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Summary. This article considers global tests of differences between paired vectors of binomial probabil-
ities, based on data from two dependent multivariate binary samples. Difference is defined as either an
inhomogeneity in the marginal distributions or asymmetry in the joint distribution. For detecting the first
type of difference, we propose a multivariate extension of McNemar’s test and show that it is a generalized
score test under a GEE approach. Univariate features such as the relationship between the Wald and score
test and the dropout of pairs with the same response carry over to the multivariate case and the test does
not depend on the working correlation assumption among the components of the multivariate response. For
sparse or imbalanced data, such as occurs when the number of variables is large or the proportions areQ1
close to zero, the test is best implemented using a bootstrap, and if this is computationally too complex, a
permutation distribution. We apply the test to safety data for a drug, in which two doses are evaluated by
comparing multiple responses by the same subjects to each one of them.
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1. Introduction
Safety, toxicity, or quality-of-life assessments become impor-
tant issues in early developmental stages of pharmaceutical
products. For instance, the analysis of adverse event (AE)
data from clinical trials is crucial in testing (and subsequent
marketing) the safety of a drug. Sponsoring and regulatory
agencies involved in this process continually assess whether
clinical trials need to be adjusted or terminated because of
safety or other concerns. Usually, not many subjects are avail-
able in early stages and several responses have to be explored
jointly, many with small incidence rates. Furthermore, studies
with a primary endpoint of safety, toxicity, or quality of life
often measure this multivariate response at two or more occa-
sions, employing crossover or longitudinal designs and leading
to paired or repeated multivariate data.

Safety concerns were the motivation behind a secondary
analysis of several AEs recorded in a small crossover clinical
trial about the efficiency of a new antidepressive drug. Inves-
tigators aimed to test whether significant differences existed
in incidents of AEs between varying doses of the active in-
gredient. A sample of 28 healthy volunteers were first given
a low dose of 50 mg and then two higher doses of 200 mg
and 500 mg, with a sufficient washout period in between. A
placebo treatment was also mixed in either at the beginning,
the end, or at any of the intermittent stages of a subject’s

increasing dose sequence. All doses were judged to be accept-
able from previous safety studies involving a single dose. In
this article, we compare the incidence of AEs under either of
the two higher doses to the incidence of AEs under either the
placebo or the low dose, which was a particular contrast of
interest to the investigators. Extensions of the methodology
to handle several doses at once are mentioned at the end of
this article.

Table 1 displays summary data for the four most common
AEs that were observed under these two grouped dose lev-
els, which we label low and high. For each individual AE, the
McNemar test is a well known procedure for comparing the
paired incidence rates. However, for several, possibly corre-
lated AEs, how can we conduct a multivariate extension of
that test?

Generalizations of McNemar’s test to the case of two in-
dependent samples of paired univariate binary responses were
discussed by Feuer and Kessler (1989) and for binary crossover
data by Becker and Balagtas (1993). Agresti and Klingenberg
(2005) developed strategies for comparing two independent
multivariate binary vectors for a global, comparative evalua-
tion of marginal incidence rates in two groups. They proposed
likelihood ratio (LR) and score-type tests, supplemented with
exact permutation approaches in cases of sparse data. Adjust-
ments to the regular McNemar statistic in case of dependent
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Table 1
Summary of proportions for four adverse events recorded at
each of two dose levels of a drug tested on 28 patients, and
98.75% score confidence intervals for the true differences.

Results of a global score-type test are indicated in the last row

Drug dose

Adverse event Low High Score CI

Headache 4/28 4/28 [−0.23, 0.23]
Somnolence 2/28 4/28 [−0.16, 0.30]
Ecchymosis 4/28 1/28 [−0.35, 0.13]
Sore throat 1/28 3/28 [−0.16, 0.30]

SMH: W0 = 5.05 (bootstrap P-value = 0.35)

samples of clustered binary data were proposed by Eliasziw
and Donner (1991) and Obuchowski (1998). Pesarin (2001)
developed methods for comparing two dependent vectors of
sample proportions. He combined exact results from mul-
tiple univariate tests through a nonparametric combination
function. This approach calculates an exact P-value for the
McNemar statistic for each of the 2 × 2 tables formed with
an individual AE. A test for the global hypothesis of no differ-
ence is then obtained by suitably combining the (dependent)
individual P-values. He illustrates with an example involving
two AEs.

