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a b s t r a c t

Logistic regression is the closest model, given its sufficient statistics, to the model of
constant success probability in terms of Kullback–Leibler information. A generalized binary
model has this property for the more general φ-divergence. These results generalize to
multinomial and other discrete data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Consider regression modeling of the effects of k explanatory variables, x1, . . . , xk, on a binary response Y
(success–failure). For observation i in a sample of size n, let Yi be the response, let xi = (xi1, . . . xik) be the values of the
explanatory variables, and let pi = Pr(Yi = 1). We assume that Y1, Y2, . . . , Yn are independent.
In this framework, one’s interest normally is in modeling pi in terms of the explanatory variables. The best known binary

regressionmodel is the logistic regressionmodel. In this article, we show a property that this model satisfies: It is the closest
model, given its sufficient statistics, to the model of constant success probability. The distance employed in this result is
Kullback–Leibler information (entropy).
We show alternative results for other models with other distance measures. These results can be put in the context of

the many attempts that have been made to generalize binary regression models to provide families that include standard
models such as logistic regression and probit regression models. Since the introduction of the generalized linear model
(GLM), most such attempts have been motivated by the idea of the link function and the replacement of the logit or probit
link bymore general families of link functions, such as in Aranda-Ordaz (1981) and Stukel (1988). In this article, we approach
the development of a class of models based on a generalized family of link functions from a different point of view, clarifying
issues regarding the role of the link function. The familiar formula

Pr(Yi = 1|x) = F−1(β0 + β1xi1 + · · ·βkxik),

for some link function F , is not our starting point (as is usually the case) but rather our ending point.
As mentioned above, we view binary regression models in terms of their departure from the simple model of constant

success probability, Pr(Yi = 1|x) = F−1(β0). Section 2 states the result about ordinary logistic regression model being the
closest model to the model of constant success probability in terms of the Kullback–Leibler information, under conditions
that correspond to the likelihood equations for the logistic model. Section 3 introduces a generalized class of binary
regression models based on measuring the distance between two models using the φ-divergence (Csiszàr, 1963), which
includes the Kullback–Leibler (KL) information as a special case. Section 4 discusses interpretational aspects of thesemodels
and introduces some characteristic special cases. Section 5 presents an example fitted by various members of this family of
models. Section 6presents generalizations formultinomialmodels, nestedmodels for categorical data, and other generalized
linear models.
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2. A property of the logistic regression model

Since our approach is based on distances between probability distributions, it is more convenient to express the logistic
regression model in terms of pi,

pi = Pr(Yi = 1) =

exp

(
β0 +

k∑
j=1
βjxij

)

1+ exp

(
β0 +

k∑
j=1
βjxij

) , i = 1, . . . , n. (2.1)

The corresponding model of constant success probability, by which none of the explanatory variables has an effect, is

p(0)i = Pr(Yi = 1) =
exp(β0)
1+ exp(β0)

, i = 1, . . . , n, (2.2)

that is, model (2.1) under H0: β1 = β2 = · · · = βk = 0.
Denote the common value of p(0)i under the common success probability model by q. For observation i, in terms of the KL

information, the distance of the probability distribution pi = (pi, 1− pi) from the probability distribution p0 = (q, 1− q) is

KL(pi : p0) = pi log
(
pi
q

)
+ (1− pi) log

(
1− pi
1− q

)
, i = 1, . . . , n.

For a complete sample of n independent observations, the KL information is defined as

KL(p : q) =
n∑
i=1

KL(pi : q), (2.3)

where p = (p1, . . . , pn) and q = (p0, . . . , p0). In terms of this measure, the logistic regressionmodel satisfies the following
property:

Theorem 2.1. Consider a binary response variable Y and a set of explanatory variables x1, . . . , xk, measured as (yi, xi1, . . . , xik)
for i = 1, . . . , n independent observations, with pi = P(Yi = 1). In the class of models with those explanatory variables that
have fixed value sj =

∑n
i=1 yixij for

∑n
i=1 pixij, j = 1, . . . , k, the logistic regression model (2.1) is the closest to the model of

constant success probability (2.2) in terms of the Kullback–Leibler information.

The proof is omitted, because it is a special case of the more general result in Theorem 3.1, provided in Section 3. The
given sums sj in Theorem 2.1 are the sufficient statistics for the {βj} parameters of model (2.1), the likelihood equations for
which are

sj =
n∑
i=1

pixij, j = 1, . . . , k.

