(Y |X )) is not guaranteed to be monotone
increasing in the complexity of the linear predictor, although this almost always seems to happen
in practice. Also, the proportional relationship between � and cor(Y; E(Y |X )) for univariate X
does not hold for an arbitrary GLM, although one can show (B. Zheng, unpublished dissertation,
1997) that an approximate relationship of this type exists when � is close to 0.
Compared to the measures introduced in Section 2, the correlation measure has the advantage

of being applicable to all types of GLMs and having a familiar interpretation. It provides greater
information about predictive power than the index c because it uses the actual response instead of
its ranking in evaluating the predictive power. It has the de�ciency of being potentially sensitive
to outliers, from which c does not su�er. It di�ers from D in that the latter depends on the choice
of distribution for the random component through the form of its likelihood as well as the �tted
values. That is, two distributions that provide the same �tted values necessarily have the same
cor(Y; Ŷ ) values, but they will typically not have the same value for D because of the di�erence
in likelihoods.

4. COMPARING ESTIMATORS OF THE CORRELATION MEASURE

We now study the performance of four estimators of the correlation measure: the sample estima-
tor; a jack-knife estimator; a modi�ed jack-knife estimator, and a leave-one-out cross-validation
estimator. The sample estimator is cor(Y; Ŷ ). We expected this estimator to show positive bias,
since Ŷ is a function of Y , and other estimators were studied as ways of potentially reduc-
ing that bias. A �fth possible estimator, the ML estimator of cor(Y; E(Y |X )), requires distribu-
tional assumptions on X . This is usually di�cult to justify in practice, so we do not consider it
here.
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Table I. Summary of estimated bias and root MSE for estimators of correlation measure:
logistic regression with a normal predictor.

True correlation n cor(Y; Ŷ ) cor(Y; Ŷ )jack cor(Y; Ŷ )0jack cor(Y; Ŷcrs)
Bias

√
MSE Bias

√
MSE Bias

√
MSE Bias

√
MSE

0 50 0.117 0.146 0.060 0.201 0.109 0.146 −0:312 0.436
100 0.078 0.098 0.036 0.154 0.074 0.098 −0:285 0.399
200 0.059 0.074 0.033 0.117 0.058 0.074 −0:220 0.334

0.04 50 0.070 0.115 0.007 0.206 0.063 0.118 −0:372 0.486
100 0.045 0.080 0.006 0.154 0.042 0.081 −0:291 0.406
200 0.025 0.055 0.005 0.104 0.024 0.056 −0:223 0.332

0.40 50 −0:001 0.130 −0:001 0.130 −0:001 0.130 −0:112 0.221
100 −0:000 0.089 −0:000 0.088 −0:000 0.088 −0:048 0.115
200 0.001 0.066 0.001 0.066 0.001 0.066 −0:020 0.074

0.80 50 0.009 0.074 0.009 0.072 0.009 0.072 −0:024 0.082
100 0.003 0.048 0.000 0.048 0.000 0.048 −0:011 0.051
200 −0:000 0.034 −0:002 0.034 −0:002 0.034 −0:007 0.036

Let cor(Y; Ŷ )(·)= 1
n

∑n
i=1 cor(Y; Ŷ )

(−i), where cor(Y; Ŷ )(−i) is the correlation for the sample with
the ith observation removed. The jack-knife estimator [24] is

cor(Y; Ŷ )jack = n cor(Y; Ŷ )− (n− 1)cor(Y; Ŷ )(·)

The jack-knife estimator of the bias of cor(Y; Ŷ ) is the di�erence between cor(Y; Ŷ ) and
cor(Y; Ŷ )jack. The estimator cor(Y; Ŷ )jack can take negative values, and in practice one would likely
replace such values by 0. Hence, practical usage corresponds to the modi�ed jack-knife estimator
cor(Y; Ŷ )0jack =max[0; cor(Y; Ŷ )jack].
Next, we de�ne a leave-one-out cross-validation estimator as follows. We �t the model to the

sample without the ith observation. The �tted value for the ith observation, denoted by Ŷ (−i),
then depends on the parameters estimated from the remaining n− 1 observations. The estimator is
cor(Y; Ŷcrs), where Ŷcrs = (Ŷ (−1); Ŷ (−2); : : : ; Ŷ (−n)).
We conducted a small simulation study to compare these four estimators in terms of bias and

mean squared error. The study considered models with a single predictor, distributed as either
N(0; 1) or log-normal(0, 1). The response was generated according to either a logistic regression
model or a Poisson regression model. The true correlation cor(Y; E(Y |X )) was determined by the
model parameters; � was set at the arbitrary value 1.0 and � was selected to provide zero, low,
medium and high correlations. The sample size equalled 50, 100 or 200. We obtained results for
all combinations of the above factors, using a Sun SPARCstation 20 (Model 60) with GLIM. To
keep the study computationally manageable, we selected 1000 Monte Carlo samples, which was
adequate for discerning general patterns of behaviour of the estimators.
Table I, which displays the estimated bias and root MSE for logistic regression with a nor-

