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Modeling and inference for an ordinal effect size measure
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SUMMARY

An ordinal measure of effect size is a simple and useful way to describe the difference between
two ordered categorical distributions. This measure summarizes the probability that an outcome
from one distribution falls above an outcome from the other, adjusted for ties. We develop and
compare confidence interval methods for the measure. Simulation studies show that with independent
multinomial samples, confidence intervals based on inverting the score test and a pseudo score-type
test perform well. This score method also seems to work well with fully-ranked data, but for dependent
samples a simple Wald interval on the logit scale can be better with small samples. We also explore how
the ordinal effect size measure relates to an effect measure commonly used for normal distributions,
and we consider a logit model for describing how it depends on explanatory variables. The methods
are illustrated for a study comparing treatments for shoulder tip pain. Copyright c© 2007 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

This article considers use of a summary measure to describe the difference between two groups,
for observations on an ordered categorical scale. We illustrate using Table I, from a study
(Lumley [1]) to compare an active treatment with a control treatment for patients having
shoulder tip pain after laparoscopic surgery. The two treatments were randomly assigned to
41 patients. The patients rated their pain level on a scale from 1 (low) to 5 (high) on the fifth
day after the surgery.

In practice, when responses are ordered categorical, a common approach is to assign scores
to the categories and use methods for comparing means. A modeling approach, such as a
cumulative logit model with a proportional odds structure, treats the response as ordinal
rather than interval-scale and provides an odds ratio summary using cumulative probabilities.
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In this article we use an alternative measure that treats the response as ordinal but is simpler to
interpret for audiences not familiar with odds ratios and that has connections with a commonly
used effect size measure for normal distributions. We develop confidence intervals and models
for this ordinal effect measure.

The next section introduces the measure and reviews existing confidence interval methods
for it. Section 3 proposes other confidence interval methods for the case of independent
multinomial samples. Section 4 presents related confidence intervals based on a cumulative
logit model. In Section 5, we apply the methods to Table I and some other data sets. Section
6 summarizes simulation studies comparing the methods. Section 7 adapts the confidence
interval methods and assesses their performance for fully-ranked data and matched-pairs data,
and discusses the connection with the normal effect size measure. Section 8 presents a logit
model for the measure with explanatory variables.

2. THE ORDINAL EFFECT SIZE MEASURE

Let Y1 and Y2 denote independent random variables that each have the same ordinal scale. A
measure that summarizes their relative size without assuming magnitudes for the categories is

θ = P (Y1 < Y2) + 0.5P (Y1 = Y2).

Klotz [2] used θ in testing the hypothesis of equality of the distributions of Y1 and Y2 against
alternatives for which one is stochastically larger than the other. Vargha and Delaney [3] called
θ a measure of stochastic superiority of Y2 over Y1. Bamber [4] showed that θ is the same as
the area under a receiver operating characteristic (ROC) curve.

For c outcome categories, we label the categories 1, 2, · · · , c, from least to greatest in degree.
Let πi = P (Y1 = i) and λi = P (Y2 = i), i = 1, 2, · · · , c, with π = (π1, π2, · · · , πc)

′ and
λ = (λ1, λ2, · · · , λc)

′. The measure is

θ = λ′Aπ, (1)

where
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When c = 2, θ equals 0.5(1 + π1 − λ1), a linear function of the difference of proportions,
π1 − λ1. If categories are reversed in order or if Y1 and Y2 are interchanged, then θ changes
to 1 − θ. If Y1 and Y2 are identically distributed or if they both have symmetric distributions
(that is, π1 = πc, π2 = πc−1, . . . , and likewise for λ), then θ = 0.50. If Y2 is stochastically
larger (smaller) than Y1, then θ > 0.50 (< 0.50). To test that the distributions are identical
against Ha : θ 6= 0.50, Ha : θ > 0.50, or Ha : θ < 0.50, one can use the test of Mann and
Whitney [5] or the equivalent Wilcoxon test [6]. A likelihood ratio test is available for testing
H0 : θ = 0.50, which contains the null hypothesis that two distributions are identical (Troendle
[7]).

Instead of testing a single value for θ, this article focuses on constructing confidence
intervals for θ. Hochberg [8] proposed confidence intervals for P (Y1 < Y2) − P (Y1 > Y2)
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ORDINAL EFFECT SIZE MEASURE 3

using U -statistics and the delta method. These can be adapted to apply to θ because
θ = [P (Y1 < Y2)−P (Y1 > Y2)+1]/2. Halperin, Hamdy, and Thall [9] provided a distribution-
free confidence interval for θ using a pivotal quantity. Their simulation study showed that their
approach is as good as or better than Hochberg’s method, especially for extreme values of θ.

