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Abstract: For count responses, the situation of excess zeros (relative to what standard models allow) often
occurs in biomedical and sociological applications. Modeling repeated measures of zero-inflated count data
presents special challenges. This is because in addition to the problem of extra zeros, the correlation
between measurements upon the same subject at different occasions needs to be taken into account. This
article discusses random effect models for repeated measurements on this type of response variable.
A useful model is the hurdle model with random effects, which separately handles the zero observations
and the positive counts. In maximum likelihood model fitting, we consider both a normal distribution and
a nonparametric approach for the random effects. A special case of the hurdle model can be used to test for
zero inflation. Random effects can also be introduced in a zero-inflated Poisson or negative binomial
model, but such a model may encounter fitting problems if there is zero deflation at any settings of the
explanatory variables. A simple alternative approach adapts the cumulative logit model with random
effects, which has a single set of parameters for describing effects. We illustrate the proposed methods with
examples.
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1 Introduction

We consider models for count responses with excess zeros relative to what standard
distributional assumptions, such as the Poisson, can predict. In the literature, ‘zero-
inflated count data’ refers to data for which a generalized linear model has lack of fit
due to disproportionately many zeros. Such data are common in many applications,
especially when many subjects have zero observations, yet many also have much larger
observations so that the overall mean need not be near zero. An example of a variable
that one might expect to be zero inflated is the number of times a subject used medical
services in the previous year: some subjects may have a zero observation because of
chance, whereas others may have a zero observation because of a ‘doctor avoidance’
phobla.
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There is considerable literature on modeling cross-sectional zero-inflated count
data, using the hurdle model (Arulampalam and Booth, 1997; Mullahy, 1986) and
the zero-inflated count model (Lambert, 1992; Shankar et al., 1997). The hurdle model
is a two-part model for count data. One part is a binary model for whether the response
outcome is zero or positive. If the outcome is positive, the ‘hurdle is crossed’.
Conditional on a positive outcome, the second part uses a truncated model that
modifies an ordinary distribution by conditioning on a positive outcome. For instance,
this might be a truncated Poisson distribution or a truncated negative binomial
distribution. The hurdle model can handle both zero inflation and zero deflation.

A separate strand of the literature pertains solely to zero inflation. With this
approach, two types of zeros can occur: one comes from the zero state and the other
from the ordinary count distribution state. That is, the relevant distribution is a mixture
of an ordinary count model, such as the Poisson or negative binomial, with one that is
degenerate at zero (Lambert, 1992). Such zero-inflated count models are more natural
than a hurdle model when it is reasonable to think of the population as a mixture, with
one set of subjects that will have only a zero response and other subjects that may have
a zero response, such as the use of medical services example mentioned earlier.

Compared with the substantial literature on cross-sectional zero-inflated count data,
few papers have discussed the modeling of clustered, correlated observations, such as
occurs with longitudinal data. Dobbie and Welsh (2001) applied marginal models using
the generalized estimating equations approach for both parts of a hurdle model. If a
within-subject effect is the focus of the study, a random effect approach is natural. Hall
(2000) extended the Lambert (1992) zero-inflated Poisson (ZIP) model to handle
longitudinal data, adding a random effect to account for the within-subject dependence
in the Poisson state. However, Hall’s model does not have a random effect for the part
of the model determining the zero inflation. In contrast, Yau and Lee (2001) proposed
adding a pair of uncorrelated normal random effects for the two components of a
hurdle model. They used a penalized quasi-likelihood (PQL) approach for model fitting.

When the response is observed at several occasions, a high positive outcome at one
time may increase the probability of a positive outcome at another time. These two
processes are likely correlated and may be influenced by covariates in similar or in
different ways. It makes sense to allow correlated random effects in a model, which then
requires a more complex fitting process. In addition, the nonzero response may be
overdispersed with respect to a truncated Poisson distribution and a truncated negative
binomial distribution may be more appropriate. In this article, we develop correlated
random effects models. In model fitting, Breslow and Lin (1995) showed that PQL
estimators can be biased and inconsistent for highly non-normal (e.g., binary) responses
when the random effects have large variance. Rather than PQL, we use parametric and
nonparametric maximum likelihood (NPML) for model fitting. For a Poisson hurdle
model, when the two parts of the hurdle model have the same covariates, we consider a
special type of model that can be used to test for zero inflation. In addition, we consider
a simpler approach using a single model — a cumulative logit model with random
effects.