For the univariate case, the McNemar test is the score
statistic. In Section 2 of this article we develop an extension of
that test to the multivariate case, using multivariate methods
rather than combining univariate results. Several properties
carry over to the multivariate case, such as the relationship
between the Wald and score test for paired binary and mul-
ticategory responses (Ireland, Ku, and Kullback, 1969) and
the dropout of pairs with the same response sequence in each
sample. We also present connections to generalized score tests
under a GEE approach and show that the statistic is invari-
ant to the working correlation assumption among the multiple
binary responses. Ordinary LR and score tests are also dis-
cussed, but these are intractable when the number of AEs is
large. All these tests focus on the equality of the marginal
proportions of each AE at the two doses and have asymp-
totic chi-squared distributions. We establish guidelines for the
asymptotic behavior, but in general recommend a bootstrap
approach. Section 3 considers a second, narrower hypothesis
that specifies symmetry in the joint distribution of the mul-
tivariate response with respect to the two doses. The corre-
sponding test is best implemented using a permutation distri-
bution rather than an asymptotic one. For sparse data, which
occur when the number of AEs is large and the bootstrap
approach becomes computationally infeasible, we also recom-
mend conducting the test about the first-order margins under
this stronger set of restrictions. The final section briefly dis-
cusses extensions to multiple responses or multiple categories.

Our presentation is framed entirely in terms of a safety
analysis comparing two doses of a drug. However, the methods
and results apply to any setting in which paired or repeated
multivariate binary observations are obtained, such as in test-
ing neurotoxicity of a substance as was recently discussed by
Han et al. (2004) or as an alternative to summary score ap-
proaches in assessing quality of life (Ribaudo and Thompson,
2002).

Table 2
Safety profiles (1 = present, 0 = absent) of four adverse

events (AE) observed under two doses of a drug on 28 subjects

Low dose High dose

AE 1 AE 2 AE 3 AE 4 AE 1 AE 2 AE 3 AE 4 Count

1 1 0 0 1 1 0 0 1
1 0 0 0 1 1 0 0 1
1 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 1
0 1 1 0 1 0 0 0 1
0 0 1 1 0 0 0 0 1
0 0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 16

Profiles with a count of zero (e.g., those not observed) are not shown.

2. Tests of Simultaneous Marginal Homogeneity
We consider paired multivariate binary data, with c binary
variables indicating the incidence of c AEs observed under
two conditions (e.g., doses). For dose i, let yij = 1 if a sub-
ject experiences AE j and yij = 0 otherwise, j = 1, . . . , c,
i = 1, 2. Let y = (y1, y2)

′ = (y11, . . . , y1c, y21, . . . , y2c)
′ denote

the 2c-dimensional binary responses for a randomly selected
subject, where y1 and y2 refer to the responses at the low
and high dose, respectively. A 22c contingency table summa-
rizes all possible outcomes for y, which are often referred to
as safety profiles. Table 2 shows the nonempty cells of this
table for the data summarized in Table 1. We see that 16 of
the 28 subjects did not experience any AEs.

We assume a multinomial distribution for the counts in this
22c table, with sample size equal to n. Let πi(j) = P (yij = 1)
denote the first-order marginal probability of observing AE
j at dose i. Similarly, let πi(j , k) = P (yij = 1, yik = 1) and
π(j , k) = P (y1j = 1, y2k = 1). This section considers the null
hypothesis

H0 : π1(j) = π2(j), j = 1, 2, . . . , c. (1)

We say that the 22c table cross classifying all safety profiles
satisfies simultaneous marginal homogeneity if this holds, and
we denote it by SMH. Q2

2.1 Wald and Score-Type Tests of SMH
Let d = (d1, . . . , dc)

′, where dj = π̂1(j) − π̂2(j) is the jth dif-
ference between the marginal sample proportions. The vector
of differences d has covariance matrix Σ with

Var(dj) =
[
π1(j) + π2(j) − 2π(j, j) − {π1(j) − π2(j)}2

]/
n

Cov(dj , dk) = [π1(j, k) + π2(j, k) − {π(j, k) + π(k, j)}

−{π1(j) − π2(j)}{π1(k) − π2(k)}]/n.

