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Abstract

This article reviews methodologies used for analyzing ordered categorical (ordinal)
response variables. We begin by surveying models for data with a single ordinal
response variable. We also survey recently proposed strategies for modeling ordinal
response variables when the data have some type of clustering or when repeated
measurement occurs at various occasions for each subject, such as in longitudinal
studies. Primary models in that case include marginal models and cluster-specific
(conditional) models for which effects apply conditionally at the cluster level. Re-
lated discussion refers to multi-level and transitional models. The main empha-
sis is on maximum likelihood inference, although we indicate certain models (e.g.,
marginal models, multi-level models) for which this can be computationally difficult.
The Bayesian approach has also received considerable attention for categorical data
in the past decade, and we survey recent Bayesian approaches to modeling ordinal
response variables. Alternative, non-model-based, approaches are also available for
certain types of inference.
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1 Introduction

This article reviews methodologies used for modeling ordered categorical
(ordinal) response variables. Section 2 begins by reviewing the primary
models used for data with a single ordinal response variable. The most
popular models apply a link function to the cumulative probabilities, most
commonly the logit or probit. Section 3 reviews recently proposed strate-
gies for modeling ordinal response variables when the data have some type
of clustering or when repeated measurement occurs at various occasions
for each subject, such as in longitudinal studies. In this setting, marginal
models analyze effects averaged over all clusters at particular levels of pre-
dictors. Cluster-specific models are conditional models, often using random
effects, that describe effects at the cluster level. This section also considers
multi-level models, which have a hierarchy of clustering levels, and tran-
sitional models, which model a response at a particular time in terms of
previous responses.

The main emphasis in Sections 2 and 3 is on maximum likelihood (ML)
model fitting. For certain models, however, ML fitting can still be compu-
tationally difficult. The main example is marginal modeling, for which it is
awkward to express the likelihood function in terms of model parameters.
In such cases, quasi-likelihood methods, such as the use of generalized es-
timating equations, are more commonly used. The Bayesian approach has
also received considerable attention for categorical data in the past decade.
Section 4 surveys Bayesian approaches to modeling ordinal data. Section
5 briefly describes alternative, non-model-based, approaches that are also
available for certain types of inference. These include Mantel-Haenszel type
methods, rank-based methods, and inequality-constrained methods. The
article concludes by discussing other issues, such as dealing with missing
data, power and sample size considerations, and available software.

2 Models for ordered categorical responses

Categorical data methods such as logistic regression and loglinear models
were primarily developed in the 1960s and 1970s. Although models for or-
dinal data received some attention then (e.g. Snell, 1964; Bock and Jones,
1968), a stronger focus on the ordinal case was inspired by articles by Mc-
Cullagh (1980) on logit modeling of cumulative probabilities and by Good-
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man (1979) on loglinear modeling relating to odds ratios that are natural
for ordinal variables. This section overviews these and related modeling
approaches.

2.1 Proportional odds model (A cumulative logit model)

Currently, the most popular model for ordinal responses uses logits of cu-
mulative probabilities, often called cumulative logits. Early work with this
approach includes Williams and Grizzle (1972) and Simon (1974). The
model gained popularity primarily after the seminal article by McCullagh
(1980) on regression modeling of ordinal responses. For a c-category ordi-
nal response variable Y and a set of predictors x with corresponding effect
parameters βββ, the model has form

logit[P (Y ≤ j | x)] = αj −βββ ′x, j = 1, ..., c − 1. (2.1)

(The minus sign in the predictor term makes the sign of each component
of βββ have the usual interpretation in terms of whether the effect is positive
or negative, but it is not necessary to use this parameterization.) The pa-
rameters {αj}, called cut points, are usually nuisance parameters of little
interest. This model applies simultaneously to all c−1 cumulative probabil-
ities, and it assumes an identical effect of the predictors for each cumulative
probability. Specifically, the model implies that odds ratios for describing
effects of explanatory variables on the response variable are the same for
each of the possible ways of collapsing a c-category response to a binary
variable. This particular type of cumulative logit model, with effect βββ the
same for all j, is often referred to as a proportional odds model (McCullagh,
1980).

To fit this model, it is unnecessary to assign scores to the response cate-
gories. One can motivate the model by assuming that the ordinal response
Y has an underlying continuous response Y ∗ (Anderson and Philips, 1981).
Such an unobserved variable is called a latent variable. Let Y ∗ have mean
linearly related to x, and have logistic conditional distribution with con-
stant variance. Then for the categorical variable Y obtained by chopping
Y ∗ into categories (with cutpoints {αj}), the proportional odds model holds
for predictor x, with effects proportional to those in the continuous model.
If this latent variable model holds, the effects are invariant to the choices of
the number of categories and their cutpoints. So, when the model fits well,
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different studies using different scales for the response variable should give
similar conclusions. Farewell (1982) discussed the issue of the cutpoints
themselves varying according to how different subjects perceive category
boundaries. This is a problem that can now also be addressed with ran-
dom intercepts in the model.

Some of the early literature with such models used weighted least squares
for model fitting (e.g. Williams and Grizzle, 1972) but maximum likelihood
is more versatile and these days is the preferred method. Walker and Dun-
can (1967) and McCullagh (1980) used Fisher scoring algorithms to do
this. With the ML approach, one can base significance tests and confi-
dence intervals for the model parameters βββ on likelihood-ratio, score, or
Wald statistics.

When explanatory variables are categorical and data are not too sparse,
one can also form chi-squared statistics to test the model fit by compar-
ing observed frequencies to estimates of expected frequencies that satisfy
the model. For sparse data or continuous predictors, such chi-squared fit
statistics are inappropriate. The Hosmer – Lemeshow statistic for testing
the fit of a logistic regression model for binary data has been generalized
to ordinal responses by Lipsitz et al. (1996). This gives an alternative way
to construct a goodness-of-fit test. It compares observed to fitted counts
for a partition of the possible response (e.g., cumulative logit) values.

If the cumulative logit model fits poorly, one might include separate
effects, replacing βββ in (2.1) by βββj. This gives nonparallel curves for the
c − 1 logits. Such a model cannot hold over a broad range of explanatory
variable values, because crossing curves for the logits implies that cumu-
lative probabilities are out of order. However, such a model can be used
as an alternative to the proportional odds model in a score test that the
effects for different logits are identical (Brant, 1990; Peterson and Harrell,
1990).

When proportional odds structure may be inadequate, alternative pos-
sible strategies to improve the fit include (i) trying different link functions
discussed in next section, such as the log-log, (ii) adding additional terms,
such as interactions, to the linear predictor, (iii) generalizing the model
by adding dispersion parameters (McCullagh, 1980; Cox, 1995), (iv) per-
mitting separate effects for each logit for some but not all predictors (i.e.,
partial proportional odds; see Peterson and Harrell (1990), (v) using the or-
dinary model for a nominal response, which forms baseline-category logits
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by pairing each category with a baseline. In general, though, one should
not use a different model based solely on an inadequate fit of the cumula-
tive logit model according to a goodness-of-fit test. Especially when n is
large, statistical significance need not imply an inadequate fit in a practi-
cal sense, and the decrease in bias obtained with a more complex model
may be more than offset by the increased mean square error in estimat-
ing effects caused by the large increase in the number of model parameters.
Rather than relying purely on testing, a sensible strategy is to fit models for
the separate cumulative logits, and check whether the effects are different
in a substantive sense, taking into account ordinary sampling variability.
Alternatively, Kim (2003) proposed a graphical method for assessing the
proportional odds assumption.

Applications of cumulative logit models have been numerous. An im-
portant one is for survival modeling of interval-censored data (e.g. Rossini
and Tsiatis, 1996).

2.2 Cumulative link models

In addition to the logit link function for the cumulative probability, McCul-
lagh (1980) applied other link functions that are commonly used for binary
data, such as the probit, log-log and complementary log-log. A general
model incorporating a variety of potential link functions is cumulative link
model. It has form

G−1[P (Y ≤ j | x)] = αj − βββ′x, j = 1, ..., c − 1, (2.2)

where G−1 is a link function that is the inverse of a continuous cumulative
distribution function (cdf) G.

Use of the standard normal cdf for G gives the cumulative probit model.
It treats the underlying continuous variable Y ∗ as normal. If the model
with logit link fits data well, so does the model with probit link, because
the shapes of normal and logistic distributions are very similar. The choice
of one over the other may depend on whether one wants to interpret effects
in terms of odds ratios for the given categories (in which case the logit link
is natural) or to interpret effects for an underlying normal latent variable
for an ordinary regression model (in which case the probit link is more
natural).
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Use of the extreme value distribution, G(·) = 1 − exp{−exp(·)} results
in the model with complementary log-log link function, having form

log{− log[1 − P (Y ≤ j | x)]} = αj + βββ′x.

McCullagh (1980) discussed its use and its connections with related pro-
portional hazards models for survival data. The model using log-log link
function log{− log[P (Y ≤ j)]} is appropriate when the complementary log-
log link holds for the categories listed in reverse order. While the probit and
logit link are most appropriate when an underlying continuous response is
roughly bell-shaped, the complementary log-log link is suitable when the
response curve is nonsymmetric. With such a link function, the cumula-
tive probability approaches 0 at a different rate than it approaches 1 as
the value of an explanatory variable increases. With small to moderate n
it can be difficult to differentiate whether one cumulative link model fits
better than another, so the choice of an appropriate link function should be
based primarily on ease of interpretation. See Genter and Farewell (1985)
for discussion of goodness-of-link testing.

2.3 Alternative multinomial logit models for ordinal responses

For ordinal responses, the adjacent-categories logit model (Simon, 1974;
Goodman, 1983) is

log[P (Y = j | x)/P (Y = j + 1 | x)] = αj − βββ′x, j = 1, ..., c − 1.

The model is a special case of the baseline-category logit model commonly
used for nominal response variables (i.e., no natural ordering), with re-
duction in the number of parameters by utilizing the ordering to obtain a
common effect. It utilizes single-category probabilities rather than cumu-
lative probabilities, so it is more natural when one wants to describe effects
in terms of odds relating to particular response categories. This model
received considerable attention in the 1980s and 1990s, partly because of
connections with certain ordinal loglinear models. See, for instance, Agresti
(1992) who modeled paired preference data, extending the Bradley-Terry
model to ordinal responses. For other work for such data, see Fahrmeir and
Tutz (1994) and Böckenholt and Dillon (1997).

The cumulative logit and adjacent-categories logit model both imply
stochastic orderings of the response distributions for different predictor
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values. Effects in adjacent-category logit models refer to the effect of a
one-unit increase of a predictor on the log odds of response in the lower
instead of the higher of any two adjacent categories, whereas the effect in
(2.1) refers to the entire response scale. When the response variable has
two categories, the cumulative logit and adjacent-categories logit models
simplify to the ordinary logistic regression model.

An alternative logit model, called the continuation-ratio logit model,
uses logits of form {log[P (Y = j)/P (Y ≥ j + 1)]} or {log[P (Y = j +
1)/P (Y ≤ j)]}. Tutz (1990, 1991) referred to models using such logits as
sequential type models, because the model form is useful when a sequential
mechanism determines the response outcome. When the model includes
separate effects {βββj}, the multinomial likelihood factors into a product of
the binomial likelihoods for the separate logits with respect to j. Then,
separate fitting of models for different continuation-ratio logits gives the
same results as simultaneous fitting.

McCullagh (1980) and Thompson and Baker (1981) treated the cumula-
tive link model (2.2) as a special case of the multivariate generalized linear
model

g(µµµi) = Xiβββ, (2.3)

where µµµi is the mean of a vector of indicator responses yi = (yi1, yi2, . . . ,
yi,c−1)

′ for subject i (a 1 for the dummy variable value pertaining to the
category in which the observation falls) and g is a vector of link functions.
Similarly, the adjacent-category logit and continuation-ratio logit models
can be considered within this class. Fahrmeir and Tutz (2001) gave details.