Section 2 briefly reviews the hurdle model and zero-inflated Poisson model and
discusses advantages of the hurdle model. Section 3 introduces a hurdle model with
random effects and discusses model fitting. The random effect cumulative logit model is
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introduced for this context in Section 4. Section 5 uses two examples to illustrate the
methods.

2 Zero-inflated count data models

This section gives a brief overview of hurdle models and ZIP models for cross-sectional
data.

2.1 Hurdle models

The hurdle model, proposed by Mullahy (1986), uses a two-stage modeling process.
The first stage models the binary variable that measures whether the response falls
below or above the hurdle. The second stage uses a truncated model to explain the
observations above the hurdle. In the zero-inflated count data problem, the hurdle is
zero. For response variable Y, let y; denote the observation for subject i,i =1,..., 7.
Suppose that the first part of the process is governed by a probability mass function g1
and that {Y,|Y; > 0} follows a truncated-at-zero probability mass function g,, such as a
truncated Poisson or negative binomial. The complete distribution is

P(Y; =0) =£(0) 2.1)

P(Y, = = (1 - gO) 2D =12, (22)
—£(0)
This generalizes to models with explanatory variables, in which those affecting the first
stage may not be the same as those affecting the second stage. Let P(Y; > 0) = p,; and
P(Y; =0) = 1 — p;. We use a logistic regression model for p; and a log linear model for
the mean y; of the untruncated g, distribution,

logit(p;) = x1,8; and log(y;) = x3,B,

The likelihood function is

- UL 1-1(y;=0)
L. B =[] —p,-(61>>’<yf=°>[p,-(lsl> 0 1) ]

2.3
L 1~ 620 1(B,)) 2.3)

where I(-) is the indicator function. If (1 — p;) > g,(0) for every 7, the model represents
zero inflation. If (1 — p;) < g,(0) for every i, the model represents zero deflation.
The log likelihood factors into two terms,

UBy, B2) = 61(B1) + £2(B2)
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where,

6(By) = [log(1 = p,(B))] + D _[log pi(B)]

v;=0 ¥;>0
=Y ®By— ) log(1+e%P)
v;>0 i=1

is the log likelihood function for the binary process and

6(By) =) [log g, (vii u(B)) — log(1 — >(0; u(B,)))]

y;>0

is the log likelihood function for the truncated model. One can obtain maximum
likelihood (ML) estimates by separately maximizing the two terms.

2.2 Zero-inflated count models

An alternative approach for modeling zero-inflated data is the zero-inflated count model
proposed by Lambert (1992). This model assumes that data are from a mixture of a
regular count distribution, such as the Poisson distribution, and a degenerate distribu-
tion at zero. For a ZIP model, it is assumed that for subject i,

Y,’\/

1

0, with probability 1 — ¢,
Poisson (4;), with probability ¢,

The probability distribution has

P(Y;=0)=(1—¢)+ p;e” (2.4)
. e i)l .
P(Y,=j)=¢; F Lj=1,2,... 2.5)

With explanatory variables, the parameters are modeled by

logit (¢;) = x1;B; and log(4;) = x3,B,
The EM algorithm or the Newton—Raphson method can be used to obtain the ML

estimates. Compared with the hurdle model, this model is more complex to fit, as the
model components must be fitted simultaneously.

2.3 Hurdle model versus ZIP model

The ZIP model is suitable only for handling zero inflation. However, the hurdle model
is also suitable for modeling zero deflation. In fact, when a data set is zero deflated at a
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level of a factor, the estimate of the corresponding parameter in the first part of the ZIP
model is 0o, so that the fit has no zero inflation at that level. The hurdle model does not
have this problem.

We used two simple simulations to study this potential problem with the ZIP model.
The first simulation assumed a hurdle model with Poisson g,, at which there was zero
deflation at one setting of the predictor but the entire data set (ignoring the covariate)
tended to be zero inflated. Not surprisingly, the estimate of the predictor for fitting the
ZIP model was highly unstable (Min and Agresti, 2004). However, when we used both
van den Broek (1995) and Jansakul and Hinde (2002) score tests on our 1000 simulated
data sets, all of them revealed evidence of zero inflation (P-value < 0.05 in each case).
This simulation study tells us that even when a test shows significant evidence of zero
inflation, the ZIP model may still not be suitable to fit the data.

More relevantly, the second simulation assumed a ZIP model, for which both models
are valid. This used a case simulated by Lambert (1992);

logit(¢;) = 1.5 — 2x;
log(4;) = 1.5 — 2x;

We generated 1000 data sets, in which each data set had #» = 200 observations. The
covariate x; is binary, taking value 0 for 100 cases and 1 for the other 100 cases. With
these choices, on average, ~51% of the responses were zeros, and 22% of those zeros
were generated by the Poisson distribution.

