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 Simultaneously Modeling Joint and Marginal
 Distributions of Multivariate Categorical Responses

 Joseph B. LANG and Alan AGRESTI*

 We discuss model-fitting methods for analyzing simultaneously the joint and marginal distributions of multivariate categorical

 responses. The models are members of a broad class of generalized logit and loglinear models. We fit them by improving a maximum
 likelihood algorithm that uses Lagrange's method of undetermined multipliers and a Newton-Raphson iterative scheme. We also
 discuss goodness-of-fit tests and adjusted residuals, and give asymptotic distributions of model parameter estimators. For this class

 of models, inferences are equivalent for Poisson and multinomial sampling assumptions. Simultaneous models for joint and marginal

 distributions may be useful in a variety of applications, including studies dealing with longitudinal data, multiple indicators in opinion
 research, cross-over designs, social mobility, and inter-rater agreement. The models are illustrated for one such application, using
 data from a recent General Social Survey regarding opinions about various types of government spending.

 KEY WORDS: Adjusted residuals; Constrained maximum likelihood; Lagrange multiplier; Marginal models; Ordinal data; Repeated
 measurement.

 1. INTRODUCTION

 Consider Table 1, taken from the 1989 General Social

 Survey conducted by the National Opinion Research Center

 at the University of Chicago. Subjects in the sample were

 asked their opinion regarding government spending on (1)

 the environment, (2) health, (3) assistance to big cities, and
 (4) law enforcement. The common response scale was (too

 little, about right, too much).

 Two types of questions about Table I lead to distinct types

 of models. One question relates to how the response distri-

 butions differ for the four items. For instance, one might ask
 whether subjects regarded spending as relatively higher on

 one item than on the others. Answers to this question refer

 to modeling the four one-way marginal distributions of Table
 1. A second question pertains to the dependence structure

 of the responses. For instance, one might study the strength
 of association between responses on various pairs of items,

 analyzing whether some pairs are more strongly associated
 than others or whether the pairwise association varies ac-

 cording to responses on the other indicators. Consideration
 of these matters relates to modeling the joint distribution in
 Table 1.

 Standard models for joint distributions of categorical re-
 sponses do not imply simple relationships among marginal

 distributions. Hence modeling marginal distributions of cat-

 egorical responses is normally conducted separately from
 modeling of joint distributions. In this article we show how
 models of the two types can be fitted simultaneously. This
 process provides improved model parsimony. One also ob-

 tains a single test that simultaneously summarizes goodness
 of fit and a single set of fitted values and residuals. Estimators
 of model parameters and cell expected frequencies are also

 potentially more efficient than with separate fitting proce-
 dures.

 We consider the modeling of multivariate categorical re-

 sponses in which a different response scale is allowed for
 each response. The response scales may be nominal or or-
 dinal. Section 2 specifies a generalized class of log-linear and
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 logit models that one can apply simultaneously to the joint

 and marginal distributions. The marginal distributions

 modeled may be of any order. For instance, the modeling

 of pairwise associations without controlling for other vari-

 ables refers to second-order marginal tables of the joint dis-

 tribution. Section 3 expresses the models using constraint

 specifications. We then propose a model-fitting approach that

 improves on approaches discussed by Aitchison and Silvey

 (1958) and Haber (1985a), using the method of Lagrange's

 undetermined multipliers. The improved algorithm applies

 a Newton-Raphson iterative scheme in which the matrix to

 be inverted has much simpler form than in previously pro-

 posed algorithms.

 Our analyses assume a multinomial sampling scheme for

 the cell counts. Section 4 provides asymptotic distributions

 of the parameter estimators and generalizes results of Birch

 (1963) and Palmgren (1981) relating these distributions to

 those obtained assuming Poisson sampling. Section 5 con-
 siders model goodness of fit and shows that it can be parti-
 tioned into goodness of fit for the marginal and joint com-
 ponents. This section also generalizes Haberman's (1973)
 adjusted residuals for inspecting the fit both in cells of the

 table and in marginal totals. Section 6 illustrates the simul-
 taneous fitting approach using Table 1, and Section 7 dis-

 cusses potential compatibility problems of simultaneous joint
 and marginal models. Finally, Section 8 discusses other types

 of data sets for which simultaneous joint and marginal mod-

 eling is relevant.

 2. SIMULTANEOUS JOINT AND MARGINAL MODELS

 Let T denote the number of component variables in the

 multivariate response, let I, denote the number of categories
 in the response scale for response variable t, and let r

 = t =I It denote the number of possible response profiles.
 Suppose that observations on the responses are obtained at

 s fixed levels of a set of explanatory variables. The observed
 data can be displayed in an s X r contingency table. For
 simplicity, most of our notation refers to a single population

 (s= 1).