A Wald statistic is obtained by replacing the unknown pro-
portions in Σ with the corresponding sample proportions
π̂i(j), π̂i(j, k), and π̂(j, k), i = 1, 2, j, k = 1, . . . , c and calcu-
lating the quadratic form W = d′Σ̂−1d.
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The multinomial assumption for the counts in the 22c ta-
ble implies asymptotic normality of the marginal sample pro-
portions {π̂i(j)} and d. The above formula for the variance
makes it clear that in order to avoid a degenerate distribution,
(a) we need 0 < πi(j) < 1 for all j and at least one of i = 1 or
2, and (b) we cannot have π1(j) = π2(j) = π(j , j ). The for-
mer is not restrictive in practice, as an AE that was never (or
always) observed under either dose would hold no informa-
tion about marginal inhomogeneity. Under these conditions
and SMH the test statistic W has an asymptotic chi-squared
distribution with d.f. = c.

For a variety of basic univariate contingency table analyses,
the chi-squared approximation for a Wald statistic has been
shown to be inadequate unless n is very large. Thus, for any
n and c we prefer an alternative statistic that uses the pooled
estimate of the covariance matrix under the null hypothesis of
SMH. The pooled estimate for the common proportion π0(j)
in each dose group is given by

π̂0(j) = {π̂1(j) + π̂2(j)}/2. (2)

The variance of dj and the covariance of dj and dk then sim-
plify to

Var0(dj) = [π1(j) + π2(j) − 2π(j, j)]/n

= 2{π0(j) − π(j, j)}/n

Cov0(dj , dk) = [π1(j, k) + π2(j, k) − {π(j, k) + π(k, j)}]/n.

Using corresponding sample proportions, denote the estimate
of the variance–covariance matrix of d under these expressions
by Σ̂0. The quadratic form statistic is then W0 = d′Σ̂−1

0 d and
we can relax condition (a) to allow for the case π1(j) = 0,
π2(j) = 1 or vice versa. We refer to W0 as a “score-type”
statistic, because a full score test for this hypothesis requires
estimating the covariances solely under SMH, which is con-
siderably more complex and discussed in Section 2.3. In the
univariate case (c = 1) with just a single AE, W0 reduces to
the well-known McNemar statistic for binary matched pairs.

There is a surprisingly simple relationship between W and
W0. The two estimates of the covariance matrix are linked
through Σ̂ = Σ̂0 − dd′/n, which leads to the relationship

W = W0/(1 −W0/n) (3)

between the Wald and score-type statistic. Ireland et al.
(1969) showed the same type of result for paired multicategor-
ical responses in the univariate case, for which Stuart (1955)
had proposed a score-type statistic. Although (3) implies that
W and W0 converge to the same asymptotic χ2

c distribution,
Sections 2.4 and 2.5 show that the convergence is much faster
for the score-type statistic.

2.2 A GEE Approach to Testing SMH
In this section, we show that W0 is a generalized score statis-
tic for testing SMH using the marginal modeling approach
based on solving GEEs (Zeger and Liang, 1986). The GEE
approach specifies a model E[y] = π = π(β) for the vector
of marginal probabilities and postulates a working correlation
matrix for y rather than a model for its joint distribution. A
GEE estimator of a parameter vector β is the solution to the
score equation

S(β) = (∂π(β)/∂β′)V −1(β)

n∑
k=1

{yk − π(β)} = 0, (4)

where V (β) = D
1
2 (β)RD

1
2 (β) is a working covariance matrix

for the 2c marginal responses, D(β) is a 2c × 2c diagonal
matrix with Var(yij ) as diagonal elements, and R is the work-
ing correlation matrix. Due to the lack of subject-specific co-
variates, V(β) is the same for all observations {yk}, which
simplifies expressions considerably.