For this assumed ZIP model, the hurdle model with Poisson g, also holds. The second
part of the hurdle model has the same parameters as the second part of the ZIP model.
Denote the first part of the hurdle model by logit(p,) = 1, + f11x;- When x; = 0,

1 exp(1.5)

P(Y; =0) =
(Y; =0) 1+exp(1.5) 1+exp(1.5)

exp(—e')

This equals [1 + exp(f%,)]" in the hurdle model, so %, = 1.44. When x; = 1,

1 exp(—0.5)

P(Y; =0)=
i ) 1+ exp(—0.5) 1+ exp(—0.5)

—0.5)

exp(—e

This equals [1 + exp(f, + ;)] in the hurdle model, so 7, = —3.01.

Table 1 shows the results for this second simulation. Although the working model
was a ZIP model, parts of some of the simulated data sets were not zero inflated. As
estimates are sometimes unstable with the ZIP model (e.g., when a sample had zero
deflation at a setting of x;), we report the medians of the estimates and the SE values. In
fact, instability often occurred for estimating f,; (the predictor effect in the logit
component of the model) with that model, so the table shows only medians for
estimates of that parameter for that model. We see that the hurdle model performed
about the same as the ZIP model for the other parameters. However, the hurdle model
performed better for estimating f;.
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Table 1 Comparing the estimated parameters of the ZIP model and the hurdle model for the
simulated data sets from a hurdle working model

B1o B B20 B2
ZIP Model
Parameters 1.50 -2.0 1.5 -2.0
Mean estimate 1.461 - 1.500 -2.114
Median estimate 1.442 —1.865 1.504 -2.114
SE estimate?® 0.266 - 0.057 0.460
Mean SEP 0.267 - 0.054 0.431
Median SEP 0.262 0.682 0.054 0.396
Hurdle Model
Parameters 1.44 -3.01 1.5 -2.0
Mean estimate 1.399 -3.003 1.500 -2.106
Median estimate 1.386 —2.983 1.503 —2.033
SE estimate? 0.252 0.370 0.057 0.461
Mean SEP 0.253 0.371 0.054 0.452
Median SE° 0.250 0.369 0.054 0.427

3The SE estimate is the standard deviation of the 1000 estimates of the parameter.
PMean (median) SE is the average of (or the median of) the 1000 estimated standard errors.

The simulation studies tell us that the ZIP model may be unreliable in fitting zero-
inflated count data, even for simple cross-sectional data. Therefore, in the remainder of
the paper, we mainly discuss the extension of the hurdle model to repeated measures.

3 Hurdle models with random effects
3.1 Model specification

Now we extend the hurdle model to clustered, correlated counts. Let y;; be observation
jj=1,...,t) for subject (or cluster) i (i =1, ..., n). Define

and let p; = P(y; > 0). Suppose the positive count response follows a truncated count
distribution with probability mass function g having mean p;; for the untruncated count
distribution. Let b; = (by;, b,;)' be random effects designed to account for within-subject
correlation. Conditional on b;, we assume that

logit(p;) = x1;;B1 + 21;;b1; 3.1)
log(u;;) = x5;B5 + 25;B; (3.2)

where x;; and z;,; are covariate vectors pertaining to the fixed effects B, and the
random effects by;. In practice, the simple random intercept form of models is often
adequate, in which by; = by; and b,; = b,; are univariate and zy; = 2p;; = 1.
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When the response is observed at repeated times, as in longitudinal studies, the
response at one time may be positively correlated with the response at another time.
One can tie the two parts of the model together by assuming that the random effects are
jointly normal and possibly correlated,

b; 0 z z
b= () (o) [32 32
b, 0 12 X2
where X,%,, and X,, are unknown positive-definite matrices. Let y represent the

unknown parameters, y = (f;, f,, X). The marginal log likelihood for the hurdle
random effect model is:

()= logL(y)
i=1

where

Li(y) = J|: 11(1 —pyp)' (Pi;‘ 1%);£)0)) I]:|¢)(bi)dbi
Pl

L
- J|:l—[ fl(uii | bli)fZ(yij’ Uj | bzl')1| d)(b,-)dbl-
=1
and ¢ denotes the normal density function for the random effects.