mally distributed predictor, is typical of the results. For this case, the model parameter val-
ues �=(0; 0:1; 1:0; 4:0) correspond to cor(Y; E(Y |X ))= (0; 0:04; 0:40; 0:80). As an indicator of the
Monte Carlo error, in the null case the estimated standard error for the values provided in this
table is roughly (0.003, 0.002, 0.001) for n=(50; 100; 200), both for the bias and for

√
MSE of the

sample correlation measure. Table I shows that in the null and low correlation cases cor(Y; Ŷ ) has

Copyright ? 2000 John Wiley & Sons, Ltd. Statist. Med. 2000; 19:1771–1781



PREDICTIVE POWER OF A GENERALIZED LINEAR MODEL 1777

Table II. Summary of estimated bias and root MSE for sample and jack-knife estimators for
overparameterized logistic regression models (X2 unrelated to Y ).

True correlation n cor(Y; Ŷ ) cor(Y; Ŷ )jack
X1 X1 + X2 X1×X2 X2 X1 X1 + X2 X1×X2 X2

0.04 50 Bias 0.076 0.143 0.194 0.117 0.019 0.049 0.075 0.060√
MSE 0.119 0.173 0.220 0.146 0.202 0.185 0.186 0.201

100 Bias 0.043 0.086 0.122 0.078 0.006 0.021 0.041 0.036√
MSE 0.078 0.111 0.143 0.098 0.147 0.131 0.131 0.154

0.40 50 Bias −0:002 0.026 0.047 0.118 −0:002 −0:002 −0:004 0.061√
MSE 0.131 0.129 0.133 0.148 0.131 0.138 0.145 0.206

100 Bias 0.002 0.013 0.025 0.077 0.002 0.000 0.001 0.033√
MSE 0.093 0.092 0.091 0.097 0.092 0.094 0.095 0.163

0.80 50 Bias 0.007 0.018 0.025 0.118 −0:001 −0:003 −0:004 0.082√
MSE 0.072 0.075 0.077 0.144 0.071 0.072 0.078 0.199

100 Bias 0.003 0.008 0.010 0.076 −0:000 −0:001 −0:001 0.035√
MSE 0.050 0.051 0.051 0.095 0.050 0.050 0.050 0.163

a larger bias but smaller
√
MSE than cor(Y; Ŷ )jack; for the medium and high correlation cases, the

two estimators have little bias with similar
√
MSE. In terms of both bias and

√
MSE, cor(Y; Ŷ )0jack

behaves similarly to cor(Y; Ŷ ). By contrast, the cross-validation correlation has a negative bias that
is surprisingly severe for the null and low correlation cases. It also has much larger MSE than the
other estimators, except when the correlation is very large.
We now describe the reason for the poor performance of the cross-validation estimator, for a

broad class of GLMs. First, we show that cor(Y; Ŷcrs)=−1 for a null GLM with a canonical link.
The null GLM contains only an intercept term and has cor(Y; E(Y |X ))= 0. With the canonical
link, the likelihood equation is

∑n
i=1 Yi= n�, so the �tted value Ŷ = �Y . For the ith observation,

its �tted value based on cross-validation is Ŷ (−i) = n
n−1 �Y − 1

n Yi. Hence, a perfect linear negative
relationship exists between {Yi} and {Ŷ (−i)}, and cor(Y; Ŷcrs)=− 1. This extreme bias extends to
nearby non-null models. For instance, when we add a predictor to the model, Ŷ

(−i)
approaches

n
n−1 �Y − 1

n Yi as the estimated e�ect approaches 0. So, when the association is weak, cor(Y; Ŷcrs)
can assume a large negative value and tends to have a strong negative bias.
Our second simulation study compared cor(Y; Ŷ )0jack and cor(Y; Ŷ ) in terms of bias and MSE

when the model is overparameterized. The predictors X1 ∼ N(0; 1) and X2 ∼ N(0; 1) were taken
as independent, and the response Y was taken to depend on X1 alone. When X2 is added to the
model the true summary measures do not change and the sample values should ideally be relatively
insensitive to this overparameterization. We denote the models studied by the highest-order terms
for the predictors for the model, for example, X1 + X2 denotes the model with X1 and X2 as
predictors, and X1×X2 denotes the model also containing their interaction.
Table II, which displays results for the logistic regression model with n=50 and 100, shows

typical results. For models X1; X1 +X2, and X1×X2, cor(Y; Ŷ ) has a positive bias that increases as
the model becomes more complex, an indication of susceptibility to overparameterization. The bias
is severe for the low correlation case but relatively minor in the medium and high correlation cases.
By contrast, cor(Y; Ŷ )jack has a much smaller bias in the low correlation case and is essentially
unbiased for the medium and high correlation cases. In addition, its bias remains almost constant as
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Table III. Summary measures for various logistic regression models for low birth weight data set.