2.4 Other multinomial response models

Tutz (2003) extended the form of generalized additive models (Hastie and
Tibshirani, 1990) by considering semiparametrically structured models for
an ordinal response variable with various link functions. Tutz’s model con-
tains linear parts (Xiβββ), additive parts of covariates with an unspecified
functional form, and interactions. This type of model is useful when there
are several continuous covariates and some of them may have nonlinear re-
lationships with g(µµµi). Tutz proposed a method of estimation based on an
extension of penalized regression splines. For details of additive and semi-
parametric models for ordinal responses, see Hastie and Tibshirani (1987,
1990, 1993), Yee and Wild (1996), Kauermann (2000), and Kauermann and
Tutz (2000, 2003).
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Models considered thus far have recognized the categorical response
scale by applying common link functions. In practice, such methods are
still not well known to many researchers who commonly analyze ordinal
data, such as social scientists who analyze questionnaire data with Likert-
type scales. Probably the most common approach is to assign scores to the
ordered categories and apply ordinary least squares regression modeling.
See Heeren and D’Agostino (1987) for investigation of the robustness of
such an approach.

A related approach attempts to recognize the categorical nature of the
response variable in the regression model, by estimating the non-constant
variance inherent to categorical measurement. This was first proposed,
using weighted least squares for regression and ANOVA methods for cate-
gorical responses, by Grizzle et al. (1969). Let πj(x) = P (Y = j | x). For
an ordinal response, the mean response model has form

∑

j

vjπj(x) = α + βββ′x ,

where vj is the assigned score for response category j. With a categorical
response scale, less variability tends to occur when the mean is near the
high end or low end of the scale. Using such a model has the advantage of
simplicity of interpretation, particularly when it is sufficient to summarize
effects in terms of location rather than separate cell probabilities. It is
simpler for many researchers to interpret effects expressed in terms of means
rather than in terms of odds ratios. A structural problem, more common
when c is small, is that the fit may give estimated means above the highest
score or below the lowest score. Since the mean response model does not
uniquely determine cell probabilities, unlike logit models, it does not imply
stochastic orderings at different settings of predictors.

In principle, it is possible to use ML to fit mean response models using
maximum likelihood, assuming a multinomial response, and this has re-
ceived some attention (e.g. Lipsitz, 1992; Lang, 2004). Software is available
for such fitting from Joseph Lang (Statistics Dept., Univ. of Iowa, e-mail:
jblang@stat.uiowa.edu), using a method of maximizing the likelihood that
treats the model formula as a constraint equation.
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2.5 Modeling association with ordinal responses

The models discussed so far are like ordinary regression models in the sense
that they distinguish between response and explanatory variables. Associa-
tion models, on the other hand, are designed to describe association between
variables, and they treat those variables symmetrically (Goodman, 1979,
1985). In an r × c contingency table, let X denote the row variable and
Y denote the column variable. The cell counts {nij} have expected values
{µij}. Goodman (1985) proposed the association model with form

log µij = λ + λX
i + λY

j +

M∑

k=1

βkuikvjk, (2.4)

where M ≤ min(r − 1, c − 1). The saturated model (which gives a perfect
fit) results when M = min(r − 1, c − 1).

The most commonly used models have M = 1 (Goodman, 1979; Haber-
man, 1974, 1981). The special cases then have linear-by-linear association,
row effects, column effects, and row and column effects (RC). The linear-by-
linear association model treats the row scores {ui1} and the column scores
{vj1} as fixed monotone constants. When β1 > 0, Y tends to increase as
X increases, whereas a negative sign of β shows a negative trend. Good-
man (1979) proposed the special case {ui1 = i} and {vj1 = j}, referring
to it as the uniform association model because of the uniform value of all
(r− 1)(c− 1) local odds ratios constructed using pairs of adjacent rows and
pairs of adjacent columns.

The row effects model (Goodman, 1979) fixes the column scores but
treats row scores as parameters. It is also valid when X has nominal cate-
gories. The model with equally-spaced scores for Y relates to logit models
for adjacent-category logits (Goodman, 1983). Likewise, the column effects
model fixes the row scores but treats the column scores as parameters.
The row-and-column-effects (RC) model treats both sets as parameters. In
this case the model is not loglinear and ML estimation is more difficult
(Haberman, 1981, 1995). In addition, anomalous behavior results for some
inference, such as the likelihood-ratio statistic for testing that β1 = 0 not
having an asymptotic null chi-squared distribution (Haberman, 1981). Bar-
tolucci and Forcina (2002) extended the RC model by allowing simultaneous
modeling of marginal distributions with various ordinal logit models.

The general association model (2.4) for which βk = 0 for k > M ∗ is
referred to as the RC(M ∗) model. See Becker (1990) for ML model fitting.
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The goodness of fit of association models can be checked with ordinary
chi-squared statistics, when cell counts are reasonably large. Association
models have been generalized to include covariates (Becker, 1989; Becker
and Clogg, 1989).

A related literature has developed for correspondence analysis mod-
els (Goodman, 1986, 1996; Gilula and Haberman, 1988; Gilula and Ritov,
1990) and equivalent canonical correlation models. The general canonical
correlation model is

πij = πi+π+j

(
1 +

M∑

k=1

λkµikνjk

)

where πi+ =
∑

j πij and π+j =
∑

i πij . It has similar structure as the form
in (2.4), but it uses an association term to model the difference between
µij and its independence value. When the association is weak, an approxi-
mate relation holds between parameter estimates in association models and
canonical correlation models (Goodman, 1985), but otherwise the models
refer to different types of ordinal association (Gilula et al., 1988). A major
limitation of correspondence analysis and correlation models is non-trivial
generalization to multiway tables. For overviews connecting the various
models, as well as somewhat related latent class models, see Goodman
(1986, 1996, 2004). For connections with graphical models, see Wermuth
and Cox (1998) and Anderson and Böckenholt (2000). Association mod-
els and canonical correlation models do not seem to receive as much use
in applications as the regression-type models (such as the cumulative logit
models) that describe effects of explanatory variables on response variables.

3 Modeling clustered or repeated ordinal response data

We next review various strategies for modeling ordinal response variables
when the data have some sort of clustering, such as with repeated measure-
ment of subjects in a longitudinal study. The primary emphasis is on two
classes of models. Marginal models describe so-called population-averaged
effects which refer to an averaging over clusters at particular levels of pre-
dictors. Subject-specific models (also called cluster-specific) are conditional
models that describe effects at the cluster level.

Denote T repeated responses in a cluster by (Y1, ...YT ), thus regarding
the response variable as multivariate. Although the notation here repre-
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sents the same number of observations T in each cluster, the models and
fitting algorithms apply also for the more general setting in which the num-
ber of observations can be different for each cluster (e.g., Ti in cluster i).

The marginal model with cumulative logit link has the form

logit[P (Yt ≤ j | xt)] = αj − βββ′xt, j = 1, ..., c − 1, t = 1, ..., T, (3.1)

where xt contains the values of the explanatory variables for observation
t. This does not model the multivariate dependence among the T repeated
responses, but focuses instead on the dependence of their T first-order
marginal distributions on the explanatory variables.

3.1 Marginal models with a GEE approach

For ML fitting of this marginal model, it is awkward to maximize the log
likelihood function, which results from a product of multinomial distribu-
tions from the various predictor levels, where each multinomial is defined
for the cT cells in the cross-classification of the T responses. The likelihood
function refers to the complete joint distribution, so we cannot directly
substitute the marginal model formula into the log likelihood. It is easier
to apply a generalized estimating equations (GEE) method based on a mul-
tivariate generalization of quasi likelihood that specifies only the marginal
regression models and a working guess for the correlation structure among
the T responses, using the empirical dependence to adjust the standard
errors accordingly.

The GEE methodology, originally specified for marginal models with
univariate distributions such as the binomial and Poisson, extends to cu-
mulative logit models (Lipsitz et al., 1994) and cumulative probit mod-
els (Toledano and Gatsonis, 1996) for repeated ordinal responses. Let
yit(j) = 1 if the response outcome for observation t in cluster i falls in cat-
egory j. For instance, this may refer to the response at time t for subject
i who makes T repeated observations in a longitudinal study, (1 ≤ i ≤ N ,
1 ≤ t ≤ T ). Let yit be ( yit(1), yit(2), . . ., yit(c−1)). The covariance matrix
for yit is the one for a multinomial distribution. For each pair of categories
(j1, j2), one selects a working correlation matrix for the pairs (t1, t2). Let
βββ∗ = (βββ, α1, ..., αc−1). The generalized estimating equations for estimating
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the model parameters take the form

u(β̂ββ∗) =
N∑

i=1

D̂′

i V̂
−1
i [yi − π̂ππi] = 0

where yi = (y′

i1,. . . ,y
′

iT ) is the vector of observed responses for cluster

i, πππi is the vector of probabilities associated with Yi, D′

i = ∂[πππi]
′

∂βββ∗ , Vi is
the covariance matrix of yi, and the hats denote the substitution of the
unknown parameters with their current estimates. Lipsitz et al. (1994)
suggested a Fisher scoring algorithm for solving the above equation. See
also Miller et al. (1993), Mark and Gail (1994), Heagerty and Zeger (1996),
Williamson and Lee (1996), Huang et al. (2002) for marginal modeling of
multiple ordinal measurements. In particular Miller et al. (1993) showed
that under certain conditions the solution of the first iteration in the GEE
fitting process is simply the estimate from the weighted least squares ap-
proach developed for repeated categorical data by Koch et al. (1977). For
this equivalence, one uses initial estimates based directly on sample val-
ues and assumes a saturated association structure that allows a separate
correlation parameter for each pair of response categories and each pair of
observations in a cluster.

When marginal models are adopted, the association structure is usually
not the primary focus and is regarded as a nuisance. In such cases with
ordinal responses, it seems reasonable to use a simple structure for the
associations, such as a common local or cumulative odds ratio, rather than
to expend much effort modeling it. When the association structure is itself
of interest, a GEE2 approach is available for modeling associations using
global odds ratios (Heagerty and Zeger, 1996).

3.2 Marginal models with a ML approach

As mentioned above, fitting marginal models is awkward with maximum
likelihood. Algorithms have been proposed utilizing a multivariate logistic
model that has a one-to-one correspondence between joint cell probabilities
and parameters of marginal models as well as higher-order parameters of
the joint distribution (Fitzmaurice and Laird, 1993; Glonek and McCullagh,
1995; Glonek, 1996). However, the correspondence is awkward for more
than a few dimensions.
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Another approach treats a marginal model as a set of constraint equa-
tions and uses methods of maximizing Poisson and multinomial likelihoods
subject to constraints (Lang and Agresti, 1994; Lang, 1996, 2004). In these
approaches, it is possible also to model simultaneously the joint distribu-
tion or higher-order marginal distributions. It is computationally intensive
when T is large or when there are several predictors, especially if any of
them is continuous. Recent theoretical and computational advances have
made ML feasible for larger problems, both for constrained ML (Bergsma,
1997; Lang et al., 1997; Bergsma and Rudas, 2002; Lang, 2004) and for
maximization with respect to joint probabilities expressed in terms of the
marginal model parameters and an association model (Heumann, 1997).

3.3 Generalized linear mixed models

Instead of modeling the marginal distributions while treating the joint de-
pendence structure as a nuisance, one can model the joint distribution also
by using random effects for the clusters. The models have conditional inter-
pretations with cluster-specific effects. When the response has distribution
in the exponential family, generalized linear mixed models (GLMMs) add
random effects to generalized linear models (GLMs). Similarly, the multi-
variate GLM defined in (2.3) can be extended to include random effects, giv-
ing a multivariate GLMM. In general, random effects in models can account
for a variety of situations, including subject heterogeneity, unobserved co-
variates, and other forms of overdispersion. The repeated responses are
typically assumed to be independent, given the random effect, but vari-
ability in the random effects induces a marginal nonnegative association
between pairs of responses after averaging over the random effects.

In contrast to the marginal cumulative logit model in (3.1), the model
with random effects has form

logit[P (Yit ≤ j | xit, zit)] = αj − βββ′xit − u′

izit,

j = 1, ..., c − 1, t = 1, ..., T, i = 1, ..., N, (3.2)

where zit refers to a vector of explanatory variables for the random effects
and ui are iid from a multivariate N(0, Σ). See, for instance, Tutz and
Hennevogl (1996). The simplest case takes zit to be a vector of 1’s and
ui to be a single random effect from a N(0, σ2) distribution. The form
(3.2) can be extended to other ordinal models using different link functions
(Hartzel et al., 2001a) as well as continuation-ratio logit models (Coull and
Agresti, 2000).
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When there more than a couple of terms in the vector of random ef-
fects, ML model fitting can be challenging. An early approach (Harville
and Mee, 1984) used best linear unbiased prediction of parameters of an
underlying continuous model. Since the random effects are unobserved, to
obtain the likelihood function we construct the usual product of multinomi-
als that would apply if they were known and then integrate out the random
effects. Except in rare cases (such as the complementary log-log link with
the log of a gamma or inverse Gaussian distribution for the random effects;
see Crouchley (1995); Ten Have (1996)), this integral does not have closed
form and it is necessary to use some approximation for the likelihood func-
tion. We can then maximize the approximated likelihood using a variety
of standard methods.