The model π(β) = β with a separate parameter for each
marginal probability has GEE estimate β̂ = π̂, the marginal
sample proportions. The SMH hypothesis (1) corresponds to
the restriction Hβ = 0, where H = (Ic | −Ic) is a block matrix
consisting of two identity matrices of dimension c. Let L =
(Ic | Ic) be another such block matrix. Then, the solution to
(4) under SMH is given by the fixed point equation

β̂0 = L′(LV −1(β̂0)L
′)−1

LV −1(β̂0)π̂. (5)

This solution is a weighted average of the marginal sample
proportions. Interestingly, under independence or exchange-
able working correlation assumptions, the solution can be ob-
tained explicitly as β̂0 = L′Lπ̂/2 = π̂0, the pooled marginal
sample proportions (2). For other working correlation matri-
ces (such as an unstructured one), the SMH solutions must
be obtained iteratively by alternating between updating the
right- and left-hand side of (5), taking into account the as-
sumed structure of R. In general, these solutions differ from
the pooled marginal sample proportions.

Under a GEE approach, generalized score tests for model
parameters have been proposed by Rotnitzky and Jewell
(1990) and Boos (1992). For testing our hypothesis Hβ =
0 in π(β) = β, a statistic discussed by Boos (1992, p. 331)
has the form

TGS = S(β̂0)
′I−1(β̂0)H

′(HĈov(β̂0)H
′)−1HI −1(β̂0)S(β̂0),

where I(β) = nV −1(β) is the expected information matrix
(see technical report available at www.tibs.org/biometrics)

and Ĉov(β) =
∑n

k=1{yk − π(β)}{yk − π(β)}′/n2.
In the context of testing SMH, TGS simplifies considerably

to

n2d′

(
H

n∑
k=1

yky
′
k H ′

)−1

d,

which is precisely our statistic W0 written in matrix nota-
tion. It does not depend on R and hence is invariant to the
choice of the working correlation structure among the 2c re-
sponses. Furthermore, on moving H inside the sum, we see
that for subjects with safety profiles y = (y1, y2)

′ that have
y1 = y2, Hyy′H ′ = 0 because Hy = 0. Hence, as is the case
for McNemar’s test in the univariate case, subjects with the
same profile under the two doses do not contribute to the test
statistic. (W0 calculated with the 11 subjects with different
profiles y1 and y2 equals W0 calculated with all 28 subjects.)

Similarly, the generalized Wald statistic

TGWII = (Hβ̂)′(HI −1(β̂)Ĉov(β̂)I−1(β̂)H ′)−1Hβ̂
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given in Boos (1992, p. 329) reduces in our context of testing
SMH to

n2d′

(
H

n∑
k=1

(yk − π̂)(yk − π̂)′ H ′

)−1

d.

This is our Wald statistic W in matrix form, and it is also seen
to be invariant to the working correlation assumption on the
2c responses. However, subjects with identical safety profiles
under the two doses do contribute to it.

2.3 Likelihood Ratio and Ordinary Score Test of SMH
Alternative tests of SMH can be based on the maximum like-
lihood (ML) estimates of the cell probabilities under SMH.
For instance, one could construct the LR statistic. To obtain
the maximized likelihood under SMH, one must maximize a
multinomial likelihood with 22c − 1 joint probabilities, sub-
ject to equality constraints relating two sets of c marginal
probabilities. One approach is to use the Lagrange method of
undetermined multipliers together with the Newton–Raphson
method as implemented by Lang and Agresti (1994). An R-
function (“mph.fit”) for the algorithm is available from Prof.
J. B. Lang (Statistics Dept., Univ. of Iowa, e-mail: jblang@
stat.uiowa.edu, details at www.stat.uiowa.edu/∼jblang).
However, this approach becomes computationally difficult as c
increases. (e.g., we were not able to use the “mph.fit” software
for c > 4 AEs in our data set.) The LR statistic G 2 equals −2
times the log of the ratio of the maximized likelihoods under
SMH and under the unrestricted case.