3.2 Aspecial case of the hurdle model

In the univariate response case, Heilbron (1994) defined a type of hurdle model as a
compatible two-part model. This type of model requires that g; and g, in Section 2.1
have identical distribution forms and overdispersion parameters. It also assumes that
the covariates and the link functions for modeling the means of the distributions are the
same for the two parts, that is, n(y;) = ¥’ and n(y,) = x'B,. If B; = B,, the model
would reduce to a standard generalized linear model. For covariate x}, the difference
Bor — By, can be used to explain its effect on the zero inflation. For the Poisson
distribution, a log linear model for the mean of the untruncated count distribution
is equivalent to using a complementary log—log link for the first part of the model,
which is

log(—log(1 — p,)) = x;B,

By assuming that y; is a function of u,, such as y; =y (7, > 0,7, > 0), Heilbron
proposed a zero-altered model that has the form B, =log(y,) +7,B,. Through
comparing to the simpler model with y; =1 and y, =1, one can test whether
a standard Poisson model is sufficient to fit the data. For y, =1, if y; < 1, the data
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are zero inflated, as it is equivalent to u; < u,, whereas if y; > 1, the data are zero
deflated.

The zero-altered model extends to the repeated measures setting. For simplicity, we
let b, ~ N(0, 2) be a subject-specific random effect for both parts of the hurdle model.
Conditional on b;, we assume

log(—log(1 — p;)) = 7 + 72(x;B) + b; (3.3)
log(w;) = x;B + b (3.4)

We call this the zero-altered Poisson random effect model. Most papers dealing with
clustered, correlated zero-inflated count data test the existence of zero inflation for the
data at different occasions separately. Setting 7y, = 1, through testing whether y; = 0,
one can test the existence of zero inflation for clustered count data. If y; < 0, the data
are zero inflated; if 7| > 0, the data are zero deflated. One can use a likelihood ratio test
to conduct these tests. When we set y, = 1, this model also has the convenient property
of a single set of effects B. For instance, to compare different groups that are levels
of the explanatory variables, one can use B directly, whereas for the general hurdle
model with random effects one needs to average results from the two components of the
model to make an unconditional comparison [e.g., to estimate E(Y) for the groups].

3.3 ML model fitting with normal random effects

To fit a hurdle model with random effects, one first obtains the marginal likelihood by
integrating out the random effects. These integrals are analytically intractable, so
numerical or stochastic approximation of them is needed. There are many methods
to approximate the ML estimate for generalized linear mixed models (GLMM)
(Fahrmeir and Tutz, 2001; McCulloch and Searle, 2001) such as Gauss—Hermite
quadrature the Monte Carlo EM algorithm, Markov chain Monte Carlo, PQL and
Laplace approximations. The first three methods have the advantage that they converge
to the ML estimate as they are applied more finely. As the simple random intercept form
of models is often adequate in practice, we only discuss the case with b,; = b;; and
b,; = by; univariate and zy;; = 2,; = 1. With univariate random intercepts, numerical
approximation using Gauss—Hermite quadrature, which approximates the integral by a
finite sum is adequate.
Let

t,

f(b) = r[[f1(”i/ | bli)fz(yijv ug | b,

=1

We assume that

s ( @ soe
poio, 03
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and let L be the lower triangular Cholesky factor of X. We transform b; = +/2Lc;,
where £ = LLT. Then, the likelihood function for the ith

L) = | b exp( b;erbi)dbi
= [faLe exp-clepde

The Gauss—Hermite approximation using 7 quadrature points for each dimension is

L) = 3 )Y A )
=1 b=l
where ng) n1/2 (k) , and c(k) and w ) are the node k and weight k (k = 1,2) of the
univariate Gauss—Hermlte 1ntegrat1on of order m.
To maximize this approximation for the likelihood function, we use an approximate
version of the Fisher scoring method (Green, 1984; Raudenbush ez al., 2000) to obtain
w. Let S(w) score vector, which is approximated as

& ", 9 log LSH
S ~ 357 (w) = Zigay; v
=1 =1

~ 1 Ko e 0. dlog f(y;, ¢V w)
Z GH Z v f(yz’ c )
LK )l -1 L=l dy

where ¢ = (c(l) (2)) The Fisher scoring method obtains the ML estimates by
iteratively solvmg the equation D =@ 4 I (y®)S(y®) until w® converges,
where I = —E[Y ", 8*log L;/dwdy’]. The second derivatives are usually difficult to
calculate. Thus, we used an approximate scoring procedure with I ~ Y7 | Si(y)S; (w)'.

