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A Correlated Probit Model for Joint Modeling of 
Clustered Binary and Continuous Responses 

Ralitza V. GUEORGUIEVA and Alan AGRESTI 

A difficulty in joint modeling of continuous and discrete response variables is the lack of a natural multivariate distribution. For joint 
modeling of clustered observations on binary and continuous responses, we study a correlated probit model that has an underlying 
normal latent variable for the binary responses. Catalano and Ryan have factored the model into a marginal and a conditional component 
and used generalized estimating equations methodology to estimate the effects. We propose a Monte Carlo expectation-conditional 
maximization algorithm for finding maximum likelihood estimates of the mixed model itself, extending and accelerating an algorithm 
for models with binary responses. We demonstrate the methodology with a developmental toxicity study measuring fetal weight and a 
binary malformation status for several litters of mice. A simulation study suggests that efficiency gains of joint fittings over separate 
fittings of the response variables occur mainly for small datasets with strong correlations between the responses within cluster. 

KEY WORDS: Generalized linear mixed model; Latent variable; Monte Carlo EM algorithm; Random effect; Teratology. 

1. INTRODUCTION 

The modeling of various forms of clustered data, such as 
repeated measurements in a longitudinal study, has received 
much attention in recent years. Most research has concentrated 
on a single response variable, but many studies have measured 
multiple response variables for each subject. In this article 
we consider modeling a clustered multivariate response with 
binary and continuous components. 

Models for multivariate clustered data are necessarily com- 
plex, because they must consider two types of correlations: 
between measurements on different variables for each clus- 
ter and between measurements on different subjects within 
a cluster. A difficulty in constructing parametric models for 
joint modeling of continuous and discrete responses is the lack 
of a natural multivariate distribution. For joint modeling of 
binary and continuous responses, we study a correlated pro- 
bit model that applies with underlying latent normal variables 
for the binary responses. Catalano and Ryan (1992) consid- 
ered such a model and used generalized estimating equations 
(GEE) methodology to estimate the effects. Here we propose 
a Monte Carlo EM algorithm for finding maximum likelihood 
(ML) estimates for the subject-specific model. We extend an 
algorithm introduced by Chan and Kuk (1997) for models with 
binary responses to binary and normal variables with corre- 
lated errors. Because the algorithm is slow, we also provide 
an acceleration of it. 

We illustrate the methods with a dataset from a develop- 
mental toxicity study of ethylene glycol in mice conducted 
through the National Toxicology Program (Price, Kimmel, Tyl, 
and Marr 1985). The experiment assigned pregnant mice ran- 
domly to four groups, one group serving as a control and the 
other three groups exposed to different levels of ethylene gly- 
col during major organogenesis. Following sacrifice, measure- 
ments were taken on each fetus in the uterus. The two outcome 
measures on each live fetus were fetal weight (continuous) 
and whether the fetus was malformed (binary). Table 1 gives 
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descriptive statistics for the data. Mean fetal weight decreases 
monotonically with increasing dose, whereas the malforma- 
tion rate increases with dose. The goal of the analysis was to 
study the joint effects of ethylene glycol dose on fetal weight 
and on the probability of malformation. 

Other authors who have studied joint modeling of discrete 
and continuous responses include Catalano and Ryan (1992), 
Fitzmaurice and Laird (1995), Regan and Catalano (1999), and 
Rochon (1996). But the focus of their work was on marginal 
modeling, rather than on the joint, subject-specific effects on 
the models in this article. Dunson (2000) considered Bayesian 
latent variable models. Catalano and Ryan (1992) used the 
correlated probit model for this developmental toxicity study, 
but factored the joint distribution into the marginal distribution 
of the continuous response (fetal weight) and the conditional 
distribution of the binary response (malformation) given the 
continuous response. Then they used GEE to fit consecutively 
the marginal and conditional models. Because of the repa- 
rameterization, some parameters in the original model were 
not estimable. Fitzmaurice and Laird (1995) also considered a 
two-stage model but reversed the conditioning order, specify- 
ing a marginal logit model for malformation and a conditional 
model for fetal weight given malformation. 

Regan and Catalano (1999) considered joint estimation of 
all marginal and correlation parameters through ML. But their 
approach works only for an exchangeable correlation structure 
between the continuous and the latent continuous responses, 
an assumption that may be restrictive in this example. The 
correlated probit model that we consider does not make this 
assumption and allows simultaneous estimation of all param- 
eters, but at the cost of greater computational complexity. 