A corresponding Pearson statistic compares the 22c ob-
served and fitted counts for the SMH model, using the usual
X 2 =

∑
(observed − fitted)2/fitted. This is the actual score

statistic for testing SMH. Again, like the LR test, it is com-
putationally infeasible with current software unless c is small.
The LR and score statistics also have large-sample chi-squared
distributions with d.f. = c.

2.4 SMH for the Drug Safety Data
The generalized score statistic, and hence W0, is available in
SAS (PROC GENMOD with the GEE implementation; sam-
ple SAS and Ox code are available from the first author’s web-
site www.williams.edu/∼bklingen), as is the Wald statistic
W. For our data with c = 4 AEs for an antidepressive drug
administered to n = 28 subjects, there are 22×4 = 256 possi-
ble safety profiles, according to the (yes, no) outcome for each
AE at the two dose levels. The sample proportions in Table 1
refer to the eight first-order marginal probabilities {πi(j),
j = 1, . . . , 4, i = 1, 2} of the underlying 22×4 contingency
table. For these data, W = 6.17 and W0 = 5.05 with d.f. = 4.
These have asymptotic P-values of 0.19 and 0.28 for testing
SMH. However, we are skeptical that the chi-squared limiting
distribution is valid with such sparse data in which n is small
and the sample marginal proportions are near 0.

To get some feedback about whether asymptotic results are
sensible, we generated a P-value for these statistics using the
bootstrap method. We repeatedly took multinomial samples
of size n, using as the multinomial probabilities the ML es-
timates obtained under the SMH hypothesis. The P-value is
then the proportion of generated samples for which the test
statistic is at least as large as the observed value. Results are
identical for the Wald statistic W and the score-type statistic
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Figure 1. Bootstrap distribution of the score-type (W0)
and Wald (W) statistic for testing SMH for data in Table 1
(500,000 resamples). The asymptotic chi-squared reference
distribution with d.f. = 4 is also shown.

W0, because of the one-to-one relationship between them. For
500,000 resamples, the bootstrap P-value equals 0.35. Figure 1
presents a density estimate of the bootstrap distribution for
the two statistics and compares it with their asymptotic chi-
squared distribution. The plot shows that using asymptotic
results would be misleading with such sparse data, although
the tail behavior is much closer to its asymptotic distribution
for W0 than for W. We will check more closely the asymptotic
behavior of W and W0 in the next subsection.

For the ML fit of SMH, the likelihood-based statistics are
G 2 = 3.73 and X 2 = 2.42. Again, the asymptotic P-values
of 0.44 and 0.66 need to be treated with skepticism because
of the sparseness. These statistics are computationally too
complex to implement in the bootstrap or to simulate for an
asymptotic evaluation.

2.5 Asymptotic Behavior of W and W0

This section reports simulation results in order to study ad-
equacy of asymptotic chi-squared distributions for the Wald
and score-type statistics for a relatively small c. As in the
previous section, we use the ML estimates of the multivariate
probabilities under SMH for our sparse and imbalanced safety
data set to generate samples. To explore the asymptotic be-
havior, we generated multinomial samples of size n = 20 to
n = 200 with the first two (c = 2) and all four (c = 4) AEs of
Table 1. The results in Table 3, based on 100,000 simulations
for each case, enable us to compare the mean and variance of
W and W0 to the nominal values of c and 2c and to compare
the actual proportions in the tails of their sampling distribu-
tions to nominal values of 0.10, 0.05, and 0.01. We see that
for sample sizes less than 100, neither statistic is well approx-
imated by a χ2 distribution and consequently we recommend
the bootstrap under such circumstances.