 ? 1994 American Statistical Association
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 Table 1. Opinions About Government Spending

 Cities 1 2 3

 Law Enforcement 1 2 3 1 2 3 1 2 3

 Environment Health
 1 1 62 17 5 90 42 3 74 31 11

 2 11 7 0 22 18 1 19 14 3
 3 2 3 1 2 0 1 1 3 1

 2 1 11 3 0 21 13 2 20 8 3
 2 1 4 0 6 9 0 6 5 2
 3 1 0 1 2 1 1 4 3 1

 3 1 3 0 0 2 1 0 9 2 1
 2 1 0 0 2 1 0 4 2 0
 3 1 0 0 0 0 0 1 2 3

 NOTE: These data are from the 1989 General Social Survey, with categories 1 = too little, 2

 = about right, and 3 = too much.

 Let Yi denote the number of subjects having response
 profile i, where i = (i,, .. , 0i). Let ir = (,xi, ..., 7X'),
 where 7ri denotes the probability that a randomly selected

 subject has response profile i. We assume that Y = (YI, ,
 Yr)' has a multinomial distribution with probabilities ir. We

 denote corresponding expected frequencies in the cells of the

 contingency table by ,u. For marginal distribution t, let k(t)
 denote the probability of response k. When response variable

 t is ordinal, let yj( t) = j k=i M(t) denote the jth cumulative
 marginal probability.

 Let J(*) denote a model for the joint distribution, and
 let M(*) denote a model for first-order marginal distribu-

 tions. Let J(A) n M(B) denote the model that specifies si-

 multaneously model A for the joint distribution and model
 B for the marginal distributions. Let S denote the saturated
 model. For instance, the model J(S) n M(B) assigns struc-

 ture only to the marginal distributions and permits arbitrary
 higher-order interactions among the respotises. Fitting a
 marginal model M(B) alone is equivalent to fitting the ;si-
 multaneous model J(S) n M(B). The simplest model of

 interest for M(*) is first-order marginal homogeneity, de-
 noted by M(H).

 Fitting a joint model J(A) alone is equivalent to fitting

 the simultaneous model J(A) n M(S), which focuses on
 the interaction structure without making assumptions about
 the marginal distributions. This class includes ordinary log-
 linear models for expected cell counts in contingency tables.
 These models are not designed to estimate effects in marginal

 distributions, because their parameters have a conditional
 interpretation. The simplest model of interest for J( * ) is

 mutual independence of the responses, denoted by J(I).
 This article focuses on a more parsimonious class of mod-

 els that use unsaturated components for both the joint and
 marginal distributions. Specifically, we consider models for

 each distribution that have form C log A,u = X,8. We denote
 the model for the joint distribution by C1 log A1g = XI#,
 and the model for the marginal distributions by C2 log A2,I
 = X2f32. For each component, we take C to be either an
 identity, contrast (rows sum to 0), or zero matrix and we

 assume that the model matrix X has full column rank. The

 matrices in the specification of the joint model need not

 have the same form as the matrices in the specification of

 the marginal model.

 Permissible models for the joint distribution include not

 only simple log-linear and logit models but also models for

 log odds ratios using groupings of cells, such as models for

 global odds ratios (Dale 1986). The marginal model can also

 be a log-linear or a corresponding logit model, or some other

 form of multinomial response model, such as a cumulative

 logit model. Haber (1985a,b) gave examples of nonstandard

 models that fall in this class of marginal models.

 3. MAXIMUM LIKELIHOOD FITTING OF
 SIMULTANEOUS MODELS

 The standard approach to maximum likelihood (ML) fit-

 ting of marginal or simultaneous models involves solving

 the score equations using the Newton-Raphson method,
 Fisher scoring, or some other iterative reweighted least

 squares algorithm. The most common approach-used, for
 instance, by Dale (1986), McCullagh and Nelder (1989, p.

 219), Lipsitz, Laird, and Harrington (1990), and Becker and

 Balagtas (199 1) -reparameterizes the cell probabilities in the

 multinomial log-likelihood in terms of the joint and marginal
 distribution model parameters. A severe limitation of this
 approach is that the reparameterization is typically difficult

 and very awkward for the general T-variate case.
 An alternative method, discussed by Aitchison and Silvey

 (1958), Haber (1985a), and Haber and Brown (1986), is

 Lagrange's method of undetermined multipliers. One views
 the models as inducing constraints on the cell probabilities
 and maximizes the likelihood subject to these constraints.
 Because the algorithm that we use is a modification of Ha-

 ber's, we first briefly describe his algorithm.
 The simultaneous models can be specified as

 C log AIu = Xf,, ident(,u) = ?, (1)

 where C = C1 E C2, A' = (A'1, A'), X = X1 E X2, A

 = (23', fl2)', and ident(It) = 0 denotes multinomial identi-
 fiability constraints. The symbol E denotes a direct sum.