Recently, Newcombe [10] evaluated eight asymptotic confidence intervals for θ. The methods
treat the distributions of Y1 and Y2 as continuous, but he stated that they also apply with
ordinal categorical responses. He recommended a pseudo score-type confidence interval that
assumes exponential distributions for Y1 and Y2. The following two sections consider other
confidence interval methods for θ in the categorical-outcome case and compare them to existing
methods.

3. CONFIDENCE INTERVALS FOR INDEPENDENT MULTINOMIAL
DISTRIBUTIONS

Suppose there are n1 i.i.d observations of Y1 and n2 i.i.d observations of Y2, with results
summarized by frequencies {nij , i = 1, 2, j = 1, · · · , c} in a 2 × c contingency table. The
frequencies in each row have a multinomial distribution.

Except for a constant term, the product multinomial log-likelihood is

l(π, λ) = y′

1log(π) + y′

2log(λ), (2)

where y1 = (n11, · · · , n1c)
′, y2 = (n21, · · · , n2c)

′, log(π) = (log(π1), · · · , log(πc))
′, and

log(λ) = (log(λ1), · · · , log(λc))
′. The maximum likelihood (ML) estimates for π and λ are

π̂j = n1j/n1, λ̂j = n2j/n2, j = 1, · · · , c, and the ML estimate of θ is

θ̂ = λ̂
′

Aπ̂ =
1

n1n2





c−1
∑

i=1

c
∑

j>i

n1in2j + 0.5

c
∑

i=1

n1in2i



 .

This is the Mann-Whitney U -statistic, allowing ties, divided by the product of the sample sizes

(Klotz [2]). From Halperin et al. [9], the variance of θ̂ is

Vθ̂ =
1

n1n2

"

θ − (n1 + n2 − 1)θ2 + (n2 − 1)C + (n1 − 1)D −
1

4

c
X

i=1

πiλi

#

, (3)

where C =
∑c−1

i=1 πi(
∑c

j=i+1 λj+λi/2)2+πcλ
2
c/4 and D =

∑c
j=2 λj(

∑j−1
i=1 πi+πj/2)2+π2

1λ1/4.
From properties of U -statistics, provided 0 < θ < 1,

θ̂ − θ
√

V̂θ̂

d−→ N(0, 1), (4)

where V̂θ̂ is the estimated variance of θ̂ obtained by substituting the ML estimates of θ, π,
and λ into (3).

We now consider five asymptotic confidence intervals for θ: the Wald interval, the Wald
interval applied to logit(θ̂), the likelihood-ratio test (LRT)-based interval, the score-test based
interval, and a pseudo score-type interval. We obtain them by inverting the corresponding
tests of H0 : θ = θ0.
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3.1. Wald-type Confidence Intervals

From the asymptotic normality of θ̂ in (4), the 100(1− α)% Wald confidence interval for θ is

θ̂ ± zα/2

√

V̂θ̂,

where zα/2 denotes the (1 − α/2) quantile of the standard normal distribution. A degenerate

confidence interval results if θ̂ equals either 0 or 1, or if θ̂ = 0.50 with all observations falling
in a single column. In near-extreme cases, the distribution of θ̂ is usually highly skewed, and
the lower bound or the upper bound of this interval may fall outside of [0, 1]. Along with these
problems, Wald intervals generally perform poorly for parameters based on proportions. For
example, Brown, Cai and DasGupta [11] showed the Wald confidence interval for a binomial
proportion has chaotic coverage probabilities even with large sample sizes.

A more promising Wald approach constructs the interval for a transformation of θ, such
as logit(θ), and then inverts it to the θ scale. From the delta method, the Wald confidence
interval for logit(θ) is

logit(θ̂) ± zα/2

√

V̂θ̂

θ̂(1 − θ̂)
.

Its bounds (LB, UB) induce the interval (exp(LB)/1 + exp(LB), exp(UB)/1 + exp(UB)) for

θ. If θ̂ is either 0 or 1, we take the interval to be [0, 1], which is unappealing compared to the
intervals obtained with the following methods.

3.2. LRT-based Confidence Interval

To find the LRT confidence interval, we need the restricted ML estimates of the cell
probabilities under H0 : θ = θ0 for all possible θ0. We regard each such null hypothesis as
a constraint function of the cell probabilities. That is, the cell probabilities under the null
hypothesis satisfy λ′Aπ − θ0 = 0. We denote the restricted ML estimates satisfying θ = θ0 by
π̃(θ0) and λ̃(θ0).

The LRT statistic G2(θ0) for H0 : θ = θ0 is

G2(θ0) = 2
(

y′

1[log(π̂) − log(π̃(θ0))] + y′

2[log(λ̂) − log(λ̃(θ0))]
)

.

It has an asymptotic chi-square null distribution with df = 1 (Lang [14]). The 100(1 − α)%
LRT-based confidence interval for θ is the set of θ0 that satisfies G2(θ0) < χ2

(1−α),1, where

χ2
(1−α),1 denotes the (1 − α) quantile of the chi-square distribution with df = 1.