With univariate random effects, one can use the SAS procedure NLMIXED to fit this
type of model as well as the random effect zero-inflated count model. SAS NLMIXED
uses the adaptive Gauss—Hermite quadrature (Liu and Pierce, 1994; Pinheiro and Bates,
1995) to approximate the integrals, and the default maximization approach is the
quasi-Newton method.

3.4 ML model fitting with a nonparametric approach

Section 3.3 assumed that ¢(b;) is a bivariate normal probability density function. As
severe misspecification of the random effect distribution could potentially bias para-
meter estimation, Aitkin (1999) suggested using an unspecified discrete distribution for
the random effects. We extend his NPML method in this section for a bivariate random
effect in the hurdle model.
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We assume that ¢ is an unknown discrete distribution with K mass points
=(m,,...,my) and corresponding probabilitieg w=(my, ..., ng), where
my, = (mq,,my,), k=1,..., K. The log likelihood function is

n K t;
Uy) = 21: log ; . {]_! f(i: B mk)}
1= = =

where
f()’i;'; Bmy)= fl(uij; Byl ml/e)fz()’i;‘a i By | my)

This type of finite mixture model can be related to a latent class model (Aitkin and
Rubin, 1985), which is useful for model fitting. Suppose that d;;, is an indicator that
represents whether y; is drawn from the kth latent group, )", d;, = 1. Assume that
(y; | d;, B, m,) are independently distributed with densities

K K
Y duf(yi Blmy) =[] i B Imp)™
k=1 k=1

where f(y; B|m) = ]_[t' 1 [ B | my). Assume that (dy | ) are i.i.d. with multi-

nomial distribution ]_[k 1 nzi’e Treating {d;;,} as missing data, the EM algorithm can be
used to estimate this finite mixture model. The complete log likelihood function is

=1 k=

@C(l//) Z Z dzk |:Z lOg f(yz/’ B | mk) + 10g Tck:|

In iteration #, the E-step calculates the expectation of the complete log likelihood,
that is,

n t; K
Bl |y =333 wlog f(r;: B | mg) + Z Z wy log m

i=1 j=1 k=1 i=1 k=1
= hy(By, my) + hy(B,, my) + hs(m)
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where
n t; K
t
hy(By,my) = ngk) logfl(”i;'§ Bilmy)
i=1 j=1 k=1
n t; K
hy(By, my) = Z Z W,(-l? log (i, s Balmay)
i=1 j=1 k=1
n K
hs(w) = Z wgl? log 7,
i=1 k=1
and
WO ) [1—[;,:1 fy: B |m§:))]
l/e

i [T F B )]

being the posterior mean of d;;,. In the M-step, we maximize E[£, (y|y®)] with respect to
w to obtain w**V. As (B, m,), (B,, m,) m are in three separate terms, we can maximize
hi(By,my), h,(B,, m,) and h3(K11), separately. When maximizing with respect to m, we
need to take the constraint ) ,_, 7, = 1 into consideration. Solving the equations

Uy —2(Sm—1) | =L 220
o 3(m) — 4 ;ﬂk— T

7D Z w0 /n

The maximization with respect to (B, m2,) is a weighted version of binomial dlStI‘lbu-
tion ML estimation with logit link. Let logit(p;) = x';B1 + m;. We can get B and
m(ltH) by solving

n t K
PR S Y s = pdy =0

yields

i=1 j=1 k=1
by (By,my) _ < : )
) )=0 k=1,....K
b= f = =i

The maximization with respect to (B,, #1,) is a weighted version of ML estimation of a
truncated Poisson model or a truncated negative binomial model. Convergence of the
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EM algorithm can be determined by the Euclidean norm of the difference in parameter
estimates. In order to avoid a local maximum, trying different starting values is
recommended. Standard errors of the fixed effects can be obtained by calculating the
inverse of the observed information matrix (Louis, 1982).

For a given choice of the number K of mass points, the estimated maximized log-

likelihood is

n K t; .
() = 21: log ; ) |:l_! f(yi;‘? B|7;lk):|
= = =

We define the deviance difference, comparing this model to the simpler nonmixture
model, by

devg = 2[Lx(y) — £1(w)]

where £,() is the estimated maximum log likelihood function for Y., #; independent
responses. Although this does not give a formal significance test (since the simpler model
is on the boundary of the parameter space), the support size of K can be estimated by
starting with K = 2 and increasing K until the change in the deviance is small.