 (For example, C1 E C2 = E i2= I C1 is the block diagonal matrix
 with C1 and C2 as the blocks.) For the case of s independent

 multinomial samples of sizes n = (nI, n2, ... , ns)', the mul-
 tinomial identifiability constraints have the form (ED l r),,
 - n = 0. Let U denote a full column rank matrix such that

 the space spanned by the columns of U is the orthogonal
 complement of the space spanned by the columns of X, so
 that U'X = 0. Model (1) is equivalently expressed as the
 constraint model

 U'C log A, = 0, ident(u) = 0. (2)

 Haber (1985a) outlined a method for computing U.
 The objective is to maximize the kernel of the multinomial

 log-likelihood, 1(,; y) = y' log ,u, subject to model (1) or,

 equivalently, (2), holding. We express the model parameter
 space as

 {,u : U'C log A,u = 0, ident(,u = 0 }

 = {,:f(,u) = 0, ident(,u) - 0} .

 Haber (1 985a) used a Newton-Raphson algorithm to solve

 the Lagrangian likelihood equations
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 [al& Y ) +a ident( A), Af (^)1
 + T~+ A

 g(0+) f0() O,

 ident(,)

 where 0+ = vec(,u, X, r), with X and r being vectors of un-
 determined multipliers. For the models he considered, T
 could be solved for explicitly and was nonstochastic. Hence

 he considered the solution 0 = vec(,, A) to the simpler set
 of equations

 (9l(ji; y) (9f()'1
 Ay;) U + )X

 g(f) =(. ' 1=0,

 where u = rs denotes the length of the vectors y and ,u. The
 Newton-Raphson iterative scheme is

 0(t+1) = o(t) - (90' ) -Ig(0t)I t = 0, 1, 2, .

 where the derivative matrix can be calculated as

 'g; + (9 fCO (X ?) ( )1
 (9g (0)9/.L'(/L / 9

 a f ~~~0
 L dy' ?

 A drawback to this algorithm is that the matrix ag(0)/490'
 is typically very large (with the numbers of rows and columns

 exceeding the number of cells in the contingency table) and
 does not have a simple form, making inversion difficult. Our
 proposed modifications of this algorithm uses an iterative
 scheme involving a matrix that is much simpler to invert.
 Also, we use a reparameterization from ,u to t = log , for
 both the log-likelihood and model parameter space, to avoid
 interim out-of-range values during the iterative process.

 For the reparameterized kernel of the log-likelihood, l(t;y)
 = y'C, we express the model parameter space as

 {1:U'ClogAe =O, ident(0)=0}
 = {t: h(t) = 0, ident(t) = 0}.

 We solve for 4 by solving for 0 in the likelihood equations

 [ a/t Y)et 49h()
 g(b) =

 h(s)

 =[y-e + H(t)1 = 0, (3)

 where H(t) = clh()'/(9 and 0 = vec( , X). To do this, we
 use the modified Newton-Raphson iterative scheme

 0(t+1) - 0(t) -(G(0 (t)))-'g(0 (t)), t = 0, 1, 2, . . ., (4)

 with

 [-D(et) ()

 where D(e ) denotes a diagonal matrix with the elements of

 et on the main diagonal. We set () = log y and x (?) = 0,
 making the slight adjustment ? = log(y + E) for some
 small e > 0 when there are sampling zeros.

 Lang (1992) proved that G(6) is the dominant part of
 dg( 0)/aO', in the sense that

 &g(O) = nG(f) + [(1) 0]:

 where o(l) represents a sequence that converges to 0 as n*
 = min { ni, . . ., n,} -} oo . The utility of using G(O) is due
 to the simplicity of its inverse, which is

 G-1 (0)

 [-D-1 + D-1H(H'D-1H)- H'D-' D-1H(H'D-1H)-'

 L (Hl)-'H)-'H'D-' (H,D-'H)-l

 where D = D(et) and H = H(t). To invert G, we need only
 invert a diagonal matrix, D, and a symmetric positive definite
 matrix, H'D 1H. After obtaining the fitted values ,u = e on
 convergence of the algorithm, we calculate model parameter
 estimates using ,B = (X'X ) 1X'C log Aji.

 4. ASYMPTOTIC BEHAVIOR OF ESTIMATORS

 One can use the delta method to describe the asymptotic

 behavior of 0 = vec(4, X) and several continuous functions
 of@, such as , = et and 13 In this section, 1, ,, and ,B denote
 the true (unknown) parameter values. Assuming that model
 ( 1) holds, Lang ( 1993) showed that under certain nonrestric-
 tive assumptions, the asymptotic normal distributions

 X AN(O, AM),

 AN(, If'),
 ii ~N(;,g, 2(^A

 and

 , N(O, 7, ^ (5)

 hold, where

 2(M) = -'lH)-'

 25-M) = D-'l- E) sk Irtr - D-'H(HfD-'H)- H D-'

 (M) = D- E)s AIAk H(HfD-'H) H,

 and

 (M)
 2,6

 = (X'X -1XfCD(AIf1AX (-M)A'D(Au) -1C'X (X'X )-1.

 The assumptions are analogous to requiring that a standard
 log-linear model contain all "fixed-by-design" parameters.
 Moreover, X and t are asymptotically independent. The lim-
 iting distributions in (5) hold as n* = min{ n1, ..., n,}
 converges to infinity such that each multinomial index nk
 grows at the same rate.