Based on what applies for the quality of the approximation
of McNemar’s test to a chi-squared in the univariate case, it
seems sensible to inspect the sum n∗ of the two off-diagonal
elements in each of the c 2 × 2 tables that cross-classify an AE
at the two dose levels. The normal approximation to the null
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Table 3
Results of a simulation study for W and W0 with 100,000 simulated data sets at each
combination of c and n. n∗ are the sum of the off-diagonal elements in each marginal

2 × 2 table cross-classifying incidence of an AE at the two dose levels

P (W ,W 0 > χ2
c,α)

c n n∗ < 10 Stat. Mean Var. α = 0.100 α = 0.050 α = 0.010

4 20 100% W 6.21 16.20 0.303 0.191 0.063
W0 4.41 4.73 0.068 0.010 0.000

50 75% W 4.98 15.19 0.184 0.117 0.043
W0 4.32 8.65 0.126 0.065 0.011

100 6% W 4.47 11.8 0.141 0.083 0.026
W0 4.18 8.93 0.115 0.061 0.014

150 0% W 4.29 11.23 0.125 0.070 0.019
W0 4.11 8.67 0.108 0.056 0.013

200 0% W 4.21 9.72 0.118 0.065 0.017
W0 4.08 8.53 0.106 0.055 0.011

2 20 100% W 2.58 3.75 0.125 0.055 0.006
W0 2.17 2.00 0.055 0.015 0.000

50 87% W 2.28 4.71 0.130 0.071 0.014
W0 2.11 3.47 0.103 0.050 0.005

100 11% W 2.14 4.52 0.114 0.059 0.013
W0 2.05 3.84 0.102 0.050 0.009

150 0% W 2.09 4.34 0.110 0.057 0.013
W0 2.03 3.90 0.102 0.050 0.009

200 0% W 2.07 4.27 0.107 0.055 0.012
W0 2.03 3.93 0.100 0.050 0.010

Note: For n = 20, 16% of the simulated data sets had no observation at both doses for at
least one AE. For all other n, this percentage was less than 1%. These data sets were eliminated
from the summary statistics.

binomial distribution of this sum, which leads to the univari-
ate McNemar statistic, works well if n∗ ≥ 10. The chi-squared
approximation for W0 seems to hold adequately at n = 150
and at both c values, when none of the c marginal tables has
n∗ < 10. Table 3 also shows that a much larger n is required
for W to be approximately chi-squared. This evidence is one
reason for our strong preference for using W0 instead of W.
For our data set, none of the c = 4 n∗’s was larger than 10 and
hence using the asymptotic χ2

4 distribution is not justified, as
we saw in the previous section.

3. A Stronger Symmetry Hypothesis
for the Multivariate Response

The previous section compared the one-dimensional marginal
distributions for each AE. This would normally be the main
focus. However, in some cases it might be of interest to com-
pare the entire c-dimensional distributions of all AEs jointly
under the two doses. For instance, even if differences between
marginal probabilities are insignificant, the elevated joint in-
cidence of some of them under the higher dose (possibly due
to higher correlations of AEs under it) might pose a serious
safety concern. The null hypothesis is then that

P (y11 = a1, . . . , y1c = ac) = P (y21 = a1, . . . , y2c = ac) (6)

for all possible safety profiles (a1, . . . , ac) for the c AEs. That
is, the 2c joint distribution of all AEs is identical under the
two doses and there is symmetry in a subject’s safety profile.
This is a more complete description of “no dose effect,” one

that is implied by the situation in which each subject makes
the same responses for the c AEs regardless of the dose. Note
that SMH is a special case.

3.1 Permutation Test for Sparse Data
Although one could construct large-sample tests of this hy-
pothesis, they would have extremely limited scope when c is
large, because of sparseness of the data relative to a large d.f.
value. However, it is straightforward to construct a permuta-
tion test, which applies with any c and n. Since (6) implies
that the two c-dimensional distributions are exchangeable for
the two doses, we consider all 2n possible ways of interchang-
ing y1 and y2 in a subjects’ observed safety profile y. This
generates an exact distribution for a test statistic of interest.
In practice, when n is moderate or large, this is computation-
ally infeasible. One can then merely randomly generate a very
large number of the permutations to obtain a suitably precise
estimate of the exact P-value.