3.3. Score Confidence Interval

The score confidence interval for θ under multinomial sampling is obtained by inverting the
score test statistic for H0 : θ = θ0. With the restricted ML estimates of cell probabilities under
H0, several authors including Aitchison and Silvey ([12], [13]), Bera and Bilias [15], and Lang
[14] showed that for any multinomial model the score statistic is equivalent to the Pearson-type
statistic,

S2(θ0) =

c
∑

j=1

[

(y1j − n1π̃j(θ0))
2

n1π̃j(θ0)
+

(y2j − n2λ̃j(θ0))
2

n2λ̃j(θ0)

]

.

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 00:1–15



ORDINAL EFFECT SIZE MEASURE 5

This is also the Lagrange multiplier test statistic (Silvey [16]). It has an asymptotic chi-
square null distribution with df = 1 (Lang [14]). Thus, the 100(1 − α)% score confidence
interval is the set of θ0 satisfying S2(θ0) < χ2

(1−α),1. This approach has been used to obtain
confidence intervals for many categorical measures, such as difference of proportions and Kappa
for matched pairs (Agresti and Min [17], and Donner and Eliasziw [18]).

3.4. Pseudo Score-type Confidence Interval

An alternative to the Wald method directly uses the asymptotic normality of θ̂ with the null
rather than non-null variance, following Wilson’s ([19]) approach for proportions. To obtain

the null variance of θ̂, we substitute the restricted ML estimates of cell probabilities under
H0 : θ = θ0 in Vθ̂ in (3). Denote the corresponding estimated variance by Ṽθ̂(θ0). Then, a
100(1− α)% pseudo score-type confidence interval for θ is the set of θ0 that satisfies

PS2(θ0) =
(θ̂ − θ0)

2

Ṽθ̂(θ0)
< χ2

(1−α),1.

Generally, this method differs from the score confidence interval method in Section 3.3.

3.5. Algorithms for Finding the Intervals

Finding the restricted ML estimates used in the LRT-based, score, and pseudo score confidence
intervals entails finding ML estimates satisfying θ = θ0 for various θ0 constrained values. One
can do this by finding saddlepoints of a Lagrange multiplier function expressed in terms of
this constraint. Methods for doing this include a Newton-Raphson algorithm for constraint
functions (Aitchison and Silvey [12], [13]) or a modified Newton-Raphson algorithm (Lang
[14]) that avoids some difficulties related to the inversion of matrices in the Aitchison-Silvey
algorithm.

Lang’s approach is available with the “mph.fit” function in the R software, available from
Dr. Joseph B. Lang (“joseph-lang@uiowa.edu”). We found it useful in applying this algorithm
to use as initial values the endpoints of a more easily computable interval such as Newcombe’s
pseudo score interval. With such algorithms, there are occasional problematic cases caused by
the algorithm not converging for certain θ0 values. In future research, it would be useful to
develop a special-purpose algorithm that works well for doing this. A function for R software
to find these confidence intervals using Lang’s function is available from the first author of this
paper (Euijung Ryu).

4. CONFIDENCE INTERVALS FOR θ UNDER A PARAMETRIC MODEL

The confidence interval methods in the previous sections used 2(c − 1) cell probability
parameters. To reduce the number of parameters, substantially for large c, we can apply θ
to a model for the table. A simple cumulative logit model for a 2 × c table is

logit[P (Yk ≤ j)] = αj − (k − 1)β, j = 1, · · · , c − 1, k = 1, 2,

which has c parameters. One way that this model arises is by assuming that counts in the
first row have an underlying latent variable with a standard logistic distribution (location
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parameter 0 and scale parameter 1), and counts in the second row have the same distribution
except for a location shift β. Below, we make inference about θ without assuming any latent
structure. An alternative approach, not explored here, makes inference about θ for assumed
underlying parametric distributions.

Let γ1j = P (Y1 ≤ j) and γ2j = P (Y2 ≤ j) with γ1 = (γ11, · · · , γ1(c−1))
′ and γ2 =

(γ21, · · · , γ2(c−1))
′. We can express cell probabilities using the cumulative probabilities. For

example, π1 = γ11, πj = γ1j − γ1(j−1) for j = 2, · · · , c − 1, and πc = 1 − γ1(c−1). Substituting
the cumulative probabilities into (1), we get

θ = γ ′

1Dγ2 + 0.5(1 + γ1(c−1) − γ2(c−1)), (5)

where

D =
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From the form of θ, the sign of (θ − 0.5) is the same as the sign of β.
Under the cumulative logit model, the log-likelihood function except for a constant term is

l(α, β) =

2
∑

k=1

c
∑

j=1

nkj log

[

exp(αj − (k − 1)β)

1 + exp(αj − (k − 1)β)
− exp(αj−1 − (k − 1)β)

1 + exp(αj−1 − (k − 1)β)

]

, (6)

where α0 = 0 and αc = ∞. The ML estimates of α1, · · · , αc−1, and β can be obtained by
standard statistical software such as SAS or R. Let θ̂ denote the ML estimate of θ for this
model, that is, substituting the model-based ML estimates for γ1 and γ2 into (5).