Section 2 defines the correlated probit model. Section 3 
develops Monte Carlo EM algorithms for ML estimation, and 
Section 4 applies them to the developmental toxicity study. 
Section 5 discusses a simulation study to assess efficiency 
gains of joint over separate fitting of the response variables. 
Section 6 describes extensions to joint modeling of continu- 
ous, truncated continuous, binary, and ordinal data. 
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Table 1. Descriptive Statistics for the Developmental Toxicity Example 

Dose Fetal weight (g) Malformation 
(g/kg) Dams Live Fetuses Mean SD Number Percent 

0 25 297 .97 .10 1 .3 
.75 24 276 .88 .10 26 9.4 

1.50 22 229 .76 .11 89 38.9 
3.00 23 226 .70 .12 126 57.1 

2. CORRELATED PROBIT MODEL DEFINITION 
We now formulate the correlated probit model for a single 

binary response and a single continuous response. Section 6 
discusses extensions to more than two responses. 

Let {IA denote the continuous response at the jth obser- 
vation for the ith subject or cluster, i = 1, . .. n, j = 1, ni. 
We assume that the binary response results from dichotomiz- 
ing a latent normal response. Let {yj } denote the latent 
measurement, such that the observed binary response at the 
jth observation for the ith subject or cluster is the indica- 
tor Yi2j = I{Y*j > O}. The underlying linear mixed model is 
defined as 

Yilj= XI 13j?l +ZT jbil + Eilj, 

Y2i =ix2j2 + /2jbi2 ?Ei2j (1) 

where Xilj, Xi2j, Zil, and zi2j are known p, x 1, P2 x 1, q1 x 
1, and q2 x 1 (column) vectors and ,B and 12 are unknown 
Pi x 1 and P2 x 1 parameter vectors. The random effects and 
the random errors are assumed to be normally distributed, 

bi= bil)-iidN(O, Y) = N 0 II 112 ) (2) 

and 

Ej=j('1'J )11 iid N(O, e) N([jo] I(el2 12 (3) 
\Ei2j!\LUJL0eI2 Oe2 J 

This model for the complete data {yilj} and {yl*} translates 
into the following model for the observed data {yi1j and 
{Yi2j} Conditional on {bi1} and {bi2}, 

j -x 1 ? z/ljbil and P1 (/ i2) = ?2j 

where Aiij and /i2j are the conditional means for the two 
observed variables and (? denotes a normal cumulative distri- 
bution function. 

Several special cases exist. For the binary outcome alone, 
the model is a multivariate probit model (Lessafre and 
Molenberghs 1991) with equicorrelated structure. For the con- 
tinuous outcome alone, the model is a general linear model 
with equicorrelated structure. If 0_el2 = 0, then the model is 
a bivariate generalized linear mixed model (GLMM), with a 
probit link for the Bernoulli response and an identity link for 
the normal response (Gueorguieva 1999). If 0_el2 = 0 and the 
random effects structure consists only of intercepts for each 
variable, then the model is a special case of the Regan and 
Catalano (1999) model but with no modeling of the covari- 
ance parameters. If (7e12 = 0 and (712 = 0, then the model is 
equivalent to specifying separate GLMMs for the two response 
variables. 

3. MAXIMUM LIKELIHOOD MODEL FITTING 

We use modifications of the EM algorithm to obtain 
ML estimates for the correlated probit model. We first 
extend an approach of Chan and Kuk (1997) using a 
Monte Carlo expectation-conditional maximization (ECM) 
algorithm. We then formulate a stochastic approximation 
approach to increase the speed. Finally, we discuss standard 
error approximation. 

3.1 Monte Carlo Expectation-Conditional 
Maximization Algorithm 

The complete dataset consists of b and {y3 } = 1(yi, 
y*2j)T}, i = 1, . . ., n, j = . ni. Let xi i2j i_ 

(Zi ? ), and f3= (a0). Then the complete data log-likelihood 
is 
1S~~~~ 

log L =-2 E Ejlog l eI - E (Y, Xxi4I3-zi bi) 
2 i=l j=l i=l j=l 

X I1(y* -xiJ3-z4b)- E log 1I b1 

- Lb Tl- bi. 2 i 

The complete data ML estimates result from closed-form 
expressions. Let 

, = -LEbibiT. (4) n = 

For a fixed le' let 

xi X,e j l xij T 
eX1-1 .-zi_b ) ,(5) 

and for a fixed ,3, let 

1~ ~ x )I zl Xe =N ' - _(Y, _-s}-ijbi) 
i=l j=l 

x (yb*-xij38-z4 -b )T. (6) 

Meng and Rubin (1993) showed that iterating between the last 
two equations in the EM algorithm provides convergence to 
the true ML estimates. At each step, the new estimate of le 
uses the previous value of IB, and then the new value of le is 

used to update ,8. 
In the E step of the Monte Carlo ECM algorithm, (4), (5), 

and (6) are replaced by conditional versions depending only 
on the mean and covariance matrices of the conditional dis- 
tributions of the latent continuous responses {yl*2 Iyl ,Yi2 

+j(r) }. The Appendix gives the derivation, which is tedious, 
and describes the Gibbs sampler used to simulate values from 
the truncated multivariate normal distributions. 
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The steps of the Monte Carlo ECM algorithm are then as 
follows: 

1. Select an initial estimate 1(O) of the parameter vector. 
Set r = 1. 

2. Increase r by 1. E step: For each subject i, i = 1, n, 
generate m* random samples from the conditional dis- 
tribution of {y,_ -yi1, Yi2_; 4j(/-1) } and compute approxi- 
mations to the mean and the covariance matrix [see (A.5) 
in the Appendix]. 