4 Cumulative logit models with random effects

In a methadone programme evaluation study (Saei et al., 1996), one of the response
variables was the number of crimes committed during the previous three months. Saei
et al. (1996) suggested grouping the possible count outcomes into K ordered categories
and applying an ordinal response model with random effects. They proposed a
cumulative probit model with random effects and used the PQL approach to estimate
the parameters. We propose a cumulative logit model with random effects and use
parametric ML for model fitting.

Let Y, , be the grouped response variable for observation j on subject 7. The threshold
model for an ordinal response posits an unobservable variable Z, such that one
observes Y;; , = k category if Z is between 0;_; and 0. Suppose that Z has a cumulative
distribution function G(z — 1), where 7 is related to explanatory variables by

n; = x;B + 2;b;

for a vector b; ~ N(0, X) of random effects that account for within-subject correlation.
Then,

P(Y;, k) = PZ <0 = GO, — xiB — Zjb)

The inverse of the CDF of G serves as the link function. Assuming that G is logistic
leads to a logit model for the cumulative probabilities with random effects.

Q1



Models with random effects 13

In applications with zero-inflated count data, one would take the first category to be the
zero outcome, and then treat each other outcome as a separate category, or group count
values together to form the other K — 1 categories. When grouping the count values
together to form the K categories, our simulation studies suggest that when the number of
groups is too small, one will lose some efficiency. We suggest that the grouping size should
be at least four. However using more than four or five categories does not increase

efficiency much, and it has ‘the disadvantage that one needs to estimate more parameters.
The model has the form

logit[P(Y; , <k; )] =n, =0, —x;B—2;B;, k=1,2,...,K—-1 4.1)

The probability that Y, , takes value k is

1 1
ik = P(Yjig = k) = - k=1,2,...,K
ik e 1+ exp(—n;) 1+ exp(—n;p_1)
where 1, = —o0. For subject i at occasion j, define y;;, = 1if Y;; , = k(k =1,2,...,K)
and y;; = 0 otherwise. Then y,; = (y;1, ..., ¥;x) is a K- dlmensmnal vector followmg a

multinomial ]_[i< 17 ”k distribution. Let f(y;: Blb) be the multinomial probability mass
function and ¢ be the multlvarlate normal cfensny function with mean 0 and covariance
> . The marginal log likelihood for the cumulative logit random effect model is:

Uy) = Z J[H f(.%‘,i B|b,»):| ¢(b;) db;

i=1 =1

This is similar to the log likelihood function in Section 3. One can use the SAS
procedure NLMIXED to fit this model with ML. Hartzel et al. (2001) provided a
nonparametric approach for the random effects in ML model fitting.

This model has the simplicity of a single equation to handle the clump at zero and the
positive outcomes. Elements of B describe effects overall, rather than conditional on the
response being positive. This is an important advantage. For instance, to compare
different groups that are levels of the explanatory variables, one can use B directly,
whereas for general two-part hurdle models one needs to average results from the two
components of the model to make an unconditional comparison.

5 Applications
5.1 A pharmaceutical study

Our main example refers to a data set shown to us by a pharmaceutical company.
Unfortunately, we are unable to use their original data or discuss details of the study
because of the company’s confidentiality restrictions. We changed some numbers in the
data set, while keeping the basic structure of the data, such as its zero inflation. (The
data set and related SAS code are available at the journal’s web site.)

Q2
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One aspect of this study dealt with comparing two treatments for a particular disease
in terms of the number of episodes of a certain side effect. The study had 118 patients,
with 59 randomly allocated to receive treatment A (TRT1) and the other 59 receiving
treatment B (TRT2). The number of side effect episodes was measured at each of six
visits. Of the observations ~ 83% were zeros. Table 2 shows the frequencies of the side
effect for treatments A and B. As the count data vary with exposure time between visits,
we incorporated time-between-visit (defined as Time) as a covariate in the model.

First, we fitted an ordinary Poisson GLMM and a type II negative binomial GLMM.
The density function of y; for the negative binomial model is