Here, we briefly review algorithmic approaches for approximating the
integral that determines the likelihood. For simple models such as ran-
dom intercept models, straightforward Gauss-Hermite quadrature is usu-
ally adequate (Hedeker and Gibbons, 1994, 1996). An adaptive version of
Gauss-Hermite quadrature (e.g. Liu and Pierce, 1994; Pinheiro and Bates,
1995) uses the same weights and nodes for the finite sum as Gauss-Hermite
quadrature, but to increase efficiency it centers the nodes with respect to
the mode of the function being integrated and scales them according to the
estimated curvature at the mode. For models with higher-dimensional inte-
grals, more feasible methods use Monte Carlo methods, which use the ran-
domly sampled nodes to approximate integrals. Booth and Hobert (1999)
proposed an automated Monte Carlo EM algorithm for generalized linear
mixed models that assesses the Monte Carlo error in the current parameter
estimates and increases the number of nodes if the error exceeds the change
in the estimates from the previous iteration.

Alternatively, pseudo-likelihood methods avoid the intractable integral
completely, making computation simpler (Breslow and Clayton, 1993). The-
se methods are biased for highly non-normal cases, such as Bernoulli re-
sponse data (Breslow and Clayton, 1993; Engel, 1998), with the bias in-
creasing as variance components increase. We suspect that similar prob-
lems exist for the multinomial random effects models, both for estimat-
ing regression coefficients and variance components, when the multinomial
sample sizes are small.

The form (3.2) assuming multivariate normality for the random effects
has the possibility of a misspecified random effects distribution. Hartzel
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et al. (2001a) used a semi-parametric approach for ordinal models. The
method applies an EM algorithm to obtain nonparametric ML estimates
by treating the random effects as having a distribution with a set of mass
points with unspecified locations and probabilities.

One application of the multivariate GLMM is to describe the degree
of heterogeneity across stratified r × c tables. Hartzel et al. (2001b) used
cumulative and adjacent-categories logit mixed models by treating the true
stratum-specific ordinal log odds ratios as a sample with some unknown
mean and standard deviation. It is natural to use random effects models
when the levels of stratum variable are a sample, such as in many multi-
center clinical trials. See Jaffrézic et al. (1999) for a model based on latent
variables with heterogeneous variances.

3.4 Multi-level models

The models discussed so far in the section accommodate two-level problems
such as repeated ordinal responses within subjects, for which subjects and
clusters are the two levels. In practice, a study might involve more than one
level of clustering, such as in many educational applications (e.g., students
nested within schools which are nested within districts or a geographical
region).

Possible approaches to handling multi-level cases include marginal mod-
eling (typically implemented with the GEE method), multivariate GLMMs,
and a Bayesian approach through specifying prior distributions at differ-
ent levels of a hierarchical model. Like subject-specific two-level models,
a GLMM can describe correlations using random effects for the subjects
within clusters as well as for the clusters themselves. The ML approach
maximizes a marginal likelihood by integrating the conditional likelihood
over the distribution of the random effects. Again, such an approach re-
quires numerical integration, which is typically difficult computationally for
a high-dimensional random effect structure.

Qu et al. (1995) used a GEE approach to estimate a marginal model
for ordinal responses. The correlation among the ordinal responses on the
same subject was modelled through the correlation of assumed underlying
continuous variables. For GLMM approaches, see Hedeker and Gibbons
(1994) and Fielding (1999). For Bayesian approaches, see Tan et al. (1999),
Chen and Dey (2000) and Qiu et al. (2002).
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3.5 Other models (Transitional models and time series)

Another type of model to analyze repeated measurement data, called a
transitional model, describes the distribution of a response conditional on
past responses and explanatory variables. Many transitional models have
Markov chain structure taking into account the time ordering, which is often
useful in modeling time series data. This approach has received substantial
attention for binary data (e.g. Bonney, 1986). Ekholm et al. (2003) pro-
posed ordinal models in which the association between repeated responses
is characterized by dependence ratios (Ekholm et al., 1995), which in a
given cell equals the cell probability divided by its expected value under
independence. Their model is a GLMM using random effects for the sub-
jects when the association mechanism is purely exchangeable, and it is a
transitional model with Markov chain structure when the association mech-
anism is purely Markov. See Kosorok and Chao (1996) for GEE and ML
approaches with a transitional model in continuous time.

The choice among marginal (population-averaged), cluster-specific, and
transitional models depends on whether one prefers interpretations to ap-
ply at the population or the subject level and on whether it is sensible to
describe effects of explanatory variables conditional on previous responses.
Cluster-specific models are especially useful for describing within-cluster
effects, such as within-subject comparisons in a crossover study. Marginal
models may be adequate if one is interested in summarizing responses for
different groups (e.g., gender, race) without expending much effort on mod-
eling the dependence structure. Different model types have different sizes
for parameters for the effects. For instance, effects in a cluster-specific
model are larger in magnitude than those in a population-averaged model.
For a more detailed survey of methods for clustered ordered categorical
data, see Agresti and Natarajan (2001).

4 Bayesian analyses for ordinal responses

In this section, we’ll first discuss the Bayesian approach to estimating multi-
nomial parameters that is relevant for univariate ordinal data, mentioning
a couple of particular types of applications. Then we’ll consider estimating
probabilities in contingency tables when at least one variable is ordinal.
Finally, we’ll discuss more recent literature on the modeling of ordinal re-
sponse variables, including multivariate ordinal responses.
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4.1 Estimating multinomial parameters

With c categories in a single multinomial (ignoring explanatory variables,
at first), suppose cell counts (n1, . . . , nc) have a multinomial distribution
with n =

∑
ni and parameters πππ = (π1, . . . , πc)

′. Let {pi = ni/n} be the
sample proportions. The conjugate density for the multinomial probability
mass function is the Dirichlet, expressed in terms of gamma functions as

g(πππ) =
Γ (
∑

αi)

[
∏

i Γ(αi)]

c∏

i=1

παi−1
i for 0 < πi < 1 all i,

∑

i

πi = 1,

where {αi > 0}. Let K =
∑

αj . The Dirichlet has E(πi) = αi/K and
Var(πi) = αi(K −αi)/[K

2(K + 1)]. The posterior density is also Dirichlet,
with parameters {ni + αi}, so the posterior mean is

E(πi|n1, . . . , nc) = (ni + αi)/(n + K).

Let γi = E(πi) = αi/K. This Bayesian estimator equals the weighted
average

[n/(n + K)]pi + [K/(n + K)]γi,

which is the sample proportion when the prior information corresponds to
K trials with αi outcomes of type i, i = 1, . . . , c.

Good (1965) used this approach of smoothing sample proportions in
estimating multinomial probabilities. Such smoothing ignores any ordering
of the categories. Sedransk et al. (1985) considered Bayesian estimation
of a set of multinomial probabilities under the constraint π1 ≤ ... ≤ πk ≥
πk+1 ≥ .. ≥ πc that is sometimes relevant for ordered categories. They used
a truncated Dirichlet prior together with a prior on k if it is unknown.

The Dirichlet distribution is restricted by having relatively few parame-
ters. For instance, one can specify the means through the choice of {γi} and
the variances through the choice of K, but then there is no freedom to alter
the correlations. As an alternative to the Dirichlet, Leonard (1973) pro-
posed using a multivariate normal prior distribution for multinomial logits.
This induces a multivariate logistic-normal distribution for the multinomial
parameters. Specifically, if X = (X1, . . . , Xc) has a multivariate normal
distribution, then πππ = (π1, . . . , πc) with πi = exp(Xi)/

∑c
j=1 exp(Xj) has

the logistic-normal distribution. This can provide extra flexibility. For
instance, when the categories are ordered and one expects similarity of
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probabilities in adjacent categories, one might use an autoregressive form
for the normal correlation matrix. Leonard (1973) suggested this approach
in estimating a histogram.

An alternative way to obtain more flexibility with the prior specifica-
tion is to use a hierarchical approach of specifying distributions for the
Dirichlet parameters. This approach treats the {αi} in the Dirichlet prior
as unknown and specifies a second-stage prior for them. These approaches
gain greater generality at the expense of giving up the simple conjugate
Dirichlet form for the posterior. Once one departs from the conjugate case,
there are advantages of computation and of ease of more general hierarchi-
cal structure by using a multivariate normal prior for logits, as in Leonard
(1973).

4.2 Estimating probabilities in contingency tables

Good (1965) used Dirichlet priors and the corresponding hierarchical ap-
proach to estimate cell probabilities in contingency tables. In considering
such data here, our notation will refer to two-way r × c tables with cell
counts n = {nij} and probabilities πππ = {πij}, but the ideas extend to
any dimension. A Bayesian approach can compromise between sample pro-
portions and model-based estimators. A Bayesian estimator can shrink
the sample proportions p = {pij} toward a set of proportions satisfying a
model.

Fienberg and Holland (1972, 1973) proposed estimates of {πij} using
data-dependent priors. For a particular choice of Dirichlet means {γij} for
the Bayesian estimator

[n/(n + K)]pij + [K/(n + K)]γij ,

they showed that the minimum total mean squared error occurs when

K =
(
1 −

∑
π2

ij

)
/
[∑

(γij − πij)
2
]
.

The optimal K = K(γγγ,πππ) depends on πππ, and they used the estimate K(γγγ,p)
plugging in the sample proportion p. As p falls closer to the prior guess γγγ,
K(γγγ,p) increases and the prior guess receives more weight in the posterior
estimate. They selected {γij} based on the fit of a simple model. For
two-way tables, they used the independence fit {γij = pi+p+j} for the



The Analysis of Ordered Categorical Data 19

sample marginal proportions. When the categories are ordered, improved
performance usually results from using the fit of an ordinal model. Agresti
and Chuang (1989) considered this by adding a linear-by-linear association
term to the independence model.

Rather than focusing directly on estimating probabilities, with prior
distributions specified in terms of them, one could instead focus on asso-
ciation parameters. Evans et al. (1993) considered Goodman’s RC model
generalization of the independence model that has multiplicative row and
column effects. This has linear-by-linear association structure, but with
scores treated as parameters. Based on independent normal priors (with
large variances) for the loglinear parameters for the saturated model, they
used a posterior distribution for loglinear parameters to induce a marginal
posterior distribution on the RC sub-model. As a by-product, this yields a
statistic based on the posterior expected distance between the RC associ-
ation structure and the general loglinear association structure in order to
check how well the RC model fits the data. Computations use Monte Carlo
with an adaptive importance sampling algorithm. For recent work on the
more general RC(M ∗) model, see Kateri et al. (2005). They addressed the
issue of determining the order of association M ∗, and they checked the fit
by evaluating the posterior distribution of the distance of the model from
the full model.

4.3 Modeling ordinal responses

Johnson and Albert (1999) focused on Bayesian approaches to modeling
ordinal response variables. Their main focus was on cumulative link mod-
els. Specification of priors is not simple, and they used an approach that
specifies beta prior distributions for the cumulative probabilities at several
values of the explanatory variables (e.g., see p. 133). They fitted the model
using a hybrid Metropolis-Hastings/Gibbs sampler that recognizes an or-
dering constraint on the intercept {αj} parameters. Among special cases,
they considered an ordinal extension of the item response model.

Chipman and Hamada (1996) used the cumulative probit model but
with a normal prior defined directly on βββ and a truncated ordered normal
prior for the {αj}, implementing it with the Gibbs sampler. They illus-
trated with two industrial data sets. For binary and ordinal regression,
Lang (1999) used a parametric link function based on smooth mixtures
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of two extreme value distributions and a logistic distribution. His model
used a flat, non-informative prior for the regression parameters, and was
designed for applications in which there is some prior information about
the appropriate link function.