The asymptotic variance of θ̂ is obtained using the delta method. Denoting d =
(∂θ/∂α1, · · · , ∂θ/∂αc−1, ∂θ/∂β)′, and denoting the expected Fisher information matrix by

B, the asymptotic variance of θ̂ is Vθ̂ = d′B−1d.
The methods considered in the previous section can be applied to this measure using similar

methods. For example, the 100(1 − α)% logit Wald confidence interval is based on inverting

logit(θ̂)±zα/2

√

V̂θ̂/θ̂(1−θ̂). Under H0 : θ = θ0, the restricted ML estimates (α̃1, α̃2, . . . , α̃c−1β̃)

of the model parameters maximize the log-likelihood in (6). We obtain them using Lagrange
multipliers with a constraint function

γ′

1Dγ2 + 0.5(1 + γ1(c−1) − γ2(c−1)) − θ0 = 0

by employing either the Newton-Raphson algorithm or Lang’s algorithm. These are the basis of
LRT-based and score confidence intervals. A pseudo score-type confidence interval substitutes
the restricted ML estimates into Vθ̂ for each θ0. Denoting the corresponding variance form by

Ṽθ̂(θ0), a 100(1− α)% pseudo score-type confidence interval for θ is the set of θ0 satisfying

(θ̂ − θ0)
2

Ṽθ̂(θ0)
< χ2

(1−α),1.
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5. EXAMPLES

We now apply θ̂ and the confidence interval methods to Table I on shoulder tip pain scores.
Assuming independent multinomial sampling, the unrestricted ML estimates are π̂ = (0.864,

0.091, 0.045, 0.000, 0.000)′, λ̂ = (0.368, 0.158, 0.211, 0.158, 0.105)′, and θ̂ = 0.771. For the
cumulative logit model, the Pearson test statistic for testing fit is 0.94 with df = 3, so the
model fits adequately. Under this model, θ̂ = 0.773. Table II shows the unrestricted and model-
based confidence intervals for θ. By comparison, the Halperin et al. interval is (0.619, 0.875)
and the Newcombe’s pseudo score-type interval is (0.596, 0.880). Except for the ordinary Wald
interval and the lower bound of the Newcombe interval, different methods give similar results.

Since all confidence intervals do not contain 0.5, we infer that the active treatment works
better than the control treatment to reduce shoulder pain. The chance that a patient with the
active treatment feels less pain than one receiving the control treatment could be only slightly
greater than 0.5, or much greater. The imprecision reflects the relatively small sample sizes.

Table III illustrates how the methods perform with tables that can cause problems with
simple Wald methods. When all observations fall in one column (case 1), the Wald intervals are

degenerate (since the estimated standard error then equals 0). When θ̂ is near the boundary

(case 2), the ordinary Wald interval can overshoot the boundary. When θ̂ is at the boundary
(case 3), the Wald interval is degenerate and the logit Wald interval provides no information.
For these problematic cases in Table III, the LRT-based intervals are shorter than the score
and pseudo score-type intervals. We study next, with a simulation, how these methods and
the Wald methods tend to perform.

6. SIMULATION STUDY

We used a simulation study to evaluate the confidence interval methods presented in Sections
3 and 4, the Halperin et al. interval, and the Newcombe’s pseudo score-type interval. This
study varied the number of columns c, the true θ value, whether the cumulative logit model
holds, and group sample sizes.

We obtained the cell probabilities by categorizing two logistic distributions. For the first
row, we used equal cell probabilities. The second row probabilities were obtained by possibly
changing the location and scale parameters. Using the standard logistic distribution with
location = 0 and scale = 1 for the first row, we determined c − 1 cutoff points of the 2 × c
table. For the second row we set the scale parameter to equal either 1 (cumulative logit model
holds) or 2 (model does not hold). The location parameter for the second row was determined
so that either θ = 0.5 (no effect) or 0.8 (strong effect). We took the group sample sizes (n1, n2)
= (10, 10), (50, 50), (100, 100), (10, 50), (50, 100) and (10, 100).