Other binary regression models do not have such reduced sufficient statistics, but it seems sensible to fix these statistics in
finding such a result as a way of keeping constant, in some sense, the information about the effects of explanatory variables.

3. A binary response model based on φ-divergence

Using Theorem 2.1 as a starting point and replacing the Kullback–Leibler information by a more general class of
divergences that includes KL as a special case, we obtain a generalized class of regression models for a binary response
that includes logistic regression as a special case. The family of divergences we use for this purpose is the φ-divergence one.
The φ-divergence family is a general family of divergence measures, introduced by Csiszàr (1963), and is based on

φ, a real-valued convex function on [0,+∞), with φ(1) = φ′(1) = 0, 0φ(0/0) = 0 and 0φ(x/0) = xφ∞ with
φ∞ = limx→∞[φ(x)/x] (see Pardo, 2006). In our context, the φ-divergence of n binomial distributions from the baseline
distribution of a constant probability, based on n independent observations, is defined by

Dφ(p : q) =
n∑
i=1

Dφ(pi : p0) =
n∑
i=1

[
qφ
(
pi
q

)
+ (1− q)φ

(
1− pi
1− q

)]
. (3.1)

Theorem 3.1. Let φ be a twice differentiable and strictly convex function and let F(x) = φ′(x), for all x. Consider a binary
response variable Y and a set of explanatory variables x1, . . . , xk, measured as (yi, xi1, . . . , xik) for i = 1, . . . , n independent
observations, with pi = P(Yi = 1). Then, in the class of models with those explanatory variables that have fixed value
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sj =
∑n
i=1 yixij for

∑n
i=1 pixij, j = 1, . . . , k, the model

F
(
pi
q

)
− F

(
1− pi
1− q

)
=

k∑
j=1

βjxij, (3.2)

under the constraint that 0 < pi < 1, is the closest to the model of constant success probability, p
(0)
i = q for all i, in terms of the

φ-divergence.

Proof. This is a constraint minimization problem, solved by the method of Lagrange multipliers. The function to be
minimized is Dφ(p : q) subject to the restrictions

∑n
i=1 pixij =

∑n
i=1 yixij (j = 1, . . . , k). Let p̃i = 1 − pi, and we also

add the constraint pi + p̃i = 1. Thus, the Lagrange function is

L(p) = Dφ(p : q)+
n∑
i=1

ci(pi + p̃i − 1)+
k∑
j=1

bj

[
n∑
i=1

yixij −
n∑
i=1

pixij

]
,

where {ci} and {bj} are Lagrange multipliers. Setting ∂L(p)/∂pi = 0, we obtain

φ′
(
pi
q

)
+ ci −

k∑
j=1

bjxij = 0, i = 1, . . . , n.

For αi = −ci and βj = bj, and since F = φ′, we conclude that

F
(
pi
q

)
= αi +

k∑
j=1

βjxij, i = 1, . . . , n. (3.3)

To solve (3.3) with respect to pi, we require the existence of F−1. This is ensured by the strict monotonicity of F , due to
F ′(x) = φ′′(x) > 0 for all x, because φ is strictly convex. Thus (3.3) leads to the expression

pi = q · F−1
(
αi +

k∑
j=1

βjxij

)
, i = 1, . . . , n. (3.4)

Analogously, by ∂L(p)/∂ p̃i = 0 we obtain

1− pi = p̃i = (1− q)F−1(αi), i = 1, . . . , n, (3.5)

and the fact that (3.4) and (3.5) must add to 1 for all i yields the constraints

qF−1
(
αi +

k∑
j=1

βjxij

)
+ (1− q)F−1(αi) = 1, i = 1, . . . , n, (3.6)

which the parameters of our model must satisfy. Also, L has a minimum at pi, since the Hessian matrix is positive definite
(φ′′ > 0). Now, from (3.3) and (3.5), we have the result (3.2) that

F
(
pi
q

)
− F

(
1− pi
1− q

)
=

k∑
j=1

βjxij. �

4. Parameter interpretation and characteristic special cases

The parameter βj in model (3.2) reflects departures from the model of constant success probability due to the jth
explanatory variable. The case β1 = · · · = βk = 0 is equivalent to the model of constant success probability (2.2). As
in ordinary logistic regression, interchanging the binary response categories results in the coefficient of xij changing from βj
to β̃j = −βj.
To interpret an individual βj, we shall focus on two observations that differ only for explanatory variable xj. Now, from

(3.2), for two observations i and i′ differing only in xj, we have

F
(
pi
q

)
− F

(
1− pi
1− q

)
− F

(
pi′
q

)
+ F

(
1− pi′
1− q

)
= βj(xij − xi′j). (4.1)

In the case of KL divergence, F( piq ) and F(
1−pi
1−q ) reduce to the log odds log

pi
q and log

1−pi
1−q , respectively, as seen below.