Bayesian ordinal models have been used for various applications. For
instance, Johnson (1996) proposed a Bayesian model for agreement in which
several judges provide ordinal ratings of items, a particular application
being test grading. Like Albert and Chib (1993), Johnson assumed that
for a given item, a normal latent variable underlies the categorical rating.
For a given judge, cutpoints define boundary points for the categories. He
suggested uniform priors over the real line for the cutpoints, truncated by
their ordering constraints. The model is used to regress the latent variables
for the items on covariates in order to compare the performance of raters.
For other Bayesian analyses with ordinal data, see Cowles et al. (1996),
Bradlow and Zaslavsky (1999), Tan et al. (1999), Ishwaran and Gatsonis
(2000), Ishwaran (2000), Xie et al. (2000), Rossi et al. (2001), and Biswas
and Das (2002).

Recent work has focused on multivariate response extensions, such as
is useful for repeated measurement and other forms of clustered data. For
modeling multivariate correlated ordinal responses, Chib and Greenberg
(1998) considered a multivariate probit model. A multivariate normal la-
tent random vector with cutpoints along the real line defines the categories
of the observed discrete variables. The correlation among the categorical re-
sponses is induced through the covariance matrix for the underlying latent
variables. See also Chib (2000). Webb and Forster (2004) parameterized
the model in such a way that conditional posterior distributions are stan-
dard and easily simulated. They focused on model determination through
comparing posterior marginal probabilities of the model given the data (in-
tegrating out the parameters). See also Chen and Shao (1999), who also
briefly reviewed other Bayesian approaches to handling such data. They
employed a scale mixture of multivariate normal links, a class of models
that includes the multivariate probit, t-link, and logit. Chen and Shao of-
fered both a noninformative and an informative prior and gave conditions
which ensure that the posterior is proper. Tan et al. (1999) generalized
the methodology in Qu and Tan (1998) to propose a Bayesian hierarchi-
cal proportional odds model with a complex random effect structure for
three-level data, allowing each cluster to have a different number of obser-
vations. They used a Markov chain Monte Carlo (MCMC) fitting method
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that avoids numerical integration to estimate the fixed effects and the cor-
relation parameters.

Finally, frequentist-based smoothing methods often can be given a Baye-
sian interpretation, through relating a penalty function to a prior distribu-
tion. For smoothing methods for ordinal data, see Titterington and Bow-
man (1985), Simonoff (1987), and Dong and Simonoff (1995). For a survey
of Bayesian inference for categorical data, see Agresti and Hitchcock (2004).

5 Non-model based methods for ordinal responses

Over the years a variety of methods have been proposed that provide de-
scription and inference for ordinal data seemingly without any connection
to modeling. These include large-sample and small-sample tests of inde-
pendence and conditional independence, including ones based on random-
ization arguments, methods based on inequality constraints, and nonpara-
metric-type methods based on ranks. In some cases, however, the methods
have close connections with types of models summarized above.

5.1 CMH methods for stratified contingency tables

When the main focus is analyzing the association between two categorical
variables X and Y while controlling for a third variable Z, it is common
to display data using a three-way contingency table. Questions that occur
for such data include: Are X and Y conditionally independent given Z? If
they are conditionally dependent, how strong is the conditional association
between X and Y ? Does that conditional association vary across the levels
of Z? Of course, such questions can be addressed with the models discussed
in Section 2, but here we briefly discuss other approaches.

The most popular non-model-based approach of testing conditional in-
dependence for stratified data are generalized Cochran–Mantel–Haenszel
(CMH) tests. These are generalizations of the test originally proposed for
two groups and a binary response (Mantel and Haenszel, 1959). By treat-
ing X and Y as either nominal or ordinal, Landis et al. (1978) proposed
generalized CMH statistics for stratified r × c tables that combine infor-
mation from the strata. For instance, when both X and Y are ordinal,
a chi-squared statistic having df = 1 summarizes correlation information
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between two variables, combined over strata. It detects a linear trend in
the effect, for fixed or rank-based scores assigned to the rows and columns.
The test works well when the X and Y associations are similar in each stra-
tum. Also, when one expects the true associations to be similar, taking this
into account results in a more powerful test. There is a close connection
between the generalized CMH tests and different multinomial logit models,
in which the generalized CMH tests occur as score tests. See Agresti (2002,
Chapter 7) for details.

In addition to the test statistics, related estimators are available for
various ordinal odds ratios discussed in the next subsection, under the
assumption that they are constant across the strata (Liu and Agresti, 1996;
Liu, 2003). When each stratum has a large sample, such estimators are
similar to ML estimators based on multinomial logit models. However,
when the data are very sparse, such as when the number of strata grows
with the sample size, these estimators (like the classic Mantel-Haenszel
estimator for stratified 2×2 tables) are superior to ML estimators. Landis
et al. (1998) and Stokes et al. (2000) reviewed CMH methods.

5.2 Ordinal odds ratios

For two-way tables, various types of odds ratios apply for ordinal responses.
Local odds ratios apply to 2×2 tables consisting of pairs of adjacent rows
and adjacent columns. Global odds ratios apply when both variables are
collapsed to a dichotomy. Local-global odds ratios apply for a mixture, using
an adjacent pair of variables for one variable and a collapsed dichotomy for
the other one. Continuation odds ratios use pairs of adjacent categories for
one variable, and a fixed category contrasted with all the higher categories
(or all the lower categories) for the other variable. For a survey of types of
odds ratios for ordinal data, see Douglas et al. (1991).

Local odds ratios arise naturally in loglinear models and in adjacent-
category logit models (Goodman, 1979, 1983). Local-global odds ratios
arise naturally in cumulative logit models, using the global dimension for
the ordinal response (McCullagh, 1980). The global odds ratio does not
relate naturally to models discussed in Section 2, but it is a sensible odds
ratio for a bivariate ordinal response. For instance, in a stratified contin-
gency table, let Yk and Xk denote the column and row category respectively
for a bivariate ordinal response for each subject in stratum k. The form of



The Analysis of Ordered Categorical Data 23

the global odds ratio assuming a constant association in each stratum is

θ =
P (Yk ≤ j | Xk ≤ i)/P (Yk > j | Xk ≤ i)

P (Yk ≤ j | Xk > i)/P (Yk > j | Xk > i)
.

Pearson and Heron (1913), Plackett (1965), Wahrendorf (1980), Dale (1984,
1986), Molenberghs and Lesaffre (1994), Williamson et al. (1995), Glonek
and McCullagh (1995), Glonek (1996), Williamson and Kim (1996), and
Liu (2003) have discussed modeling using this type of odds ratio.

5.3 Rank-based approaches

We mentioned above how a generalized CMH statistic for testing condi-
tional can use rank scores in summarizing an association. A related strat-
egy, but not requiring any scores, bases the association and inference about
it on a measure that strictly uses ordinal information. Examples are gener-
alizations of Kendall’s tau for contingency tables. These utilize the numbers
of concordant and discordant pairs in summarizing information about an
ordinal trend. A pair of observations is concordant if the member that ranks
higher on X also ranks higher on Y and it is discordant if the member that
ranks higher on X ranks lower on Y .

For instance, Goodman and Kruskal’s gamma (Goodman and Kruskal,
1954) equals the difference between the proportion of concordant pairs and
the proportion of discordant pairs, out of the untied pairs. The standard
measures fall between -1 and +1, with value of 0 implied by independence.
Such measures are also useful both for independent samples and for asso-
ciation and comparing distributions for matched pairs (e.g. Agresti, 1980,
1983). Formulas for standard errors of the extensions of Kendall’s tau,
derived using the delta method, are quite complex. However, they are
available in standard software, such as SAS (PROC FREQ).

Other rank-based methods such as a version of the Jonckheere-Terpstra
test for ordered categories are also available for testing independence for
contingency table with ordinal responses. Chuang-Stein and Agresti (1997)
summarized the use of them in detecting a monotone dose-response rela-
tionship. See also Cohen and Sackrowitz (1992). Agresti (1981) considered
association between a nominal and ordinal variable. There is scope for ex-
ploring generalizations to ordered categorical data or recent work done in
extending rank-based methods to repeated measurement and other forms
of clustered data (e.g. Brunner et al., 1999).
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5.4 Using inequality constraints

Another way to utilize ordered categories is to assume inequality constraints
on parameters for those categories that describe association structure. For
a two-way contingency table, for instance, we could use cumulative, local,
global or continuation odds ratios to describe the association, imposing con-
straints on their values such as having all (r − 1)(c − 1) log odds ratios be
nonnegative. For instance, we could obtain ML estimates of cell probabili-
ties subject to such a condition, and construct tests of independence, such
as a likelihood-ratio (LR) test against this alternative. Bartolucci et al.
(2001) proposed a general framework for fitting and testing models incor-
porating the constraint on different type of ordinal odds ratios. Among the
various ordinal odds ratios, such a constraint on the local odds ratio is the
most restrictive. For instance, uniformly nonnegative local log odds ratios
imply uniformly nonnegative global log odds ratios.

When r = 2, Oh (1995) discussed estimation of cell probabilities under
the nonnegative log odds ratio condition for different types of ordinal odds
ratios. The asymptotic distributions for most of the LR tests are chi-bar-
squared, based on a mixture of independent chi-squared random variables
of form

∑r
d=1 ρdχ

2
d−1, where χ2

d is a chi-squared variable with d degrees of
freedom (with χ2

0 ≡ 0), and {ρd} is a set of probabilities. However, the
chi-bar-squared approximations may not hold well for the general r × c
case, especially for small samples and unbalanced data sets (Wang, 1996).
Agresti and Coull (1998) suggested Monte Carlo simulation of exact con-
ditional tests based on the LR test statistic. Bartolucci and Scaccia (2004)
discussed the conditional approach of conditioning on the observed mar-
gins. They estimated the parameters of the models under constraints on
various ordinal odds ratio by maximizing an estimate of the likelihood ratio
based on a Monte Carlo approach. A P-value for the Pearson chi-squared
statistics can be computed on the basis of Monte Carlo simulations when
the observed table is sparse. See Agresti and Coull (2002) for a survey of
literature on inequality-constrained approaches.

An alternative approach is to place ordering constraints on parameters
in models. For instance, for a factor with ordered levels, one could replace
unordered parameters {βi} by a monotonicity constraint on the effects such
as β1 ≤ β2 ≤ . . . ≤ βr. See, for instance, Agresti et al. (1987) for the row
effects loglinear model and Ritov and Gilula (1991) for the multiplicative
row and column effects (RC) model.
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5.5 Measuring agreement

A substantial literature has evolved over the years on measuring agreement
between ratings on ordinal scales. The weighted kappa measure is a gen-
eralization of kappa that gives weights to different types of disagreements
(Spitzer et al., 1967). See Gonin et al. (2000) for this measure in a model-
ing context using GEE. For a variety of other measures, some using basic
ideas of concordance and discordance useful for measuring ordinal associa-
tion, see Svensson (1998a, 2000a,b). Other work on diagnostic agreement
involves the use of ROC curves (e.g. Tosteson and Begg, 1988; Toledano
and Gatsonis, 1996; Ishwaran and Gatsonis, 2000; Lui et al., 2004). A
considerable literature also takes a modeling approach, such as using log-
linear models (Agresti, 1988; Becker and Agresti, 1992; Rogel et al., 1998)
or latent variable models (Uebersax and Grove, 1993; Uebersax, 1999) or
Bayesian approaches (Johnson, 1996; Ishwaran, 2000).

6 Other issues

This final section briefly visits a variety of areas having some literature for
ordinal response data.

6.1 Exact inference

With the various approaches described in previous sections, standard in-
ference is based on large-sample asymptotics. For small-sample or sparse
data, researchers have proposed alternative methods. Most of these use a
conditional approach that eliminates nuisance parameters by conditioning
on their sufficient statistics.

For instance, Fisher’s exact test for 2×2 tables has been extended to
r × c tables with ordered categories using an exact conditional distribution
for a correlation-type summary based on row and column scores (Agresti
et al., 1990). When it is computationally difficult to enumerate the com-
plete conditional distribution, one can use Monte Carlo methods to closely
approximate the exact P-value. Kim and Agresti (1997) generalized this for
exact testing of conditional independence in stratified r×c tables. For ordi-
nal variables a related approach uses test statistics obtained by expressing
the alternative in terms of various types of monotone trends, such as uni-
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formly nonnegative values of ordinal odds ratios of various types (Agresti
and Coull, 1998). Bartolucci and Scaccia (2004) gave an alternative ap-
proach based on such a constraint.