-1
Clyi+oh) Y mo )"
gy wi o) = j < — ) (71
Pl HEy; + D) \e™' + ot 4

with dispersion parameter o > 0. As o — 0, the negative binomial distribution
converges to the Poisson distribution. For both the Poisson GLMM and the negative
binomial GLMM, the model is

log(u;) = Bo + p1 TRT2 + B, log(Time) + b;

where b; is assumed to have a N(0, ¢?) distribution. Table 3 shows estimates for these
models. The estimated # in the negative binomial random effect model or the reduction
in log likelihood when compared with the Poisson GLMM suggest that the Poisson
GLMM is inadequate. For a formal test of the hypothesis that o = 0, the likelihood ratio
statistic comparing the models has an asymptotic null distribution, that is, 1/2:1/2
mixture of a y;>-distribution and a point-mass at 0 (Self and Liang, 1987). The test
statistic equals 19, giving strong evidence of zero inflation.
We then fitted a zero-altered random effect Poisson model, which has the form

log(1 —log(1 — p;)) = y1 + Bo + B1 TRT2 + B, log(Time) + b,

log(u;j) = Bo + By TRT2 + B, log(Time) + b;
where b; again has a N(0, ¢) distribution. The likelihood ratio test of Hy:y; = 0 has
test statistic=21.2 with df =1, also giving strong evidence of zero inflation.

Both the negative binomial random effect model and the zero-altered random effect
model showed that the ordinary Poisson GLMM is inadequate. The estimated

Table 2 Side effect frequencies in treatment A and treatment B

Frequencies

Treatment 0 1 2 3 4 5 6
A 312 30 11 0 1 0 0
B 278 39 20 6 7 2 2
Total 590 69 31 6 8 2 2
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Table 3 Parameter estimates for the Poisson negative binomial and zero-altered random effect models for
modeling side effects

Poisson Negative binomial Zero-altered
Parameter
Estimate SE Estimate SE Estimate SE

Po —3.492 0.454 —3.350 0.524 —2.557 0.472
S1(TRT2) 0.947 0.373 0.941 0.372 0.833 0.319
Pallog(Time)) 0.238 0.114 0.212 0.147 0.220 0.113
h) 1.535 0.204 1.488 0.211 1.244 0.194
o - - 0.766 0.275 - -

71 - - - - -0.771 0.169
—24(w) 852.1 - 833.1 - 830.9 -

parameter comparing the treatments is B; = 0.833 in the zero-altered random effect
model and B; = 0.941 in the negative binomial random effect model, each being about
2.5 standard errors. These suggest that treatment B has a higher probability of the side
effect and a higher number of episodes than treatment A.

The Poisson random effect hurdle model has the form

logit(p;)) = P10 + P11 TRT2 + By, log(Time) + by;
log(u;;) = Pro + P21 TRT2 + B, log(Time) + b,

where (by;, by;) have a bivariate normal distribution. Table 4 shows the ML estimates.
Compared to the zero-altered model and the negative binomial model, this gives us
the extra information that the time-between-visits seems to have little effect on the
probability of getting the side effect, whereas it has a substantial effect on the number of
episodes. We also fitted a negative binomial random effect hurdle model. It has very
similar maximized log likelihood value as the Poisson hurdle model and & close to zero.
Therefore, we do not show its estimates here.

We also used the nonparametric approach to fit the Poisson random effect hurdle
model. We obtained similar results as the with the ordinary ML approach. In the

Table 4 Parameter estimation of the random effect hurdle models for the numbers of side effects

ML NPML
Parameter
Estimate SE Estimate SE

Brollntercept) —2.874 0.622 —2.813 0.576
B11(TRT2) 0.895 0.417 0.958 0.335
Brollog(Time)) 0.021 0.186 0.022 0.185

1 1.647 0.251 - -
Baollntercept) —2.844 0.735 —2.880 0.619
B21(TRT2) 0.963 0.352 0.898 0.294
Baallog(Time)) 0.540 0.192 0.494 0.188
%, 0.706 0.248 - -

o 0.848 0.204 -
—20(#) 818.3 - 809.3 -
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NPML analysis of the Poisson hurdle model allowing correlated random effects,
—20,(p) = 888.9 with K =1 support point; —2¢,(y) = 816.2 with K =2 points;
—245(p) = 809.3 with K =3 points and —2£,(y) = 809.1 with K =4 points. We
used K =3, for which the estimated mass points are #m; = (0.34,—0.99),
m, = (2.18,1.20)" and m; =(-2.15,1.69) with & = (0.34,0.24,0.42)'. Table 4
shows the estimates, which are substantively similar to ordinary ML. Again, they
show that time-between-visits is more important for determining the number of
episodes than whether they occur.

This example had only seven possible outcomes (Table 2). To use the cumulative logit
model approach, we grouped the response variable into the five categories (0, 1, 2, 3, 4,
>4). The cumulative logit model is

logit[P(Y;; , <k)] = 0, — p;TRT2 — B, log(Time) — b; k=0,...,4

ij,.g =

where b; ~ N(0, %) accounts for within-subject correlation. Table 5 shows the ML
estimates. Time-between-visits does not have a significant effect on the number of
episodes. Like the zero-altered model, the model has the advantage of a single effect
parameter for each predictor.