For each condition, we ran 10,000 simulations and estimated the actual coverage probability
of nominal 95% confidence intervals. An estimate of the true coverage probability then has
standard error that is about 0.002. Our evaluations found that the unrestricted score and
pseudo score-type methods perform much better than the other methods, especially with small
sample sizes. We found that the coverage probabilities for the unrestricted LRT confidence
interval tend to be too low when sample sizes are small, especially when the sample sizes
are highly unbalanced, regardless of whether or not the assumed model holds. We also found
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that Newcombe’s pseudo score-type method tends to have coverage probabilities that are too
high, but, recall that this method is designed for fully-ranked data. In addition, that method
has the simplifying property, not shared by confidence intervals proposed in this paper, by
which the θ̂ value and the sample sizes are sufficient to determine the interval; that is, the
confidence limits for Newcombe’s method depend only on θ̂, n1, and n2 (Newcombe [10]). The
logit Wald confidence interval, which is simple to use, performs well with equal sample sizes,
but sometimes has poor coverage probabilities with unequal sample sizes. All the parametric-
based intervals often had poor coverage performance when the assumed model does not hold,
so we cannot recommend them for general use.

Table IV summarizes the simulation results, averaged over all the sample size cases, over
c = 3 and 6, over θ = 0.5 and 0.8, and over whether the model holds. The table reports
three overall summaries of performance: the mean coverage probability, the mean of the
absolute differences between coverage probabilities and the nominal value, and the proportion
of coverage probabilities with absolute distance more than 0.02 from the nominal value of 0.95.
For the cases for which the absolute distance exceeded 0.02, coverage probabilities tended to
be too large for the Newcombe pseudo score-type method and too small for the Halperin et
al., Wald, logit Wald, and LRT intervals.

In developing a rank-based test about θ, mainly for the purpose of testing that θ = 0.5
without assuming identical distributions, Brunner and Munzel [20] mentioned in passing that
their test could be inverted to obtain a confidence interval for θ. However, this interval shares
the disadvantage of the Wald interval of being centered at θ̂, and hence not working when θ̂
equals either 0 or 1. We also considered this method in our simulation. Although it performed
better than the Wald method, it did not perform as well as the score and pseudo score-type
methods.

In summary, for relatively small sample sizes the score and pseudo score-type methods seem
best among the various methods, although this conclusion is tentative because of the limited
cases this simulation study considered.

7. OTHER DATA STRUCTURES

Next we consider two other cases in which θ can provide a useful summary: (1) matched-pairs
data, and (2) fully-ranked data, in which independent samples come from two continuous
distributions, rather than multinomial distributions.

7.1. Matched-Pairs Data

Suppose each observation in one sample pairs with an observation in the other sample, for an
ordered categorical response with c categories. The data are summarized by a c×c contingency
table. Let π = {πij , i, j = 1, . . . , c} denote cell probabilities for this table. We assume the cell
counts have a multinomial distribution with sample size n and cell probabilities π.

Applying θ to the marginal row probabilities (π1+, · · · , πc+) and marginal column
probabilities (π+1, · · · , π+c), the matched-pairs (MP) version of θ is

θMP = (π+1, · · · , π+c)A(π1+, · · · , πc+)′.

Marginal homogeneity implies θMP = 0.5, and θMP provides a comparison of the two marginal
distributions that is sensitive to stochastic orderings.

Copyright c© 2007 John Wiley & Sons, Ltd. Statist. Med. 2007; 00:1–15
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The ML estimate of θMP is θ̂MP = (π̂+1, · · · , π̂+c)A(π̂1+, · · · , π̂c+)′, which is obtained
by substituting ML estimates of marginal row and column probabilities into θMP . It is
straightforward to show that θ̂MP equals π̂′Rπ̂, where π̂ is a vector of sample proportions and

R =











0.51c 1c · · · 1c · · · 0.51c 1c · · · 1c

0c 0.51c · · · 1c · · · 0c 0.51c · · · 1c

...
...

... · · ·
...

...
...

0c 0c · · · 0.51c · · · 0c 0c · · · 0.51c











′

.

It is known that
√

n(π̂ − π)
d−→ N(0, Σ), where Σ = Diag(π) − ππ′. Since θ̂MP =

π̂′[0.5(R + R′)]π̂, where 0.5(R + R′) is symmetric, θ̂MP has variance (Schott [21], p. 395)

var(θ̂MP ) =
1

n2
{0.5tr([(R + R′)Σ]2)} +

1

n
{π′(R + R′)Σ(R + R′)π}. (7)

The methods discussed in Sections 3 can be applied, using a multinomial log-likelihood and
the variance form in (7) instead of (3).