3. M step: Update the estimate of the parameter vector 
using the conditional versions of (4), (6), and (5); (A.2), 
(A.3), and (A.4). 

4. Iterate between steps 2 and 3 until convergence is 
achieved. 

Now ore22 is estimable from the complete data, but not from 
the observed data. With the usual approach of setting e22- 
1, the maximization step becomes more complicated because 
there is no closed-form expression for le On the other hand, 
with o22 unrestricted, the ECM algorithm converges to unique 
estimates of the fully identifiable ratios f/31e2, 112/7e2, and 
122/0e2. The resulting ECM algorithm is also a parameter 
expanded (PX-EM) algorithm (Liu, Rubin, and Wu 1999). 

Both the ECM and the PX-EM are extensions of the orig- 
inal EM algorithm. The ECM algorithm usually takes more 
iterations to converge than the EM algorithm but can be faster 
computationally because it simplifies the maximization step. 
The PX-EM also aims to reduce the total computing time by 
simplifying the maximization step and/or reducing the num- 
ber of iterations. For the correlated probit model, the E step 
is computationally intensive. Adding numerical maximization 
for the M step, the algorithm is extremely slow. Even using 
both ECM and PX-EM to speed the algorithm, this approach 
was still slow. Thus we also developed an alternative fit- 
ting procedure by adapting an accelerated Monte Carlo EM 
algorithm proposed by Liao (1999) and by Delyon, Lavielle, 
and Moulines (1999). The latter article called the algorithm 
stochastic approximation EM (SAEM), because it replaced 
each expectation step of the EM algorithm by one iteration of 
a stochastic approximation procedure. 

3.2 Stochastic Approximation Expectation-Conditional 
Maximization Algorithm 

The convergence results hold for a complete data log- 
likelihood of the form 

log L. (4f) = [a(4fr)]Tz(u) - b(y, f), 

where z(u) is a vector function of the complete data u. Liao 
(1999) and Delyon et al. (1999) proposed replacing the usual 
Monte Carlo EM E step by calculating 

z = (1 w,)z +Wr[m, kz1 ) 

where z(u(k)), k - 1,... ., m, are generated values from {u'y, 

+,(r-1)} and {Wrl are chosen weights that satisfy E w,. =+o 
and E w2 < +oo. The E step is followed by the usual M step 
after an initial "stabilization period" of length r0 for z,. We 

apply this algorithm to the correlated probit model as follows: 

1. Select an initial estimate +(O) of the parameter vec- 
tor. Generate ro samples from the distribution of 
{Yi*2_ Yil, Yi2j; a I} and compute the approximations 

Z('?) = Y* (k) and k= * (k)T 
k-i 

11 
an-2i 

i 
rO k=I rO k=I 

Set r = ro. 
2. Increase r by 1. E step: For i = 1, . . . n, generate a ran- 

dom sample y* (') from the distribution of (Y*2 IYi, Yi2; 
'(r-1)) using multivariate rejection sampling (or the 

Gibbs sampler with starting values y,2(,-l)) and com- 
pute the approximations 

z(') - (1 - Wr)Z(?-y) + wy2() and 

Z2 = (1 - w.)z2 +wY2 ()Yi ()T (7) 

to E(yi*2 lYil, Yi2; j(r-1)) and E(y2 Y,*2 i Yi2; q(r-) 

(Here m, is chosen as 1, because the E step is much 
more computationally intensive than the M step.) 

3. M step: Update the estimate of the parameter vector 
j(r) by substituting z(-I) and Z2-1l) in (A.2), (A.3), and 

(A.4). 
4. Iterate between steps 2 and 3 until convergence is 

achieved. 

There are two versions of this algorithm, according to 
whether one uses multivariate rejection sampling or the Gibbs 
sampler in the E step. Compared to the Monte Carlo ECM 
algorithm, the stochastic approximation ECM algorithm is 
much faster because of the closed-form expressions for the 
complete-data ML estimates. It also has the advantage of eas- 
ily approximating the standard errors within the algorithm 
using the same type of shrinkage estimators as for the param- 
eters. No simulated values are wasted in the process. 

3.3 Standard Error Approximation 

Based on work of Louis (1982), the observed data informa- 
tion matrix has representation 

_021(y, qf) 
T 

02 log L, (b, y*, )) a log L,o (b, y* 1) =E T + 

{ log Ll n (b,y* n log L a (b,y yt1 

XE 0log L,(b, y*,%~ .GA T 

By simulating values from the conditional distribution of 

of the algorithm: 

G(r) - (1 -w,.)G(' -I) ? w,.N,. 
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where 

02 log L, (b('"), y* ('), ,) 0 log L, (b(r), y* (t), qi) 
N = 

a log L (b(), y*(r) f) 
X T 

and 

= ( 1-w) log L? ( , y*(r), q) 

Because 

f (y*, bly) = f (y* Iy)f (bly, y*) = f (y* ly)f (bly*), 

one can first simulate y2 as outlined for the parameter estima- 
tion, and then simulate b from (bly*) using the multivariate 
normal. 