 Under these assumptions, it follows from Birch (1963)

 that the same point estimates occur when we treat cell counts
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 as independent Poisson random variables. The asymptotic
 covariance matrices for Poisson sampling are

 X(P)= (H= D-1H)-

 X P) = D-1-D-'H(H'D-'H -'HD

 x f) = D -H(H1D-'H)-1H,
 and

 z (P)

 = (X'X ) -X'CD(Ag)-'A, (P)A'D(Au) -LC'X (X'X)-.

 The limiting distributions hold as i,u = min { /.i } converges

 to infinity, such that each Iii grows at the same rate. The
 estimated asymptotic covariance matrices for either sampling
 scheme are easily computed on convergence of iterative

 scheme (4), because they involve only matrices that are input
 or computed during the inversion of G(0).

 The asymptotic covariance matrices of model parameter
 estimators under multinomial and Poisson sampling are re-
 lated by h:(M) = X(P) - A, where

 A = (X'X) -X'CD(AIu)f

 X A(Dsk=l -Lk kAD D(At) -CX X(X X)

 is a nonnegative definite matrix. Lang (1992, 1993) gener-
 alized a result of Palmgren (198 1) for simple log-linear mod-
 els regarding standard errors of elements in , being the same
 for the two sampling schemes (i.e., the corresponding com-
 ponents of A are 0). For the generalized log-linear models
 (1), inferences for all parameters except the two intercept
 parameters (one for the joint and one for the marginal model)
 are the same whether one assumes full multinomial sampling
 or Poisson sampling. When categorical covariates are present
 and one assumes product multinomial sampling, the infer-
 ences are the same as with Poisson sampling for all the pa-
 rameters except those fixed by the sampling design.

 5. GOODNESS OF FIT AND RESIDUALS

 To assess model goodness of fit, one can compare observed
 and fitted cell counts using the likelihood-ratio statistic G2
 or the Pearson statistic X2. For nonsparse tables, assuming
 that the model holds, these statistics have approximate chi-
 squared distributions with degrees of freedom equal to the
 number of constraints implied by C log A,u = Xf,. From (3),
 X2 can be rewritten as x2 = X'H''-lHf. This statistic is
 identical to the Lagrange multiplier statistic (Aitchison and
 Silvey 1958, 1960; Silvey 1959), L2 =

 To analyze lack of fit for a simultaneous model in a lo-

 calized manner, we generalized Haberman's (1973) adjusted
 residuals for log-linear models. Cell i has adjusted residual

 defined by ei = (yi - 4i)/ASE(yi - ).
 From (3), (y-u) =--H()( - 0) -H(t)(X - 0).

 By the delta method, using the asymptotic distribution of
 X, the estimated asymptotic covariance matrix of (y -,) is

 s -,= H(t)(H(t)'D(4)-' H(t))'1H(t)'
 For the generalized log-linear models ( 1), this matrix is avail-

 able as a byproduct of iterative scheme (4). It yields the es-

 timated asymptotic standard errors needed to form the ad-
 justed residuals. From this matrix, one can also easily obtain
 the estimated covariance matrix for differences between ob-
 served and fitted marginal counts, which are sums of cor-
 responding differences for the cells. Using standard errors of
 such marginal differences, one can construct adjusted resid-
 uals for marginal counts or marginal cumulative counts.

 At the start of the model-fitting process, it is often unclear
 which simultaneous models should be considered. To help
 determine which models may fit well, one can first investigate
 joint and marginal models separately. If a separate model of
 each type fits well, then generally so will the simultaneous
 model consisting of those two components. In fact, for mod-
 els considered in this article, the simultaneous model J(A)
 nM(B) has a likelihood-ratio statistic asymptotically equiv-
 alent to the sum of the statistical values for the separate
 models J(A) n M(S) and J(S) n M(B). We now outline
 why this happens.

 Consider two hypotheses, [wl and [M2L, such that both
 are special cases of a hypothesis [wo] but neither is a special
 case of the other. Following Aitchison (1962), [ I] and ['o2 I
 are called asymptotically separable if the tests of ['oil i n['O2I
 against [2I- (['l ]l [o2]) and of [o1,] in ['2] against [co I
 - ([oil ['2]) use the same large-sample critical regions

 as do the unrestricted tests of [ oI] against [oo] - [coI ] and
 of ['o2] against ['wol]- [W21 . In our context, let [Xls ] refer to
 J(A) n M(S) and let ['o2] refer to J(S) n M(B). From
 standard results for G2 with nested models, G2 for testing
 the fit of J(A) n M(B) can be partitioned into (1) G2 for
 testing this model against the alternative of J(S) n M(B),
 plus (2) G2 for testing f(S) n M(B) against J(S) n M(S).
 If [coI] and ['C2] are separable, then the first statistic is
 asymptotically equivalent to G2 for testing the fit of the sep-
 arate joint model, J(A). Thus, assuming separability, G2 for
 the simultaneous model is the sum of the G2 components
 for the separate joint and marginal models.