In a limited simulation study, we used the cell probabilities from Section 6 as marginal row
and column probabilities. For joint cell probabilities, we used an underlying bivariate normal
distribution with correlations 0.4 and 0.8 satisfying the marginal row and column probabilities.
For large samples, all methods performed reasonably well. With small sample sizes (n = 25,
50, and 75), however, we found that the logit Wald method performs better than the LRT
method and better than the score and pseudo score-type methods when the effect is large, in
which cases these other methods tend to be quite conservative. For example, see Table V with
n = 50. This result was surprising, and the tentative superiority for small samples of the logit
Wald method must be qualified by its inappropriateness for some cases (e.g., when θ̂ = 0 or 1).
Newcombe [22] has recently proposed a somewhat different approach for matched-pairs using
a summary measure motivated by the Wilcoxon signed-rank statistic.

7.2. Fully-Ranked Data

Next, suppose independent samples of size n1 and n2, say (X11, · · · , Xn1
) and (X21, · · · , X2n2

),

come from unknown continuous distributions F1 and F2. To apply θ̂, we rank the data from
the smallest to the largest and construct a 2× c table with c = n1 +n2, assuming there are no
ties. We refer to this case as “fully-ranked data.” By treating the data as if they come from
two independent multinomial distributions, with frequencies nij , i = 1, 2, j = 1, · · · , c (each

being a 0 or 1), we have π̂j = n1j/n1 and λ̂j = n2j/n2. The estimate of θ is

θ̂ =

n1
∑

i=1

n2
∑

j=1

I(X1i < X2j)/(n1n2),

where I is an indicator function. The numerator is the Mann-Whitney U statistic with no
ties. An asymptotic normality of θ̂ in this case is well known, and so Wald confidence intervals
apply directly. The estimated asymptotic variance of θ̂, say ˆvar(θ̂), is obtained by substituting

π̂ and λ̂ into the form in (2) with π̂iλ̂i = 0 for each i. The resulting confidence interval is the
same as the Hanley-McNeil Wald method discussed by Newcombe [10].

We conducted simulation evaluations, generating data from normal distributions with
identical variances but possibly different means. Based on Table VI, for large samples, the
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Halperin et al. method, the Newcombe’s pseudo score-type method, the unrestricted logit
Wald method, the LRT method, and the score methods all seemed to perform well. For small
samples, the score method and Newcombe’s pseudo score-type method performed better than
the other methods.

7.3. Connections with an Effect Size Measure for Normal Distributions

The previous section treated the response as having an unspecified continuous distribution.
It is natural to inquire how much efficiency loss could occur from using the strictly ordinal
approach when a particular parametric distribution truly holds.

For example, suppose the parametric model X1 ∼ N(µ1, σ
2) and X2 ∼ N(µ2, σ

2) truly
holds. Then,

θ = Φ(
µ2 − µ1√

2σ
),

where Φ is the cdf of the standard normal distribution. So, in this case θ relates to the effect
size measure ∆ = (µ2−µ1)/σ often used for approximately normal distributions with common
variance. With equal sample sizes n, a natural parametric estimate of θ is

θ̂∗ = Φ(
X̄2 − X̄1√

2s
),

where X̄1 =
∑n

i=1 X1i/n, X̄2 =
∑n

i=1 X2i/n, and s2 = [
∑n

i=1(X1i − X̄1)
2 +

∑n
i=1(X2i −

X̄2)
2]/2(n − 1). Based on Reiser and Guttman [23] and the delta method, the asymptotic

variance of
√

nθ̂′ is

var(
√

nθ̂∗) = φ2(
∆√
2
)

(

1 +
∆2

8

)

,

where φ(x) is the standard normal density. By contrast, for the ordinal (Mann-Whitney-type)

estimate θ̂ of θ, under the normality assumptions the asymptotic variance is

var(
√

nθ̂) = 2

[

P (Z1 ≤ ∆√
2

and Z2 ≤ ∆√
2
) − θ2

]

,

where Z1 and Z2 are jointly bivariate normal with zero means and unit variances and
correlation 0.5.

The asymptotic efficiency of the ordinal estimate relative to the parametric estimate of θ is
the limit as n increases of

eff =
var(θ̂∗)

var(θ̂)
.

For ∆ = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0, the asymptotic relative efficiencies are 0.955, 0.961,
0.974, 0.979, 0.957, 0.892, and 0.782. Therefore, under normality, the parametric estimate can
be much better than the ordinal estimate when the effect is very large. Otherwise, the ordinal
estimate holds up well, much as the corresponding Mann-Whitney test does in terms of the
classic result about its local efficiency compared to the t test for normal distributions.

When a parametric model is plausible in the fully-ranked case and the effect is very large,
it might be preferable to estimate θ using that model. In practice, even then this must be
weighed against the possibility of actual coverage probabilities for corresponding confidence
intervals possibly being far from nominal levels when there is model misspecification.
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8. LOGIT MODELING OF θ WITH EXPLANATORY VARIABLES

The confidence interval methods for θ discussed in Sections 2 through 6 are designed for
a single 2 × c table. In practice, it can be useful to describe how θ depends on certain
explanatory variables. We illustrate with Table VII, which shows the shoulder tip pain scores
after laparoscopic surgery of Table I, now stratified by gender and age (Lumley [1]).