The hurdle random effect model suggested that treatment B has a higher probability
of the side effect and a higher expected number of episodes than treatment A. The
cumulative logit random effect model fitting confirms this conclusion, as B; = 0.977
has a standard error of 0.431. The estimated odds that the number of side effects falls
below any fixed category with treatment A are exp(0.977) = 2.7 times the estimated
odds for treatment B. This estimate has the same order of magnitude as the estimate
from the binary part of the hurdle random effects model, which is not surprising since
the probability modeled there is the first cumulative probability.

Table 6 summarizes — 2 log likelihood values for various fitted models. Some of the
models are non-nested such as the Poisson hurdle random effect model and the
cumulative logit random effect model. Therefore, we cannot simply compare their
log likelihood values directly. For this example, the Poisson hurdle random effect model
seems adequate. It has a relatively small — 2 log likelihood value, and it also provides
the information that time-between-visits has little effect on the probability of getting the

Table5 ML estimates for the cumulative logit random effect model for
the numbers of side effects

Parameter Estimate SE
0o 3.311 0.629
04 4.619 0.655
0, 5.901 0.703
03 6.373 0.730
04 7.554 0.846
p1(TRT2) 0.977 0.43
p2(log(Time)) 0.153 0.181
o 1.733 0.252

—20(9) 817.2
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Table 6 Summary of — ZZ(J;) for ML fitting of various models

Model —ZZ(ﬁ:) No. of parameters
Poisson GLMM 852.1 4
Negative binomial GLMM 833.1 5
Zero-altered random effect Poisson model 830.9 5
Poisson hurdle model with random effects (ML) 818.3 9
Poisson hurdle model with random effects (NPML K=3) 809.3 14
Cumulative logit model with random effects 817.2 8

side effect but considerable effect on the number of episodes. We cannot learn this by
fitting the other models listed in this table.

5.2 Anoccupational injury prevention program study

We briefly mention a second example, from Yau and Lee (2001). They evaluated the
effectiveness of an occupational injury prevention program used in the cleaning services
of the studied Australian hospital. This pilot program used workplace risk assessment
Teams (WRATS) intervention to attempt to reduce the expected number of manual
handling injuries. The data set comprised injury counts from 137 cleaners who were
present in pre- and post-WRATS intervention. Of the pre-WRATS observations
~52.6% were zero. Of the post-WRATS observations ~78.8% were zero. The
explanatory variables include time, age, gender and the time of exposure variable.
Yau and Lee conducted overdispersion tests (Bohning ez al., 1997) separately on pre-
WRATS and post-WRATS counts. They found overdispersion for the pre-WRATS
data, and thus treated the data as zero-inflated count data. However, separate tests on
each cross-sectional part of the data are less appealing than methods that recognize the
repeated measures aspect of the data. A zero-altered random effect model does not find
significant evidence of zero inflation (likelihood ratio test statistic=1.7 with df =1). An
ordinary Poisson GLMM seems sufficient for these data. Unlike the ZIP model, the
hurdle model does not require the data to be zero inflated. Yau and Lee fitted the two
parts of a Poisson hurdle model with random effects separately and used the
PQL approach for model fitting. We used ML to fit this model and found that the
PQL approach does not approximate the ML estimates well. Through fitting the two
components of the model jointly, we showed evidence of efficiency gains of fitting a
correlated random effect model. A random effect cumulative logit model also fits well
and gives simple summaries. Detailed analysis can be found in Min and Agresti (2004).

6 Summary

We have proposed a two-part random effect model, which has a binary component and
a truncated Poisson or negative binomial component. When the two parts have the
same covariates, a zero-altered random effect model can be used to test for zero
inflation. The two-part model approach is also suitable for zero-deflated count data
cases. When the response variable has relatively few count outcomes, a cumulative logit
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random effect model provides a simple way to handle this kind of problem. The ZIP
random effect model requires that the data be zero inflated at every level of the
covariates. This requirement is sometimes not realistic. Fitting a ZIP random effect
model is also more complex than fitting a hurdle random effect model.

In general, for repeated measures of count data with zero inflation, the simpler
models — the zero-altered random effect model or the cumulative logit random effect
model — have the advantage of simplicity of interpretation. If one wants to estimate
different covariate effects on zero responses and on nonzero responses, such as in
checking, whether a predictor affects only the probability of a positive response, the

hurdle model with random effects is more natural.
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