4. APPLICATION TO THE DEVELOPMENTAL 
TOXICITY STUDY 

For the developmental toxicity example, for the jth live 
fetus in litter i, let yilj= fetal weight, y*j = latent mal- 
formation, Yi2j = I{y*j > 0} = observed malformation status, 
and xi = ethylene glycol dosage level. The correlated probit 
model is 

Yilj = 31o + xi431 + bil + Eilj, 

Yi2j = 120 X32l +i2 + 6 i2j, 

where 

bi= (bil) iidN(O,), and Eij= (Eiij) iidN(O, 1e) 

We also considered a quadratic term for dose in the linear 
predictor for fetal weight. It was not significant and is not 
included in the models discussed here. 

The identifiable parameters in this specification are , 
311, P20 = 1320/0e29 321 = fi21/0e29 Obl = 01 Ob2 = 02/1e29 

Pb = u12/(uf1u2), oeI' and Pe = ?e12/(0e2 eI). Table 2 contains 
the approximate ML estimates obtained using the adaptation 
of Chan and Kuk's algorithm (after 500 iterations) and Liao's 
algorithm with Gibbs sampling (after 10,000 iterations). Mul- 
tivariate rejection sampling was also considered, but it was 

very inefficient and thus results are not shown here. All esti- 
mates were the same up to two significant digits after the dec- 
imal point. 

Figure 1 compares the convergence of the parameter esti- 
mates from the two methods, measured in actual minutes, 
using the same Sun Ultra Enterprise 450 workgroup server for 
24 hours. This corresponded to 353 iterations of the Chan and 
Kuk algorithm and to 68,160 iterations for the Liao algorithm 
using the Gibbs sampler. (Even after 24 hours, some estimates 
in the algorithm using multivariate rejection sampling had not 
yet converged.) The Liao algorithm using the Gibbs sampler is 
much faster than the Chan and Kuk algorithm. A closer look 
at Liao's Gibbs sampler shows that the estimates appeared to 
have converged (or nearly converged) after only about 2,000 
iterations and in less than an hour. The Chan and Kuk algo- 
rithm took about 8 hours. Both algorithms had convergence 
problems when initial estimates were far from the true values. 

General results for Robbins and Monroe types of stochas- 
tic approximations suggest that the best rate of convergence 
will occur for weights with 0(1-1) (Ruppert 1991). To inves- 
tigate this in the SAECM algorithm, we fitted the model using 
three different weighting schemes satisfying the conditions in 
3.2: w, = 2+lc for c = 1, .75, .6. All three schemes converged, 
but smaller c showed higher fluctuations in the parameter esti- 
mates, especially in early iterations. Figure 2 illustrates the 
behavior of the slope estimate for malformation at three stages 
of the algorithm (beginning, sometime in the middle, and 
toward the end). Of the three weighting schemes considered, 
the one with c = 1 converged the fastest and showed the least 
fluctuation. The results with weighting schemes of the form 
Wl = j/j + 1, j = 2, 5, 10 were very similar. Such weights have 
the same asymptotic speed of convergence, but bigger j's may 
be more appropriate if the initial values are far away from the 
ML estimates. Such weighting schemes may also have a sub- 
stantial effect in small samples (Ruppert 1991). 

We incorporated standard error computations into Liao's 
Gibbs sampler algorithm. Table 3 shows the results (under 
"full model") after 10,000 iterations. The standard error esti- 
mates converged more slowly than the parameter estimates. 
Figure 3 illustrates a typical situation, showing the intercept 
parameter for malformation and its standard error. 

When Pe = 0, the correlated probit model implies the 
exchangeable correlation structure between the continuous and 
the latent continuous responses used by Regan and Catalano 
(1999). The correlation between fetal weight and latent mal- 

Table 2. Approximate ML Estimates of Parameters in the Correlated Probit Model for the 
Developmental Toxicity Example Using the Chan and Kuk Method and Liao Method 

Based on the Gibbs Sampler 

Parameter Description Chan and Kuk Liao 

010 Fetal weight intercept .952 .952 
oil Dosage slope on fetal weight -.087 -.087 
/20 Malformation intercept -2.398 -2.396 
/21 Dosage slope on malformation .970 .969 
Ob1 Standard deviation for fetal weight random effect .086 .086 
Ob2 Standard deviation for malformation random effect .842 .837 
Pb Correlation between random effects -.641 -.642 
O'el Error standard deviation for fetal weight .075 .075 