Let K denote the number of 2 × c tables. This is the product of the number of levels
of all covariates considered. For each k, k = 1, · · · , K, let Yk1 and Yk2 denote the ordinal
responses for the first and second rows of table k. Let yk1 = (nk11, nk12, . . . , nk1c)

′ and
yk2 = (nk21, nk22, . . . , nk2c)

′ denote multinomial counts in those rows, for nk1 =
∑c

j nk1j

trials with cell probabilities πk1 = (πk11, πk12, . . . , πk1c)
′ and nk2 =

∑c
j nk2j trials with cell

probabilities πk2 = (πk21, πk22, . . . , πk2c)
′. For table k, let

θk = P (Yk1 < Yk2) +
1

2
P (Yk1 = Yk2) = π′

k2Aπk1,

and let θ = (θ1, . . . , θK)′. Here, we consider modeling logit(θ) using covariates, where logit(θ)
denotes (logit(θ1), · · · , logit(θK))′.

8.1. Logit Models for θ

Let X be a model matrix for the explanatory variables, and let β denote parameters for their
effects. We consider the model with logit link,

logit(θ) = Xβ. (8)

Our interest here is to obtain ML estimates and confidence intervals for θ and β.
Under the assumption of independent multinomial distributions, the log-likelihood function

except for a constant term is

l(π) =
K

∑

k=1

[y′

k1 log(πk1) + y′

k2 log(πk2)],

where π = (π′

11, π
′

12, · · · , π′

K1, π
′

K2)
′. The cell probabilities cannot be expressed in terms of

the model parameters, which complicates ML estimation. The ML estimates of π are values
that maximize the log-likelihood function under the model constraint (8). One can use Lang’s
algorithm [14] to obtain the ML estimates of π̂ and hence of

θ̂k = π̂′

k2Aπ̂k1, and β̂ = (X ′X)−1X ′ logit(θ̂).

For confidence intervals, here we consider only the score-test-based approach, which was
found to perform well in Sections 6 and 7. To obtain the model-based interval for θk, we need
to find restricted ML estimates of the cell probabilities, say π̃(k), under the model (8) with the
constraint θk − θ0 = 0. This can be done again using Lang’s algorithm. Then the Pearson-type
statistic for testing H0 : θk = θ0 assuming (8) compares the two sets of fitted values using

S2
k(θ0) =

K
∑

i=1

2
∑

j=1

c
∑

r=1

(nij π̂ijr − nij π̃ijr(k))2

nij π̃ijr(k)
,

with df = 1 (Lang [24]). The 100(1−α)% score confidence interval for θk is a set of θ0 satisfying
S2

k(θ0) < χ2
(1−α),1. The score confidence interval for βj results from a similar argument.
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8.2. Modeling θ for Shoulder-Tip Pain

Now we return to Table VII to describe the treatment effect on shoulder tip pain. We use a
main-effects model

logit(θ) = β0 + β1x1 + β2x2,

where x1 = 0 for a female patient, x1 = 1 for a male, x2 = 0 if a patient’s age is between 20
and 70, and x2 = 1 for age above 70. The Pearson statistic for testing the model fit is 0.36
with df = 1. The model seems to fit adequately, but this test provides only a rough indication
because of the data sparseness.

Table VIII shows ML estimates and their 95% score confidence intervals. The confidence
intervals for the effects of gender and age include 0, but are very wide because of the small
sample size (with only six observations at the higher age level). Because of the data sparseness,
the standard errors for ML estimates based on the sample proportions (treating each 2 × 5
table separately) are unreliable, and the estimate and standard error for the females of age 71+
are degenerate. Table VIII also shows score confidence intervals for the effect size measure.
The first two confidence intervals indicate that the active treatment is significantly better than
the control treatment for patients whose ages are between 20 and 70.

9. CONCLUSIONS

The simulation study in Section 6 was limited in scope but suggested that the pseudo score
and score confidence intervals under an unrestricted model perform best among the methods
discussed for independent multinomial samples. The score method also seems to perform well
for fully-ranked data. For matched-pairs data, the logit Wald method seems to perform better
than the score method for small n. Newcombe’s pseudo score-type method for fully-ranked
data performs well for such data, but its coverage probabilities tend to be too high when
it is applied to ordered categorical data. Section 8 discussed how to estimate parameters in
logit models for the measure, using the score method when all covariates are categorical. A
function for R software to find the confidence intervals in the unrestricted case for a 2×c table
is available from E. Ryu.
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Table I. Shoulder tip pain scores after laparoscopic surgery
Pain scores