Furthermore, for xij − xi′j = 1, relation (4.1) reduces to the well-known result for logistic regression that βj equals the
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log odds ratio. Thus, the difference on the left-hand side of Eq. (4.1) can be regarded as a generalized log odds comparison,
scaled through F .
We next highlight some members of the general class (3.2):

1. For φ(x) = x log(x) − x + 1, x > 0, F−1(y) = ey and the φ-divergence simplifies to the Kullback–Leibler divergence. In

this case restriction (3.6) leads to exp(αi) =
[
1− q+ q exp(

∑k
j=1 βjxij)

]−1
, and model (3.2) becomes

pi =

q exp

(
k∑
j=1
βjxij

)

1− q+ q exp

(
k∑
j=1
βjxij

) , i = 1, . . . , n, (4.2)

which is simply the standard logistic regression model (2.1) with β0 = log[q/(1 − q)]. In terms of odds, model (4.2)
becomes

pi
1− pi

=
q
1− q

exp

(
k∑
j=1

βjxij

)
, i = 1, . . . , n. (4.3)

Expression (4.3) reveals the ‘‘departure from constant success probability’’ nature of the logistic regression model.
2. For φ(x) = 1

2 (x − 1)
2, the φ-divergence is the Pearsonian distance X2(p : q) =

∑n
i=1 X

2(pi : p0) =
∑n
i=1

(pi−q)2

q(1−q) and

constraints (3.6) give αi = −q
∑k
j=1 βjxij. Thus, model (3.2) simplifies to a linear probability model,

pi = q

[
1+ (1− q)

k∑
j=1

βjxij

]
, i = 1, . . . , n. (4.4)

This model is also the linear transformation model of Aranda-Ordaz (1981). In this case, the positivity of {pi} requires∑k
j=1 βjxij > −

1
1−q , while pi < 1 implies the restriction

∑k
j=1 βjxij <

1
q , for all i.

3. When Dφ is the power divergence measure (Read and Cressie, 1988), based on

Dφ(pi : p0) = [λ(λ+ 1)]−1
[
pi

(
pi
q

)λ
+ (1− pi)

(
1− pi
1− q

)λ
− 1

]
,

then φ depends on a real-valued parameter λ and equals φλ(x) = 1
λ(λ+1) [x

λ+1
− x − λ(x − 1)], x > 0 (Pardo, 2006).

Model (3.2) then becomes(
pi
q

)λ
−

(
1− pi
1− q

)λ
= λ

k∑
j=1

βjxij, i = 1, . . . , n, (4.5)

while the constraints (3.6) take the form

q

[
1+ λ

(
αi +

k∑
j=1

βjxij

)]1/λ
+ (1− q) [1+ λαi]1/λ = 1, i = 1, . . . , n.

Incorporating these constraints, (4.5) leads to

pi = q

[
1+ λ

(
αi +

k∑
j=1

βjxij

)]1/λ
, i = 1, . . . , n, (4.6)

In terms of odds, the expression for model (4.6) is

pi
1− pi

=
q
1− q

1+ λ
k∑
j=1
βjxij

1+ λαi


1/λ

, i = 1, . . . , n.

In order to ensure that pi < 1 we need αi <
q−λ−1
λ
−
∑k
j=1 βjxij. In case λ is even, we additionally need αi >

−
1
λ
−
∑k
j=1 βjxij. These constraints complicate the fitting of model (4.6) and suggest that the usefulness of the model

for general λ is quite limited. Unless λ = 1/2, there is no closed-form expression for {αi}. When λ = 0 or λ = −1,
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Table 1
Change in clinical condition by degree of infiltration.
Source: Cochran (1954).

Degree of infiltration Proportion Model fit
Clinical change High Low High Power divergence (λ = 1.673) Logistic (λ = 0) Linear (λ = 1)

Worse 1 11 0.083 0.083 0.140 0.112
Stationary 13 53 0.197 0.198 0.194 0.190
Slight improvement 16 42 0.276 0.278 0.262 0.270
Moderate improvement 15 27 0.357 0.345 0.344 0.348
Marked improvement 7 11 0.389 0.405 0.436 0.428

φ0(x) = limλ→0[φλ(x)] and φ−1(x) = limλ→−1[φλ(x)]. Model (4.6) reduces tomodel (4.4) when λ = 1 and to (4.2) when
λ→ 0.