 Aitchison provided a sufficient condition for [oIl] and ['o21
 to be asymptotically separable. In our context, let hi = 0
 denote the constraints from the set h(t) = 0 that pertain to
 the joint model and let h2 = 0 denote the constraints from

 this set that pertain to the marginal model. Let Hi = Ohi (t)/
 d9, i = 1, 2, and let B denote the information matrix under
 ['oil n [o21 . Aitchison's condition states that H' B-1 H2 = 0
 for all t satisfying ['oi i n ['o21. He used this condition to
 show asymptotic equivalence of the Wald statistic for ['oil

 n ['2] and the sum of the Wald statistics for testing ['oil
 and ['2I separately. The asymptotic equivalence of Wald
 and likelihood-ratio statistics implies the corresponding result
 for G2 statistics.

 When J(A) is an ordinary log-linear model that includes

 all the fixed-by-design parameters, and M(B) constrains only
 the first-order marginal expected counts, Aitchison's con-
 dition holds. Specifically, if the log-linear model has con-
 straints h1 - 0 of form U'1 t = 0, and if the marginal model
 has constraints h2 = 0 of form U'2C2log A2et = 0, then H1
 = U1 and H2 = D(,u)A'2D(A2et)-1C'2U2. If the range space
 of X1 (for the joint model) contains the range space of A'2

 (for the marginal model), straightforward calculation shows
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 that Aitchison's condition is satisfied. This holds for all si-
 multaneous models considered in the next section.

 Aitchison's results also imply that for a large class of si-
 multaneous models, (1) the goodness-of-fit test for J(S)
 n M(B) and the test for J(A) n M(B) versus J(A) n M(S)
 are asymptotically equivalent (provided J(A) n M(B)
 holds), and (2) the goodness-of-fit test for J(A) n M(S) and
 the test for J(A) n M(B) versus J(S) n M(B) are asymp-
 totically equivalent (provided that J(A) n M(B) holds). This
 result has practical implications for cases that are compu-
 tationally complex. For instance, suppose that the joint dis-
 tribution structure is of secondary interest and that one is
 primarily interested in testing the goodness of fit of a marginal

 model, M(B). The joint table may contain many sampling
 zeros, and saturated (or nearly saturated) joint distribution
 models may be difficult to fit. Thus the model J(S) n M(B)
 may be difficult to fit. Provided that a simpler joint distri-
 bution model holds, one has an asymptotically equivalent
 way to test the goodness of fit of marginal model M(B) with-
 out having to fit the saturated joint distribution model.

 6. EXAMPLE OF SIMULTANEOUS MODELING

 We now consider simultaneous joint and marginal models
 for Table 1. We denote the responses by E for environment,
 H for health, C for assistance to big cities, and L for law
 enforcement. Let Phijk denote the expected frequency for the
 cell in level h of E, i of H, j of C, and k of L.

 Simple models for the joint distribution are those that
 assume no three-factor interaction. These include:

 J(I): log1 hijk =a + a E + aH + aC + aL

 J(2-factor): log hijk = a + a E + af + af + aL

 + aEhi + aEh + aEh + (C + a4 L + afiJL,

 and

 J(L X L): log1 hijk = a + aE++ aH + ajC + AL
 + fEHUhVi + fECUhWj + jELUhXk

 + HCV,Wj + fHLV,Xk + CLWjXk.

 The second model permits all two-factor associations,
 whereas the third model is a simpler one assuming linear-
 by-linear forms for those associations, for fixed monotone

 scores { uh}, { vi }, { wj}, and { xk } assigned to levels of the
 responses. The latter type of model fits well when underlying
 continuous variables have joint normal distributions (Becker
 1989; Goodman 1981; Holland and Wang 1987). Possible
 models for the marginal distributions include the cumulative
 logit models

 M(H): logit Yh(t) = Wh,

 M(PO): logit 'Yh(t) = Wh + a,

 and

 M(S): logitYh(t)= =h15

 where P0 denotes proportional odds. The linear-by-linear
 joint model and the proportional odds marginal model are
 parsimonious forms that reflect the ordering of the response

 categories. These particular models are reasonable, because

 all four responses are measured on the same ordinal response
 scale.

 Table 2 contains goodness-of-fit statistics for several mod-
 els. Linear-by-linear terms used equally spaced scores for the
 three categories, which seems reasonable for the response
 scale (too little, about right, too much). The majority of cells
 contain small counts, and the fit statistics are mainly useful
 for comparative purposes. Separate fitting suggested that the
 linear-by-linear model provides a reasonable fit for the joint
 distribution and that the cumulative logit model provides a
 reasonable fit for the marginal distributions. Thus we con-
 sidered a simultaneous model containing both these forms.
 Table 2 shows that this model provides a substantially im-
 proved fit over models that assume independence of re-
 sponses or homogeneous margins.