Instead of testing independence or conditional independence, one could
test the fit of a model. An exact goodness-of-fit test has been proposed
for various loglinear and logit models using the MCMC method (Forster
et al., 1996). Booth and Butler (1999) discussed alternative computational
approaches using a general simulation method for exact tests of goodness
of fit for various loglinear models. They noted that importance sampling
breaks down for large values of df ; in that case, MCMC methods seem to
be the method of choice.

If the nuisance parameters of a model do not have reduced sufficient
statistics (such as the cumulative link models), the conditional exact ap-
proach fails. In such a case, an unconditional approach that eliminates
nuisance parameters using a “worst-case” scenario is applicable. The P-
value is a tail probability of a test statistic maximized over all possible
values for the nuisance parameters. However, it is a computational chal-
lenge for the model with several nuisance parameters. In general, “exact”
methods lead to conservative inferences for hypothesis tests and confidence
intervals, due to discreteness.

6.2 Missing data

Missing data are an all-too-common problem, especially in longitudinal
studies. Little and Rubin (1987) distinguished among three possible missing
data mechanisms. They classified missing completely at random (MCAR)
to be a process in which the probability of missingness is completely in-
dependent of both unobserved and observed data. The process is missing
at random (MAR) if conditional on the observed data, the missingness is
independent of the unobserved measurements. They demonstrated that a
likelihood-based analysis using the observed responses is valid only when
the missing data process is either MCAR or MAR and when the distribu-
tions of observed data and missingness are separately parameterized.

A useful feature of multivariate GLMMs is their treatment of missing
data when the missingness is either MCAR or MAR, because subjects who
are missing at a given time point are not excluded from the analysis. For
example, partial proportional odds models with cluster-specific random ef-
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fects used in Hedeker and Mermelstein (2000) have this feature. They also
suggested the use of pattern-mixture modeling (Little, 1995) for dealing
with non-random missingness. However, random processes are not nec-
essarily ignorable when non-likelihood-based methods, such as GEE are
used (Mark and Gail, 1994). For instance, Kenward et al. (1994) provided
an empirical illustration of the breakdown in the GEE method when the
process is not MCAR.

With reference to ordinal data, the literature on missing data includes
a score test of independence in two-way tables with extensions for strati-
fied data with ordinal models (Lipsitz and Fitzmaurice, 1996), modelling
nonrandom drop-out in a longitudinal study with ordinal responses (Molen-
berghs et al., 1997; Ten Have et al., 2000) and Bayesian tobit modeling in
studies with longitudinal ordinal data (Cowles et al., 1996). In some cases,
information may be missing in a key covariate rather than the responses.
Toledano and Gatsonis (1999) encountered this in a study comparing two
modalities for the staging of lung cancer. For transitional models, Miller
et al. (2001) considered fitting of models with continuation ratio and cu-
mulative logit links when the data have nonresponse.

6.3 Sample size and power

For the comparison of two groups on an ordinal response, Whitehead (1993)
gave sample size formulas for the proportional odds models to achieve a
particular power. This requires anticipating the c marginal response pro-
portions as well as the size of the effect, based on an asymptotic approach
to the hypothesis test. With equal marginal probabilities, the ratio of the
sample size N(c) needed when the response variable has c categories relative
to the sample size N(2) needed when it is binary is approximately

N(c)/N(2) = .75/[1 − 1/c2].

Relative to a continuous response (c = ∞), using c categories provides
efficiency (1 − 1/c2). The loss of information from collapsing to a binary
response is substantial, but little gain results from using more than 4 or 5
categories.

A special case of comparing two-sample ordinal data with the Wilcoxon
rank-sum statistic, Hilton and Mehta (1993) proposed a different approach
of sample size determination by evaluating the exact conditional distribu-
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tion using a network algorithm with simulation. Lee et al. (2002) compared
the performance of the above methods based on asymptotic and exact ap-
proaches and provided guidelines.

Ohman-Strickland and Lu (2003) provided sample size calculations based
on subject-specific models comparing two treatments, where the subjects
are measured before and after receiving a treatment. They considered both
cumulative and adjacent-categories logit models that contain a subject ran-
dom effect, when the effect of interest is the treatment-by-time interaction
term.

6.4 Software for analyzing ordinal data

For univariate ordinal response models, several software packages can fit
cumulative link models via ML estimation. Examples are PROC LOGIS-
TIC and PROC GENMOD in SAS (see Stokes et al., 2000). Bender and
Benner (2000) showed the steps of fitting continuation-ratio logit models
using PROC LOGISTIC, where the original data set is restructured by
repeatedly including the data subset and two new variables. This allows
model fitting with a common effect. Although S-Plus and R are widely
used by statisticians, ordinal models are not part of standard versions.
The package VGAM at http://www.stat.auckland.ac.nz/∼yee/VGAM/
can fit both cumulative logit and continuation-ratio logit models using ML
methods. The package also fits vector generalized linear and additive mod-
els described in Yee and Wild (1996). We have not used it, but apparently
STATA has capability of fitting ordinal regression models and related mod-
els with random effects, as well as marginal models.

For clustered or repeated ordinal responses data, a benefit would be a
program that can handle a variety of strategies for multivariate ordinal logit
models, including ML fitting of marginal models, GEE methods, and mixed
models including multi-level models for normal or other random effects
distributions, all for a variety of link functions. Currently, SAS offers the
greatest scope of methods for repeated categorical data (see the SAS/STAT
User’s Guide online manual at their website). The procedure GENMOD
can perform GEE analyses (with independence working correlation) for
marginal models using that family of links, including cumulative logit and
probit (Stokes et al., 2000, Chapter 15). There is, however, no capability
of ML fitting of marginal models. The approach of ML fitting of marginal
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models using constrained methods of maximization is available in S-plus
and R functions available from Prof. J. B. Lang (Statistics Dept., Univ. of
Iowa).

For cumulative link models containing random effects, one can use
PROC NLMIXED in SAS. This uses adaptive Gauss-Hermite quadrature
for integration with respect to the random effects distribution to determine
the likelihood function. NLMIXED is not naturally designed for multino-
mial responses, but one can use it for such models by specifying the form of
the likelihood. See Hartzel et al. (2001b) and the SAS website mentioned
above for examples. A FORTRAN program (MIXOR) is also available for
cumulative logit models with random effects (Hedeker and Gibbons, 1996).
It uses Gauss-Hermite numerical integration, but standard errors are based
on expected information whereas NLMIXED uses observed information.

StatXact and LogXact, distributed by Cytel Software (Cambridge, Mas-
sachusetts), provide several exact methods to handle a variety of problems,
including tests of independence in two-way tables with ordered or unordered
categories, tests of conditional independence in stratified tables, and infer-
ences for parameters in logistic regression. Exact inferences for multinomial
logit models to handle ordinal responses are apparently available in LogX-
act, version 6. The models include adjacent-category and cumulative logit
models.

6.5 Final comments

As this article has shown, the past quarter century has seen substantial
developments in specialized methods for ordinal data. In the next quarter
century, perhaps the main challenge is to make these methods better known
to methodologists who commonly encounter ordinal data. Our hunch is
that most methodologists still analyze such data by either assigning scores
and using ordinary normal-theory methods or ignore the ordering and use
standard methods for nominal variables (e.g., Pearson chi-squared test of
independence for two-way contingency tables) despite the loss of power
and parsimony that such an approach entails. Indeed, the only treatment
of contingency tables in most introductory statistics books is of the Pearson
chi-squared test.

So, has ordinal data analysis entered a state of maturity, or are there
important problems yet to be addressed? We invite the discussants of this
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article to state their own beliefs on what is needed in the future, either
for additional research or in order to make these methods more commonly
used in practice. We also invite them to point out areas or key works that
we neglected to mention.

DISCUSSION

Gerhard Tutz
Institut für Statistik

Ludwig-Maximilians-Universität München, Germany

I would like to congratulate the authors for this careful and clear overview
on developments in the analysis of ordered categorical data, developments
to which the authors themselves have contributed much. It certainly may
be used by statisticians and practioners to find appropriate methods for
their own analysis of ordinal data and inspire future research.

My commentary refers less to the excellent overview than to the use
of ordinal regression models in practice. Since McCullagh (1980) seminal
paper ordinal regression has become known and used in applied work in
many areas. However, what is widely known as ”the ordinal model” is the
cumulative type model

P (Y ≤ j|x) = F (ηj(x)) with the linear predictor ηj(x) = αj − x′β.

Also extensions, e.g. to mixed models are mostly based on this type of
model while alternative link functions have been widely ignored outside
the inner circle of statistician interested in ordinal regression models. I
think that in particular the sequential type model has many advantages
over the cumulative model and deserves to play a much stronger role in
data analysis. The sequential type model may be written in the form

P (Y = j|Y ≥ j, x) = F (ηj(x)), ηj(x) = αj − x′β

where F is a strictly monotone distribution function. If F is chosen as
the logistic distribution function one obtains the continuation-ratio logit
model. Since the model may be seen as modelling the (binary) transition
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from category r to category r + 1, given category r has been reached, any
model which is used in binary regression may be used. One of the main
advantages of the sequential model is its potential for extensions if the basic
model is not appropriate. If the cumulative model turns out to be too crude
an approximation one might consider the more general predictor

ηj(x) = αj − x′βj

which is more flexible by allowing for category-specific effects βj . For the
logistic cumulative link one obtains the non-proportional or partial pro-
portional odds model. But, for the cumulative type models the restriction
η1(x) ≤ · · · ≤ ηc−1(x) implies severe restrictions on the parameters and
the range of x−values where the models can hold. Even if estimates are
found, for a new value x the plug-in of β̂j might yield improper probabili-
ties. Often, numerical problems occur when fitting the general cumulative
type model. Even step-halving in iterative estimation procedures may fail
to find estimates β̂j which at least yield proper probabilities within the
given sample. If estimates do not exist one has to rely upon the simpler
model with global effect β. The problem is that inferences drawn from the
proportional odds model may be misleading if the model is inappropriate
(for an example, see Bender and Grouven, 1998).

The sequential model does not suffer from these drawbacks since no
ordering of the predictor values is required. In addition, estimation for
the simple and the more general model with category-specific effects may
be performed by using fitting procedures for binary variables which are
widely available. The widespread focus on the cumulative model is the more
regrettable because problems with the restriction on parameters become
more severe if one considers more complex models like marginal or mixed
models.

A second commentary concerns the structuring of the predictor term in
more complex models. The structuring should be flexible in order to fit the
data well but should also be simple and interpretable. In the simplest case
for repeated measurements in marginal and mixed models the jth predictor
of observation t within cluster i has the basic form

ηtj(xit) = αj − x′

itβ

assuming that αj and β are constant across observations t = 1, . . . , T (for
the mixed model cluster-specific effects have to be included). In particu-
lar if the number of response categories c and/or T is not too small the
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assumption is rather restrictive. Although simple and interpretable mod-
els certainly should be preferred over flexible models, one may only find
structures in data which are reflected by the model. Thus using models as
devices to detect structures future research might consider flexible predic-
tors like

ηtj(xit) = αtj − x′

itβj or ηtj(xit) = αtj − x′

itβt

which contain category-specific and observation-specific parameters. While
the latter extension yields a varying-coefficient model, which is familiar at
least for unidimensional response, the first extension is specific for ordinal
responses. In both cases the number of parameters increases dramatically
if c or T is large. In order to avoid the fitting of noise and obtain inter-
pretable structures parameters usually have to be restricted. For example
the variation of βj can be restricted by using penalized maximum likeli-
hood techniques when the usual log-likelihood l is replaced by a penalized
likelihood

lP = l −
∑

j,s

λs(βj+1,s − βj,s)
2.

with smoothing parameters λs, s = 1,...,c − 1. For the cumulative type
model where additional restrictions have to be taken into account the penal-
ized likelihood yields models between the proportional and non-proportional
model, these models resulting as extreme cases. If λs is very large a pro-
portional odds model is fitted for the sth component of the vector xit.
Thus existence of estimates may be reached by modelling closer to the pro-
portional odds model. Of course the threshold parameters αtj have to be
restricted across t = 1, ..., T and j = 1, ..., c−1. Extensions might also refer
to smooth structuring of the predictor. Additive structures are an interest-
ing alternative to the linear predictor and have been used in the additive
ordinal regression model for cross-sectional data. In the repeated measure-
ments case it is certainly challenging to find smooth structures which vary
across t (or j) and still are simple and interpretable.