Pe Error correlation -.214 -.210 
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formation within a fetus is assumed to be the same as the 
corTelation between fetal weight and latent malformation mea- 
sured on two different fetuses within a litter. When Pe = 0 and 
Pb = 0, this corresponds to specifying two separate GLMMs 
for the two response variables. When this reduced model 
holds, one can analyze the two responses by fitting the com- 
ponent models separately. Table 3 also contains the ML esti- 
mates and standard errors for these two reduced models, using 
Liao's Gibbs sampler. Table 3 shows a weak, but signif- 
icant intrafetus corTelation between malformation and fetal 
weight (^e/SE(Pe) = -.211/.055 = -3.8), suggesting that the 
exchangeable correlation structure is not appropriate. Table 3 
also shows a moderately strong negative correlation between 
the random effects, so even if Pe = 0, there could be some 

advantage to fitting the models jointly. However, Table 3 
shows that for the three models, the regression parameter esti- 
mates and standard errors are very similar. This is somewhat 
surprising, because one expects efficiency gains from joint fit- 
ting of the responses using a more realistic correlation struc- 
ture. The next section studies this issue. 

5. SIMULATION STUDY OF POTENTIAL 
EFFICIENCY GAINS 

We performed a simulation study to investigate efficiency 
gains in fitting the full correlated probit model (denoted by 
FM) instead of fitting reduced model 1 (i.e., Pe = 0, denoted 
by RM1) or reduced model 2 of separate univariate GLMMs 
for the individual response variables (i.e., Pe = Pb = 0, denoted 
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Figure 2. Convergence of the Slope Estimate for Malformation at Early (a), Middle (b), and Late (c) Stages of the Fitting Process Using Different 
Weights ( 1.....3/4,-- --3/5). 

by RM2). We used the same data structure as in the develop- 
mental toxicity example. The parameter values, except for Pe, 
were set equal to the ML estimates from Liao's Gibbs sampler. 
We used four settings, corresponding to the combinations of 
size of dataset (large, small) and strength of intrafetus corre- 
lation (strong, weak). The large dataset had the same numbers 
of clusters and observations as in the example (94 clusters and 
an average of 11 observations per cluster), whereas the small 
dataset had 24 clusters with 6 observations per cluster. The 
correlation settings were Pe = -.80 and Pe = -.20. A total of 

50 samples were generated at each of the four settings, and 
all three models were fitted using Liao's Gibbs sampler. (The 
restriction to 50 samples reflected the nearly 1 month of com- 
puting time needed to run the cases of 94 clusters.) 

Tables 4 and 5 show results for two of the four scenarios: 
the large dataset with weak correlation and the small dataset 
with strong correlation. The tables report the average param- 
eter estimates and their average standard errors and standard 
deviations. Empirical standard errors were also computed for 
the standard error estimates, to assess whether efficiency gains 
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Table 3. ML Estimates and Standard Errors (Obtained Using Liao's Gibbs Sampler) With Linear Dose 
Effects for Both Variables 

Full model Reduced model 1 Reduced model 2 

Parameter Estimate SE Estimate SE Estimate SE 

010 .952 .014 .952 .014 0.952 0.014 
oil -.087 .008 -.087 .008 -.087 .008 
I20 -2.396 .216 -2.401 .216 -2.416 .217 
821 .971 .110 .972 .110 0.988 0.112 
(Jb 1 .086 .007 .086 .007 0.086 0.007 
(b2 .837 .106 .839 .107 .873 .113 
Pb -.640 .091 -.664 .091 
O'el .075 .002 .075 .002 .075 .002 
Pe -.211 .055 

were important. By comparing the average of the standard 
error estimates and the standard deviations for the parameter 
estimates, Monte Carlo error can be judged. However, differ- 
ences between the two may also reflect inadequacy of asymp- 
totic standard error estimates for the sample sizes used. 

When the sample size is large and Pe is weak, the aver- 
age standard errors for all parameter estimates were similar 
for all three models. Hardly any efficiency gain resulted from 
fitting the responses jointly. Similarly, hardly any efficiency 
gain occurred with the (large n, strong correlation) and (small 
n, weak correlation) cases not shown here. For small sample 
size and strong intrafetus correlation (Pe= -.804), the effi- 
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Figure 3. Convergence of the Intercept Estimate for Malformation 
(a) and Its Estimated Standard Error (b), Using the Gibbs Sampler. 

ciency gains were more pronounced; for instance, the average 
standard error estimate for 1321 increased from .175 to .255 
between FM and RM2. The difference was real, as suggested 
by the empirical standard errors associated with the average 
standard error estimates (.010 and .012). 

It was not surprising that noticeable efficiency gains 
occurred for small datasets with strong correlations between 
the responses within cluster and that they were the greatest for 
parameters for the binary response. For small studies, there 
may not be enough information in the binary response by itself 
to estimate its effects precisely; when a continuous response 
is strongly correlated with the binary outcome, one may gain 
efficiency by using the information in the continuous response 
to help estimate parameters for the binary response. We also 
performed an additional simulation study of two binary out- 
comes with small sample sizes and large correlations. There 
also we observed some efficiency gains with the multivariate 
analysis. 