 Because the data are sparse, we also computed adjusted
 residuals for a cell-by-cell comparison of observed and fitted
 counts. The fit and the residuals are shown in Table 3. We
 cannot take these residuals too literally, because the sampling
 design was somewhat more complicated than simple random
 sampling. Nevertheless, the model seems to fit reasonably
 well, with only 5 of 81 adjusted residuals having absolute
 values in the neighborhood of 2 or greater. The more complex
 model containing two-factor association terms of general
 form provides some improvement but with the loss of model
 parsimony, requiring four parameters to describe each as-
 sociation.

 Because lack of fit may also result from inadequacies of
 the marginal model, we studied adjusted residuals for mar-
 ginal proportions. These are displayed in Table 4. The lack
 of fit in the margins seems to reflect slightly greater observed
 dispersion than was predicted for the cities response and
 slightly less dispersion than was predicted for the law en-
 forcement response. Comparing the observed to estimated
 marginal proportions, we see that the lack of fit is not severe
 in substantive terms.

 Table 5 shows the association and marginal parameter
 estimates for model J(L X L) n M(PO). The association
 parameter estimates reveal quite strong positive partial as-
 sociations between responses on health and responses on the
 environment and on law enforcement. For instance, given
 responses on C and L, the estimated odds that the response
 on E is "too much" rather than "too little" is exp (4 X .499)
 = 7.4 times as great when H is "too much" than when it is
 "too little." The marginal parameter estimates indicate sub-
 stantially less support for spending on cities, particularly in
 relation to health and the environment. For instance, the
 estimated odds that the response is above any fixed level is
 exp(2.34) = 10.4 times as high for cities as for environment.

 Table 2. Goodness of Fit for Models Fitted to Table 1

 Model df G2 X2

 J(S) n M(PO) 3 6.2 6.0
 J(L X L) fl)M(S) 66 65.9 61.5
 J(L X L) flM(PO) 69 71.5 64.3
 J(L XL)fnlM(H) 72 519.2 455.1
 J(l)fnlM(PO) 75 129.9 260.1
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 Table 3. Fit and Adjusted Cell Residuals for Simultaneous Model

 Cities 1 2 3

 Law Enforcement 1 2 3 1 2 3 1 2 3

 Environment Health
 1 1 62 17 5 90 42 3 74 31 11

 (58.3) (18.0) (3.2) (99.1) (37.3) (8.1) (70.6) (32.4) (8.6)
 .79 -.28 1.13 -1.26 .94 -2.00 .74 -.31 1.00

 2 11 7 0 22 18 1 19 14 3

 (11.9) (5.8) (1.6) (21.3) (12.6) (4.3) (16.0) (11.5) (4.8)
 -.30 .55 -1.35 .18 1.69 -1.68 .93 .81 -.92

 3 2 3 1 2 0 1 1 3 1
 (1.6) (1.2) (.5) (3.0) (2.8) (1.5) (2.4) (2.7) (1.8)
 .35 1.70 .65 -.62 -1.74 -.44 -.99 .20 -.64

 2 1 11 3 0 21 13 2 20 8 3

 (9.9) (3.0) (.5) (22.9) (8.6) (1.9) (22.4) (10.2) (2.7)
 .43 .02 -.76 -.47 1.64 .10 .63 -.77 .19

 2 1 4 0 6 9 0 6 5 2

 (3.3) (1.6) (0.4) (8.1) (4.8) (1.6) (8.3) (6.0) (2.5)
 -1.35 1.96 -.68 -.80 2.04 -1.31 -.89 -.43 -.33

 3 1 0 1 2 1 1 4 3 1

 (-7) (.6) (.2) (1.9) (1.8) (-9) (2.0) (2.3) (1.5)
 .33 -.76 1.55 .09 -.58 .06 1.47 .47 -.45

 3 1 3 0 0 2 1 0 9 2 1

 (1.2) (.4) (.1). (3.9) (1.4) (.3) (5.2) (2.3) (.6).
 1.75 -.63 -.26 -1.03 -.38 -.57 1.99 -.24 .51

 2 1 0 0 2 1 0 4 2 0

 (.7) (.3) (-1) (2.2) (1.3) (.5) (3.2) (2.3) (.9)
 .42 -.58 -.30 -.17 -.29 -.69 .51 -.18 -1.02

 3 1 0 0 0 0 0 1 2 3

 (.2) (.2) (.1) (.9) (.8) (A4) (1.3) (1.4) (.9)
 1.58 -.44 -.29 -.97 -.92 -.68 -.26 .49 2.28

 7. MINIMALLY SPECIFIED MODELS

 When simultaneously modeling marginal and joint dis-

 tributions, one must be concerned with possible dependence

 between constraints in the two components of the model

 and consequent poorly specified simultaneous models. This

 section introduces concepts that are helpful for ensuring that

 simultaneous models are "properly defined."