A further remark concerns the mean response model. Although it has
to be mentioned in an overview because it may be attractive for practioners
in my opinion it should not be considered an ordinal model. By assigning
scores to categories one obtains a discrete response model which treats
the responses as metrically scaled. If effects are summarized in terms of
location these summaries refer to the assigned scores. If these are artificial
for ordered categories, so will be the results since different scores will yield
different effects.
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An issue which is related to the analysis of ordinal data but seems to
have been neglected in research is prediction of ordinal outcomes. There is a
huge body of papers on prediction of binary or categorical outcomes, mostly
within the framework of classification. It is surprising that the ordering
of classes has hardly been considered in discriminant analysis or machine
learning. The approach to use simple regression if the number of response
categories is large and classification methods if it is small is common but
certainly inappropriate. Since models that work well when used to identify
and quantify the influence of explanatory variables are not necessarily the
best models in prediction it seems worthwhile to develop instruments for the
prediction of ordered outcomes which make use of the order information by
using modern instruments of statistical learning theory as given for example
in Hastie et al. (2001).

Jeffrey S. Simonoff
Leonard N. Stern School of Business

New York University, USA

It is my pleasure to comment on this article. As Liu and Agresti note
in Sections 2.4 and 6.5 of the paper, it is probably true that most method-
ologists still analyze ordinal categorical data by either assuming numerical
scores and using Gaussian-based methods (ignoring the categorical nature
of the data), or using categorical data methods that ignore the ordering
in the data. The latter strategy obviously throws away important infor-
mation, while the former (among other weaknesses) doesn’t answer what
seems to me to be the fundamental regression question: what is P (Y = j)
for given predictor values? Hopefully this excellent article will help encour-
age data analysts to use methods that are both informative and appropriate
for ordinal categorical data.

Liu and Agresti focus on parametric models. I would like to say a lit-
tle more about a subject I’ve been interested in for more than 25 years,
nonparametric and semiparametric (smoothing-based) approaches to ordi-
nal data, which are only briefly mentioned in Sections 2.4 and 4.3. More
details and further references can be found in Simonoff (1996, Chapter 6),
Simonoff (1998), and Simonoff and Tutz (2001), including discussion of
computational issues.

I will focus here on local likelihood approaches. Nonparametric categor-
ical data smoothing is based on weakening global parametric assumptions
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by hypothesizing simple (polynomial) relationships locally. To keep things
simple, consider the situation with a single predictor. Let x1 < · · · < xg

be the distinct values of the predictor variable; at measurement point xi

there are mi objects distributed multinomially ni ∼ M(mi,pi). The log-
likelihood function is then

L =

g∑

i=1




c−1∑

j=1

nij log

(
pj(xi)

1 −
∑c−1

`=1 p`

)
+ mi log

(
1 −

c−1∑

`=1

p`(xi)

)
 (1)

=

g∑

i=1





c−1∑

j=1

nijθj(xi) − mi log

[
1 +

c−1∑

`=1

exp θ`(xi)

]
 , (2)

where

pj =
exp θj

1 +
c−1∑

`=1

exp θ`

(3a)

for j = 1, . . . , c − 1, and

pc =
1

1 +
c−1∑

`=1

exp θ`

. (3b)

The local (linear) likelihood estimate of ps at x maximizes the local
log-likelihood, which replaces θj in (2) with a linear function

β0j + βxj(x − xi) + βyj

(
s

c
−

j

c

)
, (4)

and weights each term in the outer brackets by a product kernel function
K1,h1

(s/c, j/c)K2,h2
(x, xi), where Kq,h(a, b) = Kq[(a − b)/h] (for q = 1, 2),

K1 and K2 are continuous, symmetric unimodal density functions, and h1

and h2 are smoothing parameters that control the amount of smoothing
over the response and predictor variables, respectively. The estimate p̂s(x)
then substitutes β̂0s for θs and β̂0` for θ` into (3a) or (3b). This scheme is
based on the idea that the probability vector p(x) is smooth, in the sense
that nearby values of x imply similar probabilities, and nearby categories
of the response are similar.
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This formulation can be generalized to allow for higher order local
polynomials and multiple predictors by adding the appropriate polynomial
terms to (4); multiple predictors also can be handled using separate smooth
terms through generalized additive modeling (Hastie and Tibshirani, 1990).
It also can be adapted to r × c contingency tables with ordered categories
(based on the Poisson likelihood) by taking x to be a predictor that takes
on the values {1, . . . , r}, providing an alternative to the models described in
Liu and Agresti’s Section 4.2. Such estimates are particularly effective for
large sparse tables, where standard methods can fail. There is also a close
connection here to nonparametric density estimation. If the table is viewed
as a binning of a (possibly multidimensional) continuous random variable,
the local likelihood probability estimates (suitably standardized) become
indistinguishable from the local likelihood density estimates of Hjort and
Jones (1996) and Loader (1996) as the number of categories becomes larger
and the bins narrow.

These methods are completely nonparametric, in that the only assump-
tion made is that the underlying probabilities are smooth. If it is believed
that a parametric model provides a useful representation of the data, at
least locally, a semiparametric approach of model-based smoothing can be
more effective. Consider, for example, the proportional odds model, once
again (to keep things simple) with a single predictor. Local likelihood es-
timation at x is again based on weighting the terms in the outer brackets
in (1) or (2) using a kernel function (note that now the likelihood would
incorporate the proportional odds restriction on p), now substituting a
polynomial for logit[P (Y ≤ j|x)],

logit[P (Y ≤ j|x)] = γ0j + γ1(x − xi) + · · · + γt(x − xi)
t.

The estimated probability p̂j(x) then satisfies

p̂j(x) =
exp(γ̂0j)

1 + exp(γ̂0j)
−

exp(γ̂0,j−1)

1 + exp(γ̂0,j−1)

(since it is the cumulative logit that is being modeled here). This general-
izes to multiple predictors by including the appropriate polynomial terms
or by using separate additive smooth terms. Thus, the model-based es-
timate smooths over predictors in the usual (distance-related) way, but
smooths over the response based on a nonparametric smooth curve for the
cumulative logit relationship. This provides a simple way of assessing the
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appropriateness of the linear assumption in the proportional odds model,
as the nonparametric curve(s) can be plotted and compared to a linear
relationship.

Finally, I would like to echo Liu and Agresti’s hope for increased use of
ordinal categorical data models in the future, meaning parametric, but also
nonparametric and semiparametric, approaches. The latter methodologies
are ideally suited to the easy availability of high quality graphics in packages
like R and S-PLUS, providing useful diagnostic checks for parametric model
assumptions. It has been my experience that both students and researchers
appreciate the advantages of ordinal categorical data models over Gaussian-
based analyses when they are exposed to them, so perhaps merely “getting
the word out” can go a long way to increasing their use. I congratulate the
editors for inviting this paper and discussion, helping to do just that.

Maria Kateri
Department of Statistics and Insurance Science

University of Piraeus, Greece

First of all I would like to congratulate Ivy Liu and Alan Agresti for their
interesting overview and exhaustive survey. In a comprehensive paper they
managed to cover the developments of ordered categorical data analysis to
various directions.

Before expressing my thoughts for possible future directions of research
and ways to familiarize greater audience with methods for ordinal data, as
asked by the authors, I will shortly refer to the analysis of square ordinal
tables (not mentioned in the review) and comment on the modelling of
association in contingency tables, which has not shared the popularity of
regression type models, as also noted by Liu and Agresti (Section 2.5).

Models for square ordinal contingency tables

The well known models of symmetry (S), quasi symmetry (QS) and marginal
homogeneity (MH) are applicable to square tables with commensurable
classification variables. In case the classification variables are ordinal, the
class of appropriate models is enlarged with most representative the con-
ditional symmetry or triangular asymmetry model (cf. McCullagh, 1978)
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and the model of diagonal asymmetry (D). For a detailed review see Good-
man (1985). The Bayesian analysis of some of these models is provided by
Forster (2001).

These models are of special interest with nice interpretational aspects.
They are connected with measuring agreement and change (Von Eye and
Spiel, 1996) as well as with mobility tables (cf. Lawal, 2004). When the con-
tingency table of interest is the transition probability matrix of a Markov
chain, then the models of QS, MH and D asymmetry are related to “re-
versibility”, “equilibrium state” and “random walk” respectively (cf. Lind-
sey, 1999). In this context, the mover-stayer model is also worth mention-
ing.

Modelling association in contingency tables

The main qualitative difference between association and correlation models
is that although both of them are models of dependence, the first are (under
certain conditions) the closest to independence in terms of the Kullback-
Leibler distance, while the later in terms of the Pearsonian distance (Gilula
et al., 1988). Rom and Sarkar (1992), Kateri and Papaioannou (1994) and
Goodman (1996) introduced general classes of dependence models which
express the departure from independence in terms of generalized measures
and include the association and correlation models as special cases. Kateri
and Papaioannou (1997) proved a similar property for the QS model. It
is (under certain conditions) the closest model to complete symmetry in
terms of the Kullback-Leibler distance. Using the Pearsonian distance, the
Pearsonian QS model is introduced and further a general class of quasi
symmetric models is created, through the f -divergence, which includes the
standard QS as special case.

An interesting issue in the analysis of contingency tables, related to
ordinality of the classification variables, is that of collapsing rows or/and
columns of the table. The predominant criteria for collapsing (or not)
are those of homogeneity (cf. Gilula, 1986; Wermuth and Cox, 1998) and
structure (Goodman, 1981, 1985). Kateri and Iliopoulos (2003) proved that
these two criteria, for which it was believed that they can sometimes be
contradictory (Goodman, 1981; Gilula, 1986), are always in agreement.
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The future of ordinal data analysis

According to my opinion, the future of research on ordinal categorical data
lies mainly on the analysis of repeated measures or more general correlated
data. Although the developments in the area the last two decades are
impressing, as it is also evidenced by the review of Liu and Agresti, the
available methodology is inferior compared to that of uncorrelated data
and there are still directions and topics open to further research. Some of
them are quoted briefly next.

Relatively little work has been done on the design of studies with ordinal
repeated data, particularly for sample size and power calculations (Rabbee
et al., 2003). The analysis of multilevel models could also be further de-
veloped. Undoubtfully, models for ordinal longitudinal responses can be
complicated and the corresponding estimation procedures not straighfor-
ward. In the context of marginal models, the regression parameters are
estimated mainly by the generalized estimation equations (GEE), based on
a “working” correlation matrix. For a presentation of the existing GEE
approaches and an outline of their features and drawbacks see also Sutrad-
har (2003). The estimation can be hard for random effect models as well,
especially as the number of random components increases. Hence, the es-
timation procedures for the parameters of such complex models could be
improved and the properties of the estimators further investigated. An
alternative is the use of a non-parametric random effects approach based
on latent class or finite mixture modelling (see Vermunt and Hagenaars,
2004, and the references therein). I expect non-parametric techniques to
see growth, especially for high-dimensional problems. Non-parametric pro-
cedures have then to be compared to the corresponding parametric ones in
terms of power and robustness.

I belong to those who are convinced that the future of Statistics is
Bayesian, thus categorical data analysis will certainly be further developed
towards this direction. Bayesian procedures are also tractable because they
can derive relatively easy small sample inference.

Finally, I believe that methods for ordinal categorical data analysis
are not popular and rarely used in practice mainly due to two reasons.
First, these methods are not taught in most of the undergraduate programs
on Statistics and secondly there are not user-friendly procedures available
for most of them. It is thus crucial the development of a unified user-
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friendly software for the analysis of ordinal categorical data. This would
also facilitate the teaching of these methods at a more introductory level
of studies. The setting up of an association or a forum for categorical data
analysis with regular meetings and an on-line newsletter would help further
towards this direction.

Emmanuel Lesaffre
Biostatistical Centre

Catholic University of Leuven, Belgium

The authors are to be congratulated for an excellent overview of meth-
ods to analyze ordered categorical data, covering early and more recent
approaches. I will use the last paragraph of the authors’ paper to structure
my comments. Hence I will reflect on (1) the use of methods for ordi-
nal data in practice, (2) neglected research areas and (3) future areas of
research.