Treatments 1 2 3 4 5
Active 19 2 1 0 0
Control 7 3 4 3 2

Table II. Confidence intervals for θ in Table I, with and without assuming a cumulative logit model
Assume model Wald Logit Wald LRT Score Pseudo score
No Lower endpoint 0.644 0.621 0.635 0.633 0.628

Upper endpoint 0.900 0.874 0.882 0.875 0.874
Yes Lower endpoint 0.645 0.621 0.632 0.629 0.627

Upper endpoint 0.901 0.876 0.885 0.876 0.876

Table III. Confidence intervals for θ with extreme cases
Counts θ̂ Wald Logit Wald LRT Score Pseudo score
First row: (10, 0, 0, 0, 0) 0.500 Lower endpoint 0.500 0.500 0.412 0.361 0.361
Second row: (20, 0, 0, 0, 0) Upper endpoint 0.500 0.500 0.546 0.581 0.581
First row: (4, 5, 1, 0, 0) 0.975 Lower endpoint 0.926 0.840 0.810 0.718 0.715
Second row: (0, 0, 10, 8, 2) Upper endpoint 1.024 0.997 0.999 0.996 0.996
First row: (4, 6, 0, 0, 0) 1.000 Lower endpoint 1.000 0.000 0.834 0.736 0.734
Second row: (0, 0, 10, 8, 2) Upper endpoint 1.000 1.000 1.000 1.000 1.000

Table IV. Overall performance summaries of coverage probability (CP) from simulation study for
seven methods, averaged over several sample sizes, c = 3 and 6, θ = 0.5 and 0.8, and whether or not

a cumulative logit model holds
Methods Mean of CP Mean of |CP − 0.95| Proportion of (|CP − 0.95| > 0.02)
Halperin et al. 0.943 0.010 0.083
Newcombe’s pseudo score ‡ 0.962 0.013 0.250
Wald 0.922 0.028 0.500
logit Wald 0.943 0.010 0.125
LRT 0.942 0.008 0.125
Score 0.952 0.003 0.000
Pseudo score 0.951 0.003 0.000

Table V. Coverage probabilities of five methods from simulation study for matched-pairs data, with
sample sizes = 50 and c =6

θ = 0.5 θ = 0.65 θ = 0.8 θ = 0.95
ρ = 0.4 ρ = 0.8 ρ = 0.4 ρ = 0.8 ρ = 0.4 ρ = 0.8 ρ = 0.4 ρ = 0.8

Wald 0.942 0.952 0.945 0.951 0.934 0.941 0.922 0.917
logit Wald 0.947 0.954 0.951 0.954 0.945 0.950 0.941 0.945
LRT 0.945 0.953 0.949 0.958 0.947 0.956 0.963 0.970
Score 0.948 0.976 0.954 0.973 0.969 0.975 0.967 0.973
Pseudo score 0.951 0.976 0.956 0.976 0.968 0.977 0.967 0.976
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Table VI. Coverage probabilities of seven methods from simulation study for fully-ranked data, with
sample sizes (10, 10) and (20, 30)

(n1, n2) = (10, 10) (n1, n2) = (20, 30)
θ = 0.5 θ = 0.8 θ = 0.5 θ = 0.8

Halperin et al. 0.946 0.922 0.946 0.945
Newcombe’s pseudo score 0.948 0.952 0.948 0.960
Wald 0.920 0.886 0.938 0.925
logit Wald 0.966 0.973 0.953 0.955
LRT 0.947 0.916 0.946 0.946
Score 0.950 0.945 0.949 0.956
Pseudo score 0.963 0.943 0.952 0.972

Table VII. Shoulder tip pain scores after laparoscopic surgery, stratified by age and gender
Age Gender Treatment 1 2 3 4 5
20-70 Female Active 12 1 0 0 0

Control 3 2 3 0 2
Male Active 5 1 1 0 0

Control 1 0 1 3 0
71+ Female Active 1 0 0 0 0

Control 1 0 0 0 0
Male Active 2 1 0 0 0

Control 1 0 0 0 0

Table VIII. ML estimates of θk and βj parameters, with their 95% score confidence intervals
ML estimates Score intervals

Model-based (s.e.) Sample prop.-based (s.e.) Lower endpoints Upper endpoints
θ x1 = 0, x2 = 0 0.850 (0.068) 0.831 (0.079) 0.685 0.942

x1 = 1, x2 = 0 0.810 (0.104) 0.857 (0.117) 0.522 0.944
x1 = 0, x2 = 1 0.500 (0.011) 0.500 (0.000) 0.372 0.877
x1 = 1, x2 = 1 0.429 (0.171) 0.333 (0.136) 0.349 0.822

β intercept (β0) 1.735 (0.537) - 0.780 2.123
gender (β1) -0.283 (0.696) - -1.938 1.322
age (β2) -1.736 (0.538) - -3.444 0.314

‡Method designed for fully-ranked data but applied here for categorical data
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