 Table 4. Marginal Adjusted Residuals for Simultaneous Model

 Observed Estimated
 Adjusted

 Marginal Marginal
 Proportions Proportions Residuals

 1 .732 .730 .58
 Environment 2 .211 .215 -.48

 3 .058 .055 .43

 1 .715 .714 .42
 Health 2 .227 .227 .001

 3 .058 .059 -.17

 1 .221 .207 1.62
 Cities 2 .395 .419 -1.65

 3 .386 .374 1.68

 1 .623 .630 -2.00
 Law Enforcement 2 .311 .286 2.20

 3 .066 .084 -2.26

 We represent a model with parameter space w by [cw].
 Consider a joint or marginal model [w] of form C log A,

 = X,B (or, equivalently, U'C log A,u = 0) and an alternative
 model [w*] specified by C* log A*, = X*B* (or U*'C*

 log A *,u = 0). We say that [ * ] is at least as simple as [ ],
 denoted by [w* ] < [cw], if A* = A and if the range space of

 C'U is a subset of (possibly equal to) the range space of

 C* 'U*. For the special case C = C*, the range space of C'U

 is a subset of the range space of C*'U* if and only if the
 range space of X * is a subset of the range space of X.

 A set of constraints 5: f(M) = (fi(M), ... *, f (A))' = 0 is
 redundant if there exists a subset of the constraints i* :

 f *(,g) = 0 and also another constraint f(;z) = 0 in S - *

 satisfying for all M 3 f *(,g) = O, f,(M) = 0.

 Table 5. Parameter Estimates for Simultaneous Model

 Association Parameters Marginal Parameters

 Parameter Estimate Std. Error Parameter Estimate Std. Error

 EH .499 .112 E .0
 EC .314 .104 H -.081 .115
 EL -.003 .112 C -2.337 .117
 HC .052 .100 L -.462 .120
 HL .455 .103
 CL .199 .090
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 We call a model [w] minimally specified if the constraints

 specified in [w] are functionally independent, in the sense
 that those constraints are not redundant. For instance, the
 simultaneous model J(SYM) n M(H) specifying complete
 symmetry for the joint distribution and homogeneity for the
 marginal distributions is not minimally specified, because
 the constraints that specify J(SYM) imply the constraints
 used to specify M(H). Minimally specified models can be
 fitted using the algorithm described in Section 3, have resid-

 ual degrees of freedom equal to the number of independent

 constraints, not including the model identifiability constraint
 (i.e., number of rows minus the number of columns in X),
 and have asymptotic behavior for ML estimators as derived
 in Section 4.

 There are broad classes of simultaneous models that are
 necessarily minimally specified, as shown by the following
 result from Lang (1992), which is easily generalizable to
 multiresponse variables and more than one covariate:

 Let J(AP, BP) denote the log-linear joint model whereby the
 responses A and B are conditionally independent, given a covariate
 factor P. Let M(R, OP) denote the log-linear marginal model
 whereby the response (R) is jointly independent of the occasion
 and the covariates (for no covariate, this is simply M(H)). Then,
 if J 2 J(AP, BP), M 2 M(R, OP) and both J and M are min-
 imally specified, the simultaneous model J n M is minimally
 specified.

 We outline the argument used to show this result. The

 model J(AP, BP) only constrains the marginal expected
 counts to satisfy the multinomial constraints. Therefore, any
 model J ? J(AP, BP) will not imply any marginal model
 constraints. On the other hand, corresponding to any set of
 marginal counts and any association and interaction pattern
 as measured using odds ratios, there exists a set of cell counts
 with those margins and that pattern (see, for example, Bishop,
 Fienberg, and Holland 1975, p. 375). Because log-linear

 model constraints are functions of the expected counts only
 through odds ratios, it follows that the marginal model con-
 straints will not imply any joint model constraints. Also, the
 marginal model M(R, OP) is minimally specified (assuming

 parameter identifiability), because the OP terms allow a per-
 fect fit to the marginal totals that are fixed by design.

 In the bivariate response case with responses A and B and
 no covariate, the simultaneous model J(A, B) n M(H) is
 minimally specified, because the constraints that specify the
 joint distribution model J(A, B) leave the marginal expected
 counts arbitrary up to the model identifiability constraints.
 All models discussed in the previous section were minimally
 specified.

 8. DISCUSSION

 There are two main points that we wish to make with this

 article. First, we have provided a more efficient way of fitting
 and checking the fit of a generalized class of log-linear models,
 C log A,u = Xfl. In particular, this methodology provides
 improved ways of fitting nonstandard models, such as joint
 models for global odds ratios and models for first- or second-
 order marginal distributions. Second, we have shown the

 utility of members of this generalized class that correspond

 to modeling simultaneously both joint and marginal distri-

 butions.