The use of methods for ordinal data in practice

It strikes me that in my personal statistical consultancy that for ordinal
responses I often end up using an ordinary binary logistic regression in
stead of an ordinal logistic regression. The reason is that my co-workers
(most often medical doctors) understand somewhat better the output of a
binary logistic regression than that of an ordinal logistic regression and that
very often the results of an ordinal logistic regression are only marginally
more significant than those of a binary logistic regression. The latter seems
to be often the case. Clearly, this is a purely personal and most likely
very incomplete observation, but perhaps this is also the observation of
other applied statisticians. I am curious to hear what the experience of
the authors is in this respect and whether they can pinpoint simulation
and/or practical studies which clearly show the benefit of ordinal logistic
over binary logistic regression. Further, the problem with all new methods
is the absence of software. What can we do about this? Statistical journals
could motivate the authors to submit along with their paper also their
software. But, I am afraid this is not enough to get statistical methods used
in practice, the large software houses (e.g. SAS) needs to be convinced for
their usefulness.
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Neglected research areas

With such an extensive overview it is hard to find areas that were not
covered. But it surprised me somewhat that the stereotype model of An-
derson (1984) has not been mentioned. This model has been suggested for
the analysis of “assessed” ordered categorical variables, such as the “extent
of pain relief” scored by medical doctors as “worse” to “complete relief”.
The model allows checking whether the relationship of the (ordered) re-
sponse with the regression vector is indeed ordered. Anderson concludes in
his introduction that “There is no merit in fitting an ordered relationship
as a routine, simply because the response is ordered.” Therefore, Anderson
suggested modeling the relationship of the “assessed” ordinal response y
(ranging from 1 to k) as follows:

P (Y = s) =
exp

(
β0s − φsβββ

Tx
)

k∑

t=1

exp
(
β0t − φtβββ

Tx
)

(1)

where 1 = φ1 > φ2 > . . . > φk = 0. Model (1) is a special case of a multino-
mial logistic regression model. The model is uni-dimensional with respect
to its relationship to the regressors and is in this sense quite different from
the classical approaches for ordinal data. Model (1) can also be extended
to express a two- and higher (maximally (k − 1)-dimensional) relationship
with the regressors. McCullagh concludes in his discussion of the paper
by stating that “This paper is a substantial contribution to an important
and lively area of Statistics”. Yet, I failed to see many applications of this
approach in the literature, nor it seems that this approach to have inspired
others. I wonder how the authors feel about this approach and whether
they have an explanation why this approach never got into practice.

As Anderson noticed, many ordinal scores are of the “assessed” type.
This implies that scorers have to classify subjects on a discrete scale. Hence,
misclassification (of the ordinal score) is a relevant topic in this area but
not covered in this overview. It is known that the effects of misclassification
can be important causing a distortion of the estimated relation between the
response and the regressors. For a general overview I refer to Gustafson
(2003). We have described in a recent paper on a geographical dental
analysis (Mwalili et al., 2005) how correction for misclassification can be
done in an ordinal (logistic) regression with a possibly corrupted ordinal
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response. I believe this is an important research area and wonder how the
authors feel about this.

Further, I did not find much on goodness-of-fit tests in the overview,
but perhaps this is an area of neglected research and not necessarily that
it has been neglected in the overview.

Finally, I just want to mention that methods for ordinal response models
have been studied specific statistical applications and were not mentioned
(inevitably) in this overview. As an example we mention the use of group
sequential methods for ordinal responses (Spiessens et al., 2002).

Future research

As already clear from the previous section, I would value very much (a)
research showing the gain by exploiting the ordinal nature of the data (in
stead of looking at the binary version) and (b) efforts to minimize the
misclassification of the ordinal score and (c) research into optimal ways to
correct for misclassification the ordinal score.

Thomas M. Loughin
Department of Statistics

Kansas State University, USA

First, I would like to thank Professors Liu and Agresti for writing such
a broad and accessible review of ordinal data analysis. As someone who is
both a researcher and an active statistical consultant, I especially appreciate
the clear, uncluttered presentation and the extensive bibliography. I would
also like to thank the editors for providing me the opportunity to read and
comment on this work.

This paper demonstrates that there may be several models that could
be used for the analysis of any particular ordered categorical data set, as
well as some non-model-based procedures. Ultimately, though, any sta-
tistical analysis we conduct leads to inferences of some kind. Whether a
particular analysis approach can provide inferences that are “good” must
be one of the primary considerations in selecting an analysis method. In
the frequentist context, “good” inference means tests with approximately
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the right type I error rates and good power against interesting alterna-
tives, and confidence intervals that are short, yet maintain approximately
nominal coverage. Practitioners must know something about the relative
strengths and weaknesses of inferences resulting from candidate procedures
in order to make informed choices for effective statistical analysis.

We must bear in mind, to paraphrase Box, that all models are approx-
imations. Even in a very good model, parameters must be approximated
based on available data. For many models, different computational ap-
proaches can be employed which can yield different parameter estimates.
Furthermore, most inferences are based on asymptotic arguments, which
by definition provide approximate inference for finite sample sizes, and may
additionally rely on further assumptions and approximations.

Thus, there are many potential sources for errors to creep into inferences
made from any statistical model. What are the relative sizes of these errors?
How valid are inferences based on models for categorical data, in general,
and for ordered categorical data, in particular?

Unfortunately, the news is not always good for nominal data modeling
procedures. Simulations of overdispersed count data in relatively simple
structures have been conducted by Campbell et al. (1999) and Young et al.
(1999). They conclude that tests based on an ordinary linear model anal-
ysis are at least as good as those from various generalized linear models
often recommended for overdispersed data, which are further subject to
convergence problems that do not affect the ordinary linear models. Bilder
et al. (2000) investigate a variety of model-based and non-model-based
approaches to the analysis of multiple-response categorical data (such as
vectors of responses to “mark-all-that-apply” survey questions), including
numerous approaches suggested by Agresti and Liu (1999, 2001). They find
that most of the model-based approaches do not provide reliable tests for a
special case of independence that is relevant in multiple-response problems,
either because of difficulty or instability in fitting the models or because of
instability in the subsequent Wald statistics. On the other hand, a compar-
atively simple sum of Pearson Statistics (also proposed by Agresti and Liu,
1999) combined with bootstrap inference provides tests with error rates
that are consistently near the nominal level and with good power. Finally,
ongoing simulations with my own graduate students on count and pro-
portion data in split-plot designs demonstrate clearly that these problems
cannot be handled adequately by fixed-effect generalized linear models. We
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find further that, even when we use the exact same generalized linear mixed
model structure for the analysis as was used to generate the data, the gen-
eralized linear mixed model analysis is generally somewhat conservative,
and gets more so when the expected counts are small. An analysis by ordi-
nary mixed models maintains proper size and shows better power when the
number of binomial trials is constant across all experimental units. There
is some preliminary indication that the ordinary mixed model analysis may
become liberal when numbers of binomial trials vary substantially across
treatment combinations, and transformation only partially alleviates the
problem. Therefore, there may be room in the practitioner’s toolkit for
both types of analysis.

These results are all for counts and proportions in nominal problems.
We can anticipate that the smoothing that results from assuming some
particular ordinal structure can help to reduce instability that might plague
a comparable nominal analysis, but at what cost in terms of robustness?
How much is known, based on simulation or other assessment, about how
well these specialized procedures perform for standard inferences that might
be of typical interest? I hope that Professors Liu and Agresti can offer a
few words on this issue, or perhaps point out some additional references
where these assessments are made for ordinal methods.

I suspect that Professors Liu and Agresti are quite correct in their sus-
picion in Section 6.5 regarding the choice of analysis for many “methodol-
ogists” (by which I assume they mean “non-statisticians analyzing data”).
They ask us to comment on what we believe is required to raise aware-
ness of these more recently-developed analysis methods. Certainly, little
progress will be made on that front until software is available in popular
statistical packages. Even well-trained statisticians, faced with time con-
straints, may be likely to apply simple and available approximations when
the alternatives are complex methods with little organized software.

But better software, by itself, will not compel people to switch to newer
methods. I liken this to the development of a new surgical procedure. Sur-
geons around the world will take the time to learn new techniques only if ei-
ther the new techniques are easier (or less expensive or less time-consuming)
than the old and provide at least comparable results, or if the results pro-
duced by the new techniques are demonstrably better than they can cur-
rently achieve. Without such evidence, why should they change? What
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reason have we given methodologists to change their statistical analysis
methods for ordinal data? The structural elegance of a model is irrelevant
to them if it can’t generate a useful p-value or confidence interval. Many
of the new methods already have a clear disadvantage by being consider-
ably more complex or difficult to work with than traditional methods of
analysis. Unless new methods are demonstrated to have a clear advantage
in performance over simpler analysis methods, methodologists and many
statisticians will continue to make use of the same tools that their profes-
sional ancestors used.

To this end, it does not suffice to publish results of comparative studies
in a top statistical journal. To truly “get the word out” about modern
methods, there is a need for easy-to-swallow statistical papers published in
the literature of the people who need to use them, and for application papers
demonstrating their use. A brief review of Professor Agresti’s website shows
that he has been active in this regard. More of us (myself included) need
to take a larger role in publishing work of practical utility to non-statistical
readers.

Elisabeth Svensson
Department of Statistics

Örebro University, Sweden

This paper by Liu and Agresti contains a comprehensive review mainly
concerning the development of models for ordinal data. It was a pleasure
for me reading this paper as it reflects the methodological and computa-
tional progress of the models presented by Agresti (1989a,b) and McCullagh
(1980), and these papers were important sources of inspiration in my de-
velopment of methods for paired ordinal data. The authors have raised
interesting problems to discuss. In some sense modelling ordinal data has
matured, but there is still more to consider. I would like to add an approach
to analysis of ordinal data, supplementary to the measures based on con-
cordance/discordance mentioned in the paper (Section 5.3). I agree that
an important task for the future is to make the models and methods known
and used, both by statisticians and others. It is a matter of knowledge but
also to bring about an awareness regarding the important link between the
properties of data and the choice of suitable methods of analysis.
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As Liu and Agresti mention in Section 5, besides the methodological
developments in modelling ordinal data there is an ongoing research re-
garding non-model methods of analysis. My research concerns development
of methods for evaluation of paired ordinal data irrespective of the num-
ber of possible response categories, including continuous data from visual
analogue scales (VAS). The paired data could come from inter- or intra-
rater agreement studies, but my methods are also applicable to analysis of
change in paired ordinal responses. The basic idea behind my approach
is the augmented ranking that takes account of the information obtained
by the dependence between the paired assessments; therefore the pairs of
ordinal data are assigned ranks that are tied to the pairs of observations, in
contrast to the classical marginal methods, where the ranks are tied to each
marginal distribution. This ranking approach makes it possible to evaluate
and measure the marginal determined systematic change in responses (bias
or group-specific change) separately from the additional individual vari-
ability that is unexplained by the marginal distribution (subject-specific
change), (Svensson, 1993; Svensson and Holm, 1994). The approach takes
account of the rank-invariant properties of data and allows for small data
sets and zero cell frequencies of the contingency table as well.

A presence of systematic change/disagreement in scale position and/or
concentration between the two assessments is expressed by the measures of
relative position and relative concentration; the latter is useful in case of
nonlinear change in ordinal responses. The additional individual variabil-
ity in the pairs of assessments is related to the so-called rank-transformable
pattern, which is the expected pattern of paired classifications, conditional
on the two sets of marginal distribution, when the internal ordering of all in-
dividuals is unchanged even though the individuals could have changed the
ordinal response value between the assessments. Two measures of subject-
specific dispersion from the rank-transformable pattern are suggested. The
measure of Disorder is based on indicators of discordant pairs (Svensson,
2000a,b), and the Relative Rank Variance is defined by the sum of squares of
the augmented mean rank differences (Svensson, 1993, 1997). Alternatively
the subject-specific dispersion from the rank-transformable pattern can be
expressed in term of closeness or homogeneity. A simple measure is the coef-
ficient of monotonic agreement, which is a measure of association of indica-
tors of ordered and disordered pairs in relation to the rank-transformable
pattern. The augmented rank-order agreement coefficient expresses the
correlation of augmented ranks (Svensson, 1997). Both measures express
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the dispersion of paired ordinal data from the rank-transformable pattern,
which only in the case of equal marginal distributions coincides with the
main diagonal of a square contingency table. The approach is applied to
agreement studies (Svensson and Holm, 1994) but also to inter-scale com-
parisons (e.g. Gosman-Hedström and Svensson, 2000; Svensson, 2000a,b)
and evaluation of change (e.g. Sonn and Svensson, 1997; Svensson, 1998a;
Svensson and Starmark, 2002). Hopefully in the future, the augmented
ranking approach could be involved in statistical models for ordinal re-
sponses as well.