Although the notion that main efficiency gains occur with 
large intrafetus correlation is intuitively appealing, it seems 
curious that they could diminish with large n. To investi- 
gate further, for paired binary and continuous responses we 
considered a simple model for which it is possible to com- 
pute the asymptotic relative efficiency (ARE) of the ML esti- 
mator of the binary parameter from the joint model with 
respect to its ML estimator for the binary marginal model. The 
model, which contains only intercepts and no random effects, 
is defined as 

fF1 ~~~2 
*" iid N /1? 

1 
"1 

(Y,2) (Ly2J' [PU, 1 ])' (8) 

where yi, and Yi2 = I(Y*2 > 0) are the observed responses. 
The asymptotic variance of the marginal ML estimator of 
k2 is VM = 'F(/2) (1 - F>jt2))/42 02), where 4(.) denotes 
standard normal density function. The asymptotic variance of 
the joint ML estimator of /u2 has no closed-form expression, 
equaling 

Vl2) 1 + (P/-t2Eo+E1)2 + p2 (1+ (P,2)2)\ VJ=(1 I2)LE ?(EOE-E 2) ? 1 p2K?2j 

This content downloaded from 128.227.138.242 on Sat, 01 Aug 2015 17:29:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Gueorguieva and Agresti: Joint Modeling of Clustered Binary and Continuous Responses 1109 

Table 4. Results From the Simulation Study: Average Estimates, Standard Deviations (SD), and Average Estimated Standard 
Errors (SE) for Large Sample and Weak Correlation 

Full model Reduced model 1 Reduced model2 

True Average Average Average Average Average Average 
Parameter value estimates SD SE estimates SD SE estimates SD SE 

010 .952 .955 .014 .014 .955 .014 .014 .955 .014 .014 
oil -.087 -.089 .008 .008 -.089 .008 .008 -.089 .008 .008 
I20 -2.369 -2.471 .211 .197 -2.462 .209 .194 -2.466 .216 .202 
I21 .966 1.016 .108 .115 1.012 .106 .114 1.014 .109 .119 
(Jb1 .086 .086 .007 .007 .086 .007 .007 .086 .007 .007 
(b2 .822 .804 .114 .102 .799 .114 .100 .796 .116 .102 
Pb -.608 -.620 .098 .098 -.642 .098 .097 
O'e 1 .075 .075 .002 .002 .075 .002 .002 .075 .002 .002 

Pe -.201 -.195 .059 .059 

where 

0/2 (/ut* ) 0/2 (ut,* ) ( AX, -M I, E =E ,4E =E4 

B= 42 ((t1*) (Y,-ML, )2 

E =E Il 2 O?y)l- ?y) 

and 

V/i -p2 
Then ARE= VM/VJ, which is identically equal to 1 when 
p = 0. For p 7& 0, the ARE depends on p and /2 such that 
the formulas are the same for (p, p2), (P, -/L), (-PI ILD, and 
(-P -/2) 

We considered values of p between 0 and .9 in increments 
of .1 and values of /2 between 0 and 3 in increments of .2 
(with 0 corresponding to a marginal probability of .5 and 3 
corresponding to a marginal probability of .999). Without loss 
of generality, we set /u I = 0 and a, = 1. The expectations in 
VJ were closely approximated with Monte Carlo means using 
simulation sample sizes of 1 million. Results were double- 
checked for selected settings with a simulation sample size of 
10 million. Table 6 shows results for p = .5, .6, .7, .8, and 
.9 for selected values of /2. For smaller p in absolute value, 
the ARE were uniformly 1.00 to two decimal places. This 

is intriguing, suggesting that when n is sufficiently large, no 
advantage results from using joint fitting over separate fitting 
when p is at best moderate. For large p, the gains were also 
minimal, except when P(yi2 = 1) was close to 0 or 1; this 
implies a sample in which the binary data are highly unbal- 
anced, with relatively few observations in one category. These 
results corroborate the findings from our larger simulation 
study that in larger samples, the efficiency gains are not sub- 
stantial for moderately large p and not very unbalanced data. 