 As a by-product of these two main points, we also want
 to emphasize that maximum likelihood methods have greater
 feasibility than is commonly recognized. In particular, for
 marginal modeling of multivariate categorical responses,
 maximum likelihood is often regarded as having limited use
 because of its complexity. Currently, these marginal models
 are routinely fitted using weighted least squares methods (e.g.,
 Koch et al., 1977, Landis et al., 1988). However, sparse data,
 which are commonplace when there are multiple responses,

 create problems for this method. This, along with the per-
 ceived complexity of maximum likelihood methods, has
 partly led to alternative ways of fitting such models, such as
 methods using generalized estimating equations (see, for ex-
 ample, Liang, Zeger, and Qaqish 1992). Of course, such
 methodology can be used with large tables for which our

 algorithm is impractical, or when one prefers to specify a
 model without assuming a distribution for the multivariate
 response.

 There are many situations in which simultaneous models
 for joint and marginal distributions may be useful. One broad
 application type is longitudinal studies, in which one's in-
 terest focuses on how the distribution of the response changes
 over time. Modeling the marginal distributions gives a "pop-
 ulation-averaged" description of such change. In longitudinal
 studies, modeling dependence is often of secondary impor-
 tance to modeling marginal changes, but sometimes both
 are relevant. An example is the modeling of social mobility.
 We might consider how the distribution across (upper, mid-
 dle, lower) social classes changes for successive generations.
 We might also consider the potential for change, in terms
 of the degree to which social class in generation t + 1 depends
 on social class in generation t.

 Models for joint and marginal distributions are also rel-
 evant in studies of inter-observer reliability. Suppose that a
 set of observers rate the same sample of subjects using a
 categorical scale. Each margin of the table refers to a different
 observer, and the cells present the possible combinations of
 responses by the observers. Good agreement between ratings
 by different observers requires strong association between
 their ratings, and similar marginal distributions. Both com-
 ponents are needed. For instance, the marginal distributions
 (summarizing relative frequencies of the possible ratings for
 each observer) could be identical, yet the joint ratings could
 reveal that the observers' judgments are statistically inde-
 pendent. Or there could be strong association, but one ob-
 server might systematically rate subjects a category higher
 than another observer. Thus to describe agreement, it is rel-
 evant to model both the joint and the marginal distributions.

 Simultaneous models may also be useful for analyzing
 data from crossover designs. Consider a two-period, two-
 treatment crossover design with treatments A and B. Each
 subject in the study is randomly assigned to one of two se-
 quence groups, either receiving treatment A followed by
 treatment B or receiving B followed by A. We then have a
 bivariate response with the number of covariate levels at
 two, the number of sequence groups. Often, interest refers
 primarily to comparing the marginal distributions of the two
 treatment responses to determine which treatment is most
 beneficial. But it may also be important to describe the as-
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 sociation between the two responses. A difference in the
 strength of association for the two sequence groups could
 indicate an important difference between the two treatments,
 such as a carry-over effect for one of the treatments.

 For Table 1, we simultaneously modeled the joint and
 first-order marginal distributions. One can use the same
 methodology to model any order of marginal distributions.
 For instance, in analyzing agreement among several observ-

 ers, one could simultaneously model the first- and second-
 order marginal distributions. In modeling the second-order
 distributions rather than the joint distribution, one would
 be considering association between pairs of observers without
 conditioning on ratings by other observers. More generally,
 one could use our methodology to model simultaneously the
 joint distribution and the marginal distributions of every
 order. For most applications, we believe that the first- and
 second-order marginal distributions and the joint distribution
 would have greatest relevance.

 To some readers, the marginality principle may suggest
 that it is more natural to construct a single model relating
 to the joint distribution and then consider the model for the
 marginal distributions implied by that model. Unfortunately,
 standard forms of models (e.g., log-linear models) for cate-
 gorical data do not imply similar forms for the marginal
 distributions (Laird 199 1). Hence modeling is more complex
 than the direct modeling of means for normally distributed
 responses. In some cases, the simultaneous model for the
 joint and marginal distributions may be equivalent to a single
 model for the joint distribution. For instance, the simulta-
 neous model that specifies quasi-symmetry for the joint dis-
 tribution and marginal homogeneity for the marginal dis-
 tributions is simply the symmetry model for the joint
 distribution.

 The applicability of our methodology will largely depend
 on the size of contingency tables to which it can be applied.
 One can use it for much larger tables than the standard ap-
 proach (see, for example, McCullagh and Nelder 1989, p.
 219), because it is not necessary to express cell probabilities
 in terms of model parameters. Our algorithm is also appli-
 cable to considerably larger tables than those of Haber
 (1985a), because of the relative simplicity of the matrices
 inverted. Due to the additional structure induced by simul-
 taneous models, it may also be possible to fit them to sparse
 tables for which ordinary fitting procedures would be unstable
 for finding estimates in models having a saturated component
 (i.e., standard models for only the joint or marginal distri-
 bution). This is because the added structure may sufficiently
 "smooth" the data, thereby mitigating problems with sam-
 pling zeros. Finally, in future research it is important to
 generalize the methodology of this article to handle missing
 data.

 [Received January 1993. Revised April 1993.]
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