I agree with Liu and Agresti that in applied research, little or no atten-
tion is paid to the relationship between measurement properties of data,
although this is fundamental to the choice of statistical methods; a prob-
lem highlighted by Hand (1996). With the increasing use of questionnaires
and other types of instruments for qualitative variables together with the
complexity in research questions, it is important for the quality of research
that specialized methods and models for ordinal data are used.

According to a survey among doctoral students in medicine, tradition
and the preference for established statistical methods often have a delay-
ing effect on the acceptance of new statistical approaches (Svensson, 2001).
The major reasons mentioned why novel statistical methods for ordinal
data were not used were lack of knowledge, the tradition within research
groups and that traditional normal-theory methods were demanded in or-
der to compare results with those of previous studies. My way of making
novel methods known and more used in practice is to give courses to ap-
plied research groups also involving the supervisors (Svensson, 1998b). The
information delay concerning development of statistical methods can also
be bridged by means of joint courses for statisticians and users (Svensson,
1998b, 2001).

This overview by Liu and Agresti is a valuable tool in making good
models and methods for analysis of ordinal data better known and would
inspire statisticians to apply these methods to research problems in prac-
tice.
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Ana M. Aguilera
Department of Statistics

University of Granada, Spain

First, I would like to congratulate Professors Liu and Agresti for their
excellent review of the literature on methods for analyzing ordinal categor-
ical data. I have enjoyed very much reading this article and I’m sure that
it will contribute to make ordinal methods more popular among statistical
users. The paper is so complete that it is really hard to add something
new. However I would like to mention a recent improvement of the ordinal
logit models that can be very interesting in practice.

Bastien et al. (2005) have developed, as a particular case of partial
least squares generalized linear regression (PLS-GLR), a PLS ordinal lo-
gistic regression algorithm that solves the problem that appears when the
number of explicative variables is bigger than the number of sample ob-
servations or there is a high dependence framework among predictors of a
logistic regression model (multicollinearity). It is known that in order to
overcome these problems PLS uses as covariates latent uncorrelated vari-
ables given by linear spans of the original predictors that take into account
the relationship among the original covariates and the response. PLS-GLR
is an ad hoc adaptation of PLS algorithm where each one of the linear
models that involves the response variable is changed by the corresponding
logit model meanwhile the remaining linear fits are kept. An alternative
solution to these problems is the principal component logistic regression
(PCLR) model developed by Aguilera et al. (2005) for the case of a binary
response that could be easily generalized for an ordinal multiple response
by using, for example, cumulative logits. PCLR is based on using as co-
variates of the logit model a reduced set of optimum principal components
selected according to their ability for explaining the response.

With respect to the interesting question, formulated by the authors in
the last section of the paper, about the future of ordinal data analysis, I
think that in addition to write popularizing works on the subject, simi-
lar to this paper and the pioneer book by Agresti (1984), it is essential
that standard versions of the software packages widely used by statisticians
include in their menus the most usual methodologies for ordinal data anal-



48 I. Liu and A. Agresti

ysis. In fact, some packages very used in education (SPSS, among others)
do not offer basic tools as the ordinal-nominal association measures studied
in Agresti (1981), ordinal log-linear models or stepwise selection procedures
for the proportional odds models.

On the other hand, I think that research on important non-solved prob-
lems must also continue. In the context of functional data analysis, for
example, functional generalized linear models (FGLM) have been recently
introduced by James (2002) with the aim of explaining a response variable
in terms of a functional covariate whose observations are functions instead
of vectors as in the classic multivariate analysis. The particular case of the
logistic link (functional logit models) has been deeply studied in Escabias
et al. (2004b) where functional principal component analysis of the func-
tional predictor is used for solving the multicollinearity problem and getting
an accurate estimation of the parameter function. This functional princi-
pal component logit model has been successfully applied for predicting the
risk of drought in certain area in terms of the continuous-time evolution
of its temperature (Escabias et al., 2004a). In this line of study, I think
that it would be interesting in the future to adapt FGLM to the case of an
ordinal response by using different link functions as the ones mentioned in
this paper, and to study their practical performance.

Finally, I would like to thank the editors of TEST journal for giving me
the opportunity of discussing this paper.

Rejoinder by I. Liu and A. Agresti

We thank the discussants for reading our article and taking the time to
prepare thoughtful and interesting comments. In particular, we’re pleased
to see that this discussion has highlighted some interesting topics and ap-
proaches that we did not discuss in our survey article. In the following
reply, Dr. Agresti apologizes for what must seem like an over-emphasis on
his own publications, but it’s easiest to reply in terms of work with which
one is most familiar!

Gerhard Tutz makes a strong argument that more attention should be
paid to sequential models. An important point here is that it generalizes
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more easily than the cumulative logit model when the simple proportional
odds form of model fits poorly. One reason the sequential model may not
be more commonly used is that results depend on whether categories are
ordered from low to high or from high to low, and in most applications with
ordinal data it is natural for results to be invariant to this choice.

We agree with Dr. Tutz that the mean response model is less desirable
for modeling ordinal response data. However, we like to keep it in our tool
bag for a couple of reasons: This type of model is easier for non-statisticians
to understand than logistic models, and as the number of response cate-
gories increases it is nice to have a model that interfaces with ordinary
regression without recourse to assuming an underlying latent structure.
Although there is the disadvantage of choosing a metric, in practice we
face the same issue in dealing with ordinal explanatory variables in any of
the standard models.

Dr. Tutz makes an interesting observation about the lack of literature
on prediction for ordinal responses. Also, using more general structure for
the predictor term as suggested by Dr. Tutz is useful for improving the
flexibility of model fitting. As he notes, the challenge is to find smooth
structures that are simple and interpretable. Such methods will probably
be more commonly used once methodologists become more familiar with
actual applications where this provides useful additional information.

Along with Gerhard Tutz, Jeffrey Simonoff is one of the world’s experts
on smoothing methods for categorical data. We very much appreciated his
discussion, which leads those of us who are not as familiar with this area
as we should be through the basic ideas. His discussion about this together
with Tutz’s show a couple of ways that smoothing can recognize inherent
ordinality. These methods are also likely to be increasingly relevant as more
applications have large, sparse data sets.

Maria Kateri mentions that our review did not focus on the analysis
of square contingency tables with ordered categories. She mentioned some
models that apply to such tables. The quasi-symmetry model is a beauti-
ful one that has impressive scope, and the properties she mentions about
minimizing distance to symmetry give us further appreciation for it. We’d
like to mention a couple of other models for square ordinal tables that we
feel are especially useful. One is an ordinal version of quasi symmetry that
assigns scores to the categories and treats the main effect terms in the
model as quantitative rather than qualitative. With this simplification, the



50 I. Liu and A. Agresti

sufficient statistics for the main effects are the row mean and the column
mean rather than the entire marginal distributions. See Agresti (1993) and
Agresti (2002, Section 10.4.6). Another useful model is a cumulative logit
model with a location shift for the margins. This can be done conditionally
(with a subject-specific effect, as in Agresti and Lang (1993) and Agresti
(2002, Exercise 12.35)) or marginally (Agresti, 2002, Section 10.3.1). The
GEE approach with the marginal version of the latter model is a special
case of the methodology discussed in Section 3.1 of this paper, but for such
simple tables our preference is for maximum likelihood fitting.

Thanks to Dr. Kateri for mentioning other nonparametric approaches
to random effects modeling beyond what we mentioned in Section 3.3. Dr.
Kateri may well be correct that our future is a Bayesian one. However,
specifying priors in a sensible fashion for ordinal models seems challenging
for practical implementation, especially for the more complex models that
she notes will be increasingly important.

An advantage of most ordinal models, compared to those for a nominal
response, is having a single parameter for each effect. So, it is disappoint-
ing, but not surprising, to hear from Emmanuel Lesaffre that many are still
more comfortable using ordinary logistic regression. Dr. Lesaffre mentions
that in his experience the results of an ordinal logistic regression are only
marginally more significant than those of a binary logistic regression. For
the most part, this has not been our experience. The results in the article
by Whitehead (1993) that we quote in Section 6.3 suggest that although
there’s usually not much to be gained with more than 4 or 5 categories,
using more than two categories can result in more powerful inferences than
collapsing to a binary response. Whitehead’s results apply when the out-
come probabilities are similar, and if most observations occur in one cate-
gory then collapsing to that category versus the others will not make such
a noticeable difference.

It is indeed an oversight that we failed to mention the interesting arti-
cle by Anderson (1984). With fixed scores {φt} that model relates to the
loglinear association models of Goodman (1979), and when those scores
are equally-spaced it is probably most easily understood when expressed
as an adjacent-categories logit model. This type of model has received a
fair amount of attention, albeit not nearly as much as the cumulative logit
model. For parameter scores, it relates to other association models of Good-
man’s, and the possible reduction of power from the increase in parameters
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needed to describe an association as well as the inferential complications
that can occur may be a reason it has not received more attention. Perhaps
the main reason, though, was the untimely death of John Anderson, so the
model lacked an advocate. The articles by Agresti et al. (1987) and Ritov
and Gilula (1991) did attempt to deal with forms of the model for two-way
tables.

We agree wholeheartedly with Dr. Lesaffre that misclassification is an
area that deserves much more attention. Probably a survey paper by some-
one (Dr. Lesaffre being a prime candidate!) on this topic would help to
familiarize the rest of us with the possible ways of handling this important
problem. Regarding his query about goodness of fit, we are aware of the
article we cited by Lipsitz et al. (1996) but nothing else, so this may well be
a neglected area, particularly with regard to marginal and mixed models
for multivariate responses.

Dr. Loughin makes the excellent point that a new method is not truly
“ready for prime time” unless we can show it performs well according to the
criteria he mentions, and it is unlikely to be adopted much in practice unless
practitioners see clear advantages to doing so. We believe the suggestion
he makes is correct that the smoothing inherent in ordinal methods can
provide improvements relative to models for nominal responses. We all
know the benefits of parsimony, including reduced mean square error in
estimating measures of interest, even if the simpler model fits a bit worse
than a more complex model. That’s one reason we rarely would use the
generalization of the proportional odds model that has separate parameters
for each cumulative logit. In terms of a reference to where assessments
were made that show the advantage of ordinal methodology, Agresti and
Yang (1987) showed that sparseness of data is much more of a problem
for nominal-scale models than ordinal models. Finally, the remarks Dr.
Loughin makes about generalized linear mixed models are worrisome but
very interesting and highlight the need for further study of how well these
methods work in practical situations.

Like Maria Kateri, Elisabeth Svensson focuses on paired ordinal data,
highlighting an approach she’s used that is non-model-based. We welcome
the initiative she suggests of connecting this approach to statistical mod-
els for ordinal responses. This would seem to be helpful for generalizing
her approach to make summary comparisons while adjusting for covariates.
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Dr. Svensson has worked admirably to bridge the gap between statisticians
and practitioners with joint courses. Those of us involved in research need
to remember the fundamental importance of this, alluded to also by Dr.
Loughin, and try to participate in such activities. At the University of
Florida, it’s worked well to have an applied course in categorical data anal-
ysis that can be taken both by undergraduate statistics majors and by
graduate students in other areas who have already studied basic statistical
methods – this course enrolls about 50 students every year, about 75% of
them being graduate students from other disciplines. In the context of ap-
plications, we should remember that many important advances in categor-
ical data analysis made by Leo Goodman became commonly used because
he would accompany an article in a statistics journal with a companion
article in a social science journal that would show both the usefulness of
the method and how to use it.

Dr. Aguilera has focused on a couple of interesting problems on which
there seems to be much that can be done. The work cited by Aguilera et al.
(2005) and Bastien et al. (2005) addresses issues arising with large numbers
of explanatory variables relative to observations. Undoubtedly interesting
applications await for such methodology, such as perhaps large, sparse ta-
bles arising in genomics. The same can certainly be said for functional data
analysis methods.

In summary, based on the remarks of these discussants, there still seems
to be considerable scope for statisticians to become pioneers in further
developing methods for ordinal data. Particular attention can be paid
to smoothing methods and prediction, mixed models, misclassification and
missing data, Bayesian modeling, dealing with data sets with large numbers
of variables, and finding ways to highlight to methodologists that it is worth
their time to learn methods specially designed for ordinal data. We look
forward to seeing how this area evolves further over the next decade.
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