Regarding a test statistic for this narrow hypothesis, again
the LR statistic is computationally unattractive, as it involves
(under the null) maximizing a likelihood over 22c − 1 parame-
ters, subject to equality constraints that replace 2 × (2c − 1)
parameters by 2c − 1 parameters. A statistic that is com-
putationally simpler treats the data in the form of n strata,
one for each subject. The table for subject i is a 2 × 2c ta-
ble, listing all possible safety profiles for the c AEs across
columns, with row 1 for the low and row 2 for the high dose.
Each table has one observation in each row. Now, suppose that
given a particular subject, the safety profiles are equally likely
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at the two doses (i.e., there is conditional independence be-
tween the safety profile and dose, given subject). This implies
that the safety profiles are also equally likely to occur under
each of the two doses in the 2 × 2c marginal table collapsed
over subjects. But this is exactly condition (6). Hence, one can
test the hypothesis by testing for conditional independence
in the stratified table, using a generalized Mantel–Haenszel
statistic for a multicategory response with unordered cate-
gories (Landis, Heyman, and Koch, 1978). Standard software
(such as SAS’s PROC FREQ) provide this statistic. In gen-
eral, its large-sample distribution would have d.f. = 2c − 1,
but in practice many profiles would not be observed, and for
results to be valid regardless of the values of c and n one
should use the permutation distribution. See Darroch (1981)
for a discussion of the use of such statistics for the various
hypotheses that can be considered for repeated measurement
on a categorical response.

For the safety data in Table 2, only eight different safety
profiles (out of 16 possible) were observed under the low or
high dose. Conditional on observing safety profiles of these
kinds, the generalized Mantel–Haenszel statistic equals 8.74,
with d.f. = 7 (P-value = 0.29). (For SAS or Ox code, see the
first author’s website.) As with the score-type statistic W0,
subjects with the same profile under the two doses do not
contribute to the test statistic. Again, because of sparseness
and the relatively large d.f. value, we treat this P-value with
skepticism. A more valid P-value results from randomly select-
ing permutations from the 228 possible ones. Using a random
sample of 5 million of them (which takes less than 7 minutes
in Ox), we obtained an estimated P-value of 0.21.

3.2 Permutation Small-Sample Testing of SMH
In Section 2, we recommended the bootstrap to obtain
P-values for the SMH hypothesis under small to moderate
sample sizes. However, with a larger number of AE, fitting
the multinomial model under SMH can be computationally
impractical. For these cases, we need another approach for
testing SMH under the common case of small sample and/or
sparse data situations. This section proposes the permutation
test under the more restrictive null hypothesis (6) for testing
SMH. That is, one uses the procedure of the previous subsec-
tion, but with W or W0 as the test statistic which are designed
to detect a shift in the marginal distribution. Because of the
relationship (3) between W and W0, they each have the same
permutation P-value.

For the data in Table 1, using 5 million permutations, we
get an estimated P-value of 0.32 (compared to 0.35 from the
bootstrap analysis) for the score-type statistic W0 = 5.05. One
needs to realize that this P-value is generated under stronger
conditions (6) that imply SMH. The effect of this is shown
in Figure 2, which compares the permutation and bootstrap
distributions of W0 for data sets generated under SMH. The
range of the permutation distribution is less than that of the
bootstrap distribution because it does not consider as extreme
reconfigurations of the data. For instance, the largest marginal
count of an AE obtainable in any permutation of the original
data is 6, while this might be higher when generating data
using the fitted multinomial distribution. Under the latter,
some generated tables showed marginal counts of more than
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Figure 2. Comparison of permutation and bootstrap dis-
tribution of W0 for data sets generated under SMH. We con-
sidered 3000 permutations for each of 20,000 generated data
sets.

6 for one or two AE under the high dose, coupled with a low
count of less than 3 under the low dose. These tables led to
(highly significant) W0 values of 13 and larger, explaining the
fatter tail of the bootstrap distribution.

The permutation distribution’s thinner tail leads to ele-
vated type I error rates for testing SMH under it, compared
to the reference bootstrap distribution. (Note that we recom-
mend the permutation approach only for situations where the
bootstrap is computationally impractical). If simpler models
for the joint probability structure can be chosen (cf. the next
section), more appropriate exact tests for SMH could be con-
structed. This is a topic for future research.