5. Model fitting and example

In some cases, maximum likelihood estimates can be obtained with ordinary software for maximizing functions by
supplying the likelihood function to be maximized. For the models introduced in this article, the complicating factor is
the constraints to keep probabilities in the (0, 1) interval. When the model fits the data well, we can ignore the constraints
in the model-fitting process.
For example, consider the power divergence class of models, when at setting i of the explanatory variables we observe

the binomial variate yi based on ni trials. Then, one can express the model in the form

pi =

[
β∗0 +

k∑
j=1

β∗j xij

]1/λ
, (5.1)

where β∗0 = q
λ and β∗j = λq

λβj. We then maximize the usual binomial likelihood function,Πi[p
yi
i (1 − pi)

ni−yi ], treating λ
as fixed or as a parameter to estimate.
For the example below, we did this using PROC NLMIXED in SAS. This requires reasonable initial estimates. With a single

explanatory variable, one simple way to get these is to find sample proportions p̂i and plot p̂λi against xi for various λ to
suggest a version that linearizes the relationship, and then regress p̂λi against xi for that power to find initial estimates of β

∗

0
and β∗1 . Such a procedure will not be adequate when the model fit violates the constraints for probabilities, but the model
is not sensible in any case for such situations.
We illustrate using Table 1, from Cochran (1954), used there to illustrate a trend test for a binary response with

quantitative predictor. The table refers to an experiment on the use of sulfones and streptomycin drugs in the treatment
of leprosy. The degree of infiltration at the start of the experiment measures a type of skin damage. The response is the
change in the overall clinical condition of the patient after 48 weeks of treatment. We use response scores (0, 1, 2, 3, 4). The
question of interest is a comparison of the mean change for the two infiltration levels. Cochran noted that such an analysis
is equivalent to a trend test treating the binary variable as the response. That test is sensitive to linearity between clinical
change and the proportion of cases with high infiltration.
The logistic model with a linear trend using equally spaced clinical change scores fits well, having deviance 0.63 with

df = 3. The linear probability model, which is the power divergence model with λ = 1, also fits well, with deviance 0.26
with df = 3. Fitting the power divergence model with λ as a parameter, we get β̂∗0 = 0.0154, β̂

∗

1 = 0.0512, and λ̂ = 1.673,
with deviance 0.05, while df reduces to 2. Table 1 also shows the sample proportions and the fitted proportions for the
three models. The more complex model has the advantage of a precise fit, as is illustrated in Fig. 1, but at the cost that the
interpretation of parameter estimates is not as simple.
Although we show this example to illustrate a model from the generalized class presented in this article, we do not feel

that such models have broad scope for applications, because of the constraint issues and the lack of simple interpretation of
parameters compared to standard models. We feel that the results in this article are mainly of some theoretical interest for
providing a property for logistic regression and related models. However, in concrete situations where the standard models
fail, they may be helpful for identifying a more appropriate scale.

6. Generalizations

In this section, we consider some generalizations of the results in previous sections.
For a given set of explanatory variables, Theorem 2.1 found that the logistic regression model with those predictors

was closest (in terms of the Kullback–Leibler information) to the null model of constant success probability, subject to the
constraint that the sufficient statistics for the logistic model equal their expected values. What if instead we constrain only
a subset of the sufficient statistics to equal their expected values, corresponding to a subset of the explanatory variables?
Then, at least for the Kullback–Leibler case, the binary response model with the full set of predictors that is closest to the
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Fig. 1. Sample proportions (dots) and estimated probabilities using logistic regression (dashed curve), linear probability model (fine dashed line), and
power divergence model with λ = 1.673 (solid curve).

null logistic regressionmodel having the remaining explanatory variables as predictors is the logistic regressionmodel. This
result, stated as the following theorem, has a proof following the same lines as the proof of Theorem 3.1.

Theorem 6.1. Consider the logistic regression model, denoted by M0, containing the first k0 explanatory variables of the set
x1, . . . , xk. Then, in the class of binary regression models with fixed value sj =

∑n
i=1 yixij for

∑n
i=1 pixij, j = k0 + 1, . . . , k, the

logistic regression model (2.1) is the closest to the model M0 in terms of the Kullback–Leibler information.