Model Predictor cor(Y; Ŷ ) cor(Y; Ŷ )jack

M1 WT 0.18 0.18
M2 M1 + HT 0.28 0.27
M3 M2 + PL 0.32 0.30
M4 M3 + RACE 0.35 0.32
M5 M4 + SM 0.39 0.35
M6 M5 + AGE 0.39 0.35
M6a M6 but with WTD and PLD 0.41 0.37
M6b M6a but c-log-log link 0.41 0.37
M7 M6 + UI 0.41 0.35
M8 M7 + FTV 0.41 0.35
M9 M6a + AGE× PLD 0.42 0.37
M10 M6a + SM×RACE 0.42 0.36
M11 M6a + UI + AGE×WTD+ SM×WTD 0.43 0.36

more terms are added to the model, indicating robustness to overparameterization. For the model
X2; cor(Y; E(Y |X2))= 0 since Y is dependent on X1 only, but both cor(Y; Ŷ ) and cor(Y; Ŷ )jack
show some bias, the bias being smaller for cor(Y; Ŷ )jack. Note, however, that the MSE is often
considerably larger for cor(Y; Ŷ )jack than cor(Y; Ŷ ). Thus, although cor(Y; Ŷ )jack can be useful for
indicating when the addition of a term to the model is not vital, it is not generally as good an
estimator of the population correlation as cor(Y; Ŷ ).
Again, cor(Y; Ŷ )jack achieves the goal of bias reduction at the cost of possible negative values

when cor(Y; E(Y |X )) is zero or close to it. Our numerical evaluations, not reported here, showed
that the modi�ed version cor(Y; Ŷ )0jack is biased and acts much like the sample correlation. Bias
reduction without generating negative values is not possible for cor(Y; E(Y |X )) or any measure
that assumes non-negative values but can equal 0, since an unbiased estimator that assumes only
non-negative values does not exist.

5. AN EXAMPLE: MODELS PREDICTING LOW BIRTH WEIGHT

This section illustrates the correlation measures and their use in helping to evaluate logistic re-
gression models. We use data from a study of risk factors associated with low infant birth weight
[25]. The data were collected on 189 women, 59 of whom had low birth weight babies and 130
of whom had normal birth weight babies. Risk factors included age of the mother (AGE), weight
at the last menstrual period (WT), race (RACE), smoking status during pregnancy (SM), history
of premature labour (PL), history of hypertension (HT), presence of uterine irritability (UI), and
number of physician visits during the �rst trimester (FTV). The response is an indicator of low
birth weight, namely birth weight ¿2500 g versus birth weight ¡2500 g. (If available, of course,
one would prefer to utilize the continuous measure itself.)
Table III displays the measures for a variety of models, where + represents adding a predictor

to the preceding model. Models M6a and M6 have the same predictors, but following a model
suggested by Hosmer and Lemeshow (Reference [25], p. 98), WT and PL are dichotomized into
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WTD and PLD in M6a. Table III shows a variety of models. We selected the best single-predictor
model based on the summary measures cor(Y; Ŷ ) and cor(Y; Ŷ )jack. We denote it by M1. We then
added the predictor whose addition leads to the maximum improvement in the summary measures.
We proceeded in this fashion until the improvement in the summary measures was minor. In
addition to the risk factors mentioned above, we also considered two-way interactions. We do not
intend this as a suggested model selection device, but used it merely as a way to exhibit a variety
of models that an analyst might consider for these data.
Except for M1, cor(Y; Ŷ ) is consistently higher than cor(Y; Ŷ )jack, indicating a potential positive

bias. Viewing the jack-knife estimate helps to suggest when the addition of a new term may not
truly improve predictive power. Among the main e�ect models M1–M8, the measures improve
with the complexity of the model until M5. They show only minor changes afterwards, particularly
in terms of cor(Y; Ŷ )jack. Thus, M5 is a reasonable tentative choice of model, or one might con-
sider M6 simply because AGE is biologically important and might interact with other risk factors
(Reference [25], p. 95).
Dichotomizing WT and PL (that is, M6a) leads to a slight improvement, but adding interaction

terms to M6 or M6a does not lead to substantive improvement (see models M9, M10, M11).
Similarly, using alternative link functions did not help (for example, model M6b has the same
predictors as M6a but uses the complementary log-log link). In summary, the measures lead us
in the direction of M5, M6 and M6a as tentative choices to use as the basis of further model
building; these have the interpretive advantage of containing only main e�ect terms.
Hosmer and Lemeshow selected model M11, based on statistical signi�cance considerations. Al-

though it includes three more predictors than M6a, its summary measures (particularly cor(Y; Ŷ )jack)
are almost identical to those for M6a, and thus it gains little, if any, predictive power. This il-
lustrates the well known adage that statistical signi�cance does not imply practical importance.
The summary measures can help us use practical importance as well as statistical signi�cance as
a criterion in evaluating models.