3.3 Modeling the Marginal Inhomogeneity
An alternative approach of comparing AE incidence rates,
particularly in the presence of additional covariates, is
through generalized linear mixed models (GLMMs). This
model class assumes random effects specific to each subject.
SMH can be tested by comparing the maximized log likelihood
under a restricted model that satisfies SMH to a more general
model. However, GLMMs focus on subject-specific probabil-
ities, while interest here lies in the comparison of marginal
probabilities. More importantly, GLMMs postulate a non-
negative, exchangeable correlation structure among AEs shar-
ing a common random effect. This is inappropriate for our
safety data set, for which the pairwise sample correlations
range between −0.17 and 0.71.

Regardless of the modeling approach, if one expects prob-
abilities for AEs to be higher in one group, one could at-
tempt to build power by focusing a single-degree-of-freedom
test on this common effect. For example, the marginal model
πi(j) = βj + αI(i = 2) (or its subject-specific counterpart)
is sensible if we wish to build power for detecting an in-
creased incidence of AEs at the higher dose. Estimation of
such a marginal model can proceed via ML (using, e.g., Lang’s
R-function and possibly restricting higher-order interactions)
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or GEE. The SMH hypothesis corresponds to H0 : α =
0. For the data analyzed in this article, both approaches
yield nonsignificant estimates: α̂ = 0.011 (0.029) with LR test
P-value 0.70 for the ML approach and α̂ = 0.035 (0.027) with
generalized score test P-value 0.42 under the GEE approach
with an unstructured correlation matrix. However, these tests
are not very sensitive for these data because we do not expect
all incidence rates to be uniformly larger under the higher
dose.

4. Follow-Up and Extensions
In the study used here, the low dose of 50 mg was always given
before the higher doses of 200 and 500 mg. Thus, proper care
must be taken to ensure that any difference between the two
groups is not an artifact of the design (e.g., blinding to the
dose sequence and no period or carry-over effects). Also, of
course, in practice one would want to follow-up the test by an
assessment comparing the individual AEs.

One way to do this is with a confidence interval comparing
the two proportions for each side effect. To ensure actual con-
fidence level being relatively near the nominal level, we recom-
mend using the score confidence interval (Tango, 1998), which
works well even when n is relatively small and the data have
relatively few outcomes of the event of interest (Newcombe,
1998; Agresti and Min, 2005). Table 1 presents Bonferroni
score intervals for the individual AEs, with asymptotic simul-
taneous confidence level of at least 0.95 (i.e., each one is a
98.75% score confidence interval). For these data, neither the
global tests nor the individual tests show a significant differ-
ence of incidence rates between the two dose levels.

The methods of this article extend in obvious ways to sev-
eral repeated measures. To test SMH with T repeated mea-
sures on c variables, one can extend the score-type statistic
W0 by forming a vector d of c(T − 1) differences of propor-
tions, comparing a given proportion for each dose to the corre-
sponding proportion for an arbitrary baseline dose. The meth-
ods also extend in obvious ways to multicategory responses.
For instance, it is increasingly common to classify an AE by
its severity, using categories not present, as mild and severe.
For ordered categories and corresponding scores, one could
then base the statistic on a vector of c(T − 1) differences of
means.

In either the binary or ordinal case, one could form a statis-
tic that is sensitive to a linear trend for some or all of the
dimensions (e.g., to help detect an increasing trend in the
proportion of times an AE occurs as the dose level increases),
rather than generally utilize the T − 1 differences. This gives
the potential for building power relative to the general statis-
tics which have relatively large d.f. values.

For a nominal-scale comparison of T repeated measures
simultaneously on c variables, with rj categories for variable j,
the score-type test has d.f. = (T − 1)(

∑
j
rj − c). For a single

variable, these simplify to the extension of the Stuart (1955)
test to a rT contingency table. With even moderate T and
c, asymptotic methods are suspect. A sensible strategy for
testing is a permutation test for the (T !)n allocations of the
subjects’ sub-vectors of responses to the T times, computing
the extended W0 statistic for each (or, for a random sample
of them).
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Queries

Q1 Author: Please check the sentence “For sparse or imbalanced
data. . . ” for clarity.

Q2 Author: Please spell out ‘SMH’.
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