The analogous result does not hold for the general model (3.2) in terms of an arbitrary φ-divergence measure. The form
of the closest model then is

pi = qF−1
(
αi +

k0∑
j=1

βjxij

)
F−1

(
αi +

k∑
j=k0+1

βjxij

)
and it cannot be further simplified. Note that if we allow in this last model different φ-functions for different blocks of
explanatory variables then we are led to a generalized model in which blocks of explanatory variables enter with different
scalings.
Just as we generalized binary logistic regression to a family of binary regressionmodels, in a similar mannermultinomial

logistic regression models generalize. For the baseline-category logit model for a categorical response with c categories, let

pih = P(Yi = h) =

exp

(
βh0 +

k∑
j=1
βhjxij

)

1+
c−1∑
s=1
exp

(
βs0 +

k∑
j=1
βsjxij

) , h = 1, . . . , c − 1.

Let yih denote an indicator variable that equals 1 if Yi = h. Then, in terms of KL information, under the constraint that the
sufficient statistics

∑
i xijyih =

∑
i xijpih, for j = 1, . . . , k and for h = 1, . . . , c − 1, this model is the closest to the model of

constant probabilities, by which pih = qh for all i and h. More generally, in terms of the φ-divergence, the closest model to
that of constant probabilities is

F
(
pih
qh

)
− F

(
pic
qc

)
=

∑
j

βhjxij, h = 1, . . . , c − 1,

where F(x) = φ′(x). Incorporating the probability constraints, themodel for a particular outcomeprobability is alternatively
expressed as

pih = qhF−1
(
ai +

∑
j

βhjxij

)
, h = 1, . . . , c − 1,

where the parameters ai (i = 1, . . . , n) are determined by
c−1∑
h=1

qhF−1
(
ai +

∑
j

βhjxij

)
+ qcF−1(ai) = 1.

The proof is also a straightforward generalization of the proof for Theorem 3.1, using Lagrange multipliers.
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The result also applies to useful special cases of this multinomial model. For example, the stereotype model (Anderson,
1984) replaces the linear predictor

∑k
j=1 βhjxij by the multiplicative form φh

∑k
j=1 βjxij, for category scores {φh} that are

themselves parameters and have a constraint such asφc = 0. For given category scores {φh} and for given scaled correlations∑n
i=1
∑c−1
h=1 pihφhxij between the category scores and each explanatory variable, j = 1, . . . , k, the stereotype model is the

closest to the model of constant probabilities in terms of the Kullback–Leibler information. In terms of φ-divergence, the
closest model has the generalized stereotype form

F
(
pih
qh

)
− F

(
pic
qc

)
= φh

∑
j

βjxij h = 1, . . . , c − 1.

In fact, the results for binary regression generalize to discrete generalized linear models. For the Kullback–Leibler
divergence, under the constraint that

∑
i(yixij − µixij) = 0 for all j, when there are no additional constraints the loglinear

model is the closest model to the null model of a constant mean, µi = µ0. This follows because the Lagrangian function
with Lagrangian multipliers {bj} is

L =
∑
i

µi log(µi/µ0)+
k∑
j=1

bj

[
n∑
i=1

(yixij − µixij)

]
,

which results in

∂L/∂µi = log(µi/µ0)+ 1−
k∑
j=1

bjxij = 0

and the model µi = µ0 exp
(∑

j bjxij − 1
)
. In particular, the constraint equations

∑
i yixij =

∑
i µixij for all j are the

likelihood equations for the generalized linear model using the canonical link function. As an important special case, the
Poisson loglinear model is the closest model to the model of a constant mean in the class of models with these constraint
equations. For the more general φ-divergence with F = φ′, under the same constraints, the closest model has the form

µi = µ0F−1
(∑

j

bjxij

)
. (6.1)

Analogous results occur in the literature for association models and correlation models for two-way contingency tables
(Goodman, 1985), in terms of distance from the independence model. Gilula et al. (1988) showed that association models
are closest to independence in terms of the Kullback–Leibler measure, while correlation models (which, like model (4.4),
are linear in the probability) are closest in terms of Pearsonian distance. A general class of association models based on
the φ-divergence has been introduced by Kateri and Papaioannou (1995). In comparing association and correlation models,
Goodman (1985, p. 32) pointed out that the parametric scores in correlation models must satisfy certain constraints to
ensure that cell probabilities lie in the (0, 1) interval, but such constraints were not needed for the corresponding scores in
association models. This is also the situation in our context, since (4.4) and (4.6) require constraints whereas (4.2) does not.
In the case of square contingency tables, similar results have been proved for the quasi-symmetry model (Kateri and

Papaioannou, 1997) and the ordinal quasi-symmetry model (Kateri and Agresti, 2007).
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