We are unaware of other simulation studies addressing effi- 
ciency gains for multivariate mixed outcomes, but a number 
of authors have reported results from both multivariate and 
univariate analyses of different examples. Our finding that 
there are no efficiency gains in large samples is consistent 
with observations of Lesaffre and Molenberghs (1991) and 
Fitzmaurice and Laird (1997), who considered probit anal- 
ysis of bivariate binary outcomes and marginal models for 
mixed discrete and continuous outcomes. Fitzmaurice and 
Laird (1997) showed that in a simple paired data model, 
efficiency gains could be observed when different covariates 
are included in the linear predictors for the two responses. 
With two continuous variables, Matsuyama and Ohashi (1997) 
reported small efficiency gains, whereas Heitjan and Sharma 
(1997) indicated that ignoring the colfelation in a repeated 
series context may lead to underestimation of standard errors. 
When missing data are present, the multivariate analysis could 

Table 5. Results From the Simulation Study: Average Estimates, Standard Deviations (SD), and 
Average Estimated Standard Errors (SE) for Small Sample and Strong Correlation 

Full model Reduced model 1 Reduced model 2 

True Average Average Average Average Average Average 
Parameter value estimate SD SE estimate SD SE estimate SD SE 

,(31 0 .952 .950 .025 .026 .950 .028 .026 .950 .028 .026 
oil -.087 -.086 .015 .016 -.086 .016 .016 -.086 .016 .016 
I20 -2.369 -2.316 .323 .442 -2.377 .455 .482 -2.401 .533 .561 
I21 .966 .950 .175 .213 .975 .229 .229 .987 .255 .256 
(Tb1 .086 .082 .014 .015 .082 .013 .015 .082 .014 .015 
(Tb2 .822 .721 .197 .216 .761 .197 .223 .766 .293 .272 
Pb -.608 -.637 .185 .235 -.788 .130 .219 
(Tel .075 .076 .005 .004 .076 .005 .004 .076 .005 .004 
Pe -.804 -.767 .058 .061 
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Table 6. ARE at Different Values of the Correlation Coefficient p in the 
Simple Intercept Model 

A2 

p 0 .40 .80 1.20 1.60 2.00 2.40 2.80 3.00 

0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 
0.60 1.01 1.01 1.00 1.00 1.01 1.01 1.02 1.02 1.02 
0.70 1.02 1.02 1.01 1.01 1.02 1.03 1.04 1.04 1.04 
0.80 1.04 1.04 1.02 1.02 1.04 1.07 1.10 1.11 1.11 
0.90 1.10 1.09 1.07 1.07 1.11 1.19 1.27 1.31 1.32 

lead to even higher efficiency gains (Fitzmaurice and Laird 
1997), but if the missing mechanism is not random, the stan- 
dard error estimates from the univariate analysis might be 
underestimated (Matsuyama and Ohashi 1997). 

We have considered only a few cases thus far, and so our 
recommendations are tentative. However, it seems that unless 
strong intracluster correlations exist between the responses and 
either the sample is small or the binary data are highly unbal- 
anced, it may not be worth the extra effort to fit the responses 
jointly. Joint fitting may still be necessary to answer multi- 
variate questions, but the efficiency gains may not be great. 

6. EXTENSIONS AND DISCUSSION 

The correlated probit model generalizes to incorporate any 
number and combination of binary and continuous response 
variables. In fact, it also extends to accommodate continuous 
censored data and ordinal variables for which cutoff points for 
an underlying continuous random variable are known. 

To demonstrate these extensions, we consider the under- 
lying linear mixed model defined in Section 2 in (1)-(3) 
and denote the first variable by y>,i rather than by 

We may observe either (y* j, y*7j)T, or (I{y*j > 
0}, I{y,*j > 0}), or (I f y* j > -rll, I{y7 > > 

T1p pi 1, I{Yi2j > r21}, I{Y2' * I>Y*j > r2,}), where 
j I * . .*.9 TI, PIv 9 21 9 . . . 9T2, P2 are known; or 

y= J1 if Y > 
ij Y 7!1 if Y*j < Y 

and 
yc = Y*y if Yi*2j > )Y2 

f y'.>2 if Y > Yy2 ify .< Y2 

where yi, 72', I,' and Yy2 are known; or any combination of 
these. For all of such cases, the complete-data ML estimate is 
the ML estimate for f31, f2, -b' and Ye from the mixed model 
in Section 3. Therefore, the M step in the ECM algorithm 
is the same. Each E step requires expressions or approxima- 
tions of E(y* Iyi, q,(r)) and E(y yjIyr, j(r)), where yi is the 
observed response vector for subject i. If yi = y*, then we 
do not need to generate values for this response and simply use 
E(y71_ jY, i() -' y) =_ and E(y,l_yiTj {Y(r)') - y_l _i , and 
similarly for the other response. Otherwise, we do need to 
generate values. 

The ordinal case is handled similarly to the binary case, 
except that generated values for the truncated multivariate nor- 
mal distribution must fall in the region specified by the ordi- 
nary response. In the censored-data case, the response is kept 
unchanged if it corresponds to an uncensored observation; that 
is, E(y,* jlYi, -) y and E(y;,yI *j , f(r)) = y if 
Y7 # Yvi 7 l.But if y l= , then values are generated from 
the truncated normal distribution of (Y)*)Y, *_) = YvI as 
in the binary case. (The truncation in this particular example 
is from above at yl.) Then E(oyA y (, = i2 L1; Y,l and 
the variance is handled similarly. 