6. BOOTSTRAP CONFIDENCE INTERVALS AND OPTIMISM DETERMINATION

In some applications it may be useful to construct an interval estimate for the population value of
the correlation measure, cor(Y; E(Y |X )). Although it seems di�cult to obtain analytical results in
this direction, it is simple to use bootstrap methods for this purpose. For each type of bootstrap
interval method [26] (for example, percentile, BCa), one can adopt two approaches to Monte Carlo
sampling [27] to generate the bootstrap samples.
In the parametric bootstrap approach, predictors are considered �xed and the response for a

Monte Carlo sample is generated according to the model, using the parameter values estimated
from the observed sample. A bootstrap sample thus generated conforms to the model speci�cation.
A caution is in order for this approach. When the model is misspeci�ed, the intervals can be
misleading. For instance, suppose that one uses a Poisson regression model but there is marked
overdispersion. Then, using the parametric bootstrap with the Poisson model will imply a stronger
correlation than actually exists, since the parametric bootstrap samples will tend to exhibit much
less dispersion than the sample counts. In the non-parametric approach, a Monte Carlo sample
is generated from the empirical distribution having mass 1=n at each (X; Y ) observation. Such a
bootstrap sample does not rely on any assumption about the model, which is advantageous when
the model exhibits lack of �t.
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We illustrate bootstrap interval estimation for model M6a with the low birth weight data. For
those data, the sample correlation equals 0.41. Based on using 10;000 Monte Carlo samples to
form percentile bootstrap intervals, the non-parametric interval is (0.32,0.56) and the parametric
interval is (0.34, 0.58).
Another potential use of bootstrap methods is to estimate the amount of potential over�tting, or

optimism, in cor(Y; Ŷ ) associated with a model selection process [28]. Optimism summarizes the
discrepancy between the model performance on a new subject and that on the observed sample. Let
(X0; Y0) denote a new subject drawn from the same population as the observed sample, and let Ŷ 0
denote the prediction based on the model. The model performance on a new subject is summarized
by E{cor(Y0; Ŷ 0)}, where the expectation is taken over the distribution of the new subject, with
the sample values �xed. The amount of over�tting is summarized by the optimism, de�ned as
E{cor(Y0; Ŷ 0)}− cor(Y; Ŷ ). The use of the bootstrap to estimate the optimism proceeds as follows
[4]. For each Monte Carlo sample drawn with replacement from the observed data, one applies
the same stopping rule used for the observed sample and selects a model [4]. Let corb denote
the correlation measure for this Monte Carlo sample and let cors denote the same measure but
applied to the observed sample, that is, cors is calculated using the observed responses and �tted
values based on coe�cients from the aforementioned model. Repeat this procedure 100 to 200
times. The bootstrap optimism, denoted by Op, is the average di�erence between corb and cors.
The optimism-corrected correlation measure is then cor(Y; Ŷ )− Op. This reects the performance
of the model, or rather of the entire model selection process, on a new subject, given the observed
data.
Section 4 showed that cross-validation can behave poorly in adjusting sample values for bias.

Efron [28] showed that for the prediction error rate measure, the bootstrap optimism-corrected
version has a larger bias but a smaller MSE while the cross-validation version is almost unbiased
but has a larger MSE. A useful future project would be to study the performance of bootstrap
optimism-corrected measures for a variety of GLMs.

7. CONCLUSIONS

This article has studied the correlation measure as a summary of the predictive power of a GLM.
It generalizes the multiple correlation coe�cient, and although it does not maintain the guaranteed
monotonicity property, in our experience this property almost always holds in practice. It has the
advantage of using the original scale, being numerically simple to interpret regardless of the choice
of probability distribution for the GLM, and it is thus comparable in numerical value across GLMs
with di�erent links and choices of probability distribution. Of the estimators of the correlation,
the sample estimator and the jack-knife estimator behave well while the cross-validation estimator
does not. In future work, it might be useful to generalize the correlation measure to other cases,
such as models for a multinomial response, and multivariate models for longitudinal data.
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