Another possible extension of the correlated probit model 
incorporates more general correlation structures at both the 
random effects and the random error levels. One possibility is 
an autoregressive structure, which allows modeling of various 
longitudinal datasets. 

A drawback of using the Gibbs sampler instead of multivari- 
ate rejection sampling is the lack of assurance about conver- 
gence of the algorithm. Chan and Kuk (1997) proposed using 
several runs, but this is usually too slow for problems such as 
the cuiTent one. A key to solving this problem is the choice of 
weights to yield faster convergence of the Monte Carlo ECM 
algorithm. We noticed that the algorithms had convergence 
problems when the initial estimates were far fromn the ML esti- 
mates, and this can probably be remedied if the weights are 
wisely chosen. Generally, computational issues remain a con- 
cern if the correlated probit model is to be used for datasets 
more complex than the example given in this article. 

There are other possible approaches to speed up the Monte 
Carlo ECM algorithm; for example, the working parameter 
approach of Meng and van Dyk (1998). But we doubt that the 
latter would outperform the SAECM approach. Although it 
seems to improve on the EM and ECM approaches by reduc- 
ing the number of iterations to convergence, it does not sim- 
plify the E step, the most computationally intensive part of 
our algorithm. 

The problem of checking the assumptions for the corre- 
lated probit model is also important. The effects of incorrectly 
specifying the random-effects distribution are of special inter- 
est, because the problem of joint versus separate fitting of 
the response variables can be addressed from that perspec- 
tive. Neuhaus, Hauck, and Kalbfleisch (1992) investigated the 
effects of misspecified random-effects distribution in mixed- 
effects logistic models and found that the bias in the regression 
parameter estimates is usually small. It will not be surprising 
if this is the case for the correlated probit model, but the issue 
remains to be studied. 

APPENDIX: MONTE CARLO ECM ALGORITHM 
For the E step of the Monte Carlo ECM algorithm, we let 

This content downloaded from 128.227.138.242 on Sat, 01 Aug 2015 17:29:30 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Gueorguieva and Agresti: Joint Modeling of Clustered Binary and Continuous Responses 1111 

From the model definition, the joint distribution of the complete data 
is 

bi N 0 IzT I ~~~~(A.l) 
iS~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

The conditional distribution of bi given the complete response y7 
is 

N[EBi (Yi - X3, - BiZi where lE I,,, (0 1e and IB 
.ZT[(Z;iyT + XE)I Therefore, 

?1 - 

( NBi Zii + XB Vi B )) (A.2) 

where V(r) - E[(y' -YXl,('))(yi*-Xfr)T I;0)] 

1 -y-xi_j,())b j IY; j r)) 

NE E E((y- 

- + EL (zejb; (KB -x;fr')) IY 
.. 

() 

+y L E,E (zi jb1biTz1jY11 i'&)) '(A.3) 
i=1 j=1 

and 

j8(r1) - (,x~ (j(r?+1)< xi) (EX (j;?) 

x (E (y;i*x) - Y; Z; XB 

x (E (Yil IY /1)-X;(?) (A.4) 

Because 

E{yb [E(b Y y} 

E[y1 (y; - Xf )TT IY] 

all conditional expectations depend only on E(Y;8Y1, +(r)) and 
var (y FjIY;, +( ) ) . Note that E (v~1y;* j Y+r() ) = ; for j =1, ...nj 
and so we only need to approximate E(Yiy2 I;(r)) and 
var (Y? '2liYii( 

Because 

f(Y,y b Y') V f Y c Jy A 

'(Yi'2~~~~ -Y) c;'- - ) B Y 

O otherwise, 

where c; = P(yl*2- c A;) and A; = {y,82 : Y,*2j > 0 if Yi2j = 1 & Yb,82 <0? 
if )'i2j = ?} 

E(Yi, |Yi-,, Yi,2_ I )i) =-E[y,_j{y,_ E Aj}lyj1, ,(r)] 

Monte Carlo approximationis of E(y._ ljyi, yj^_ a')) and var(y7' 
Yi I-, yij2 ()) are 

17* Ly%~ ' and 

Y LY i Ti T (A.5) 

where y;2b are simulated values from the distribution of 

To simulate values from the distribution of {Jy* j/r)} that fall 
inA;{y : <AO if y> O}, multivariate 
rejection sampling is not feasible. A more practical alternative uses 
Gibbs sampling, as proposed by Chan and Kuk (1997). Let Yi2 
denote y;' with v7,'. omitted. To obtain the (r + 1)st sample from the 
distribution of {y . I j; j j,*(r)}, one iteratively generates values 
from 

f ( I l YI 3 ' Y (i?) () ( ( 

f (Re2 I Ye I brai 2000. Revise Novb 23000. 

6 ( i*211S Y;, 1 9 i2ni i2nli ' ) 

[Received Febritar), 2000. Revised NoveM7ber 2000.] 
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