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Abstract

Standard models for a set of contingency tables with ordered response categories assume a common
e�ect within or between tables, described by a certain type of odds ratio. In practice, heterogeneity
usually occurs among such odds ratios, even if its extent is minor in magnitude. This article presents
models that summarize the e�ect while simultaneously describing the degree of heterogeneity. For
cases in which the levels of the strati�cation factor are a sample, such as many multi-center clinical
trials, we recommend the use of random e�ects models. These treat the true stratum-speci�c ordinal
log odds ratios as a sample with some unknown mean and standard deviation. For the random e�ects
distribution, we consider both normality and a nonparametric approach. In using these more realistic
models permitting heterogeneity, it can be more di�cult to establish signi�cance of e�ects because
of the extra variability inherent in the model. The primary focus is three-way contingency tables
with an ordinal response and a strati�cation factor, but we also briey discuss models for describing
heterogeneity within contingency tables. c© 2001 Elsevier Science B.V. All rights reserved.
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Table 1
Clinical trial relating treatment to response for eight centers

Response

Center Treatment Much better Better Unchanged=worse

1 Drug 13 7 6
Placebo 1 1 10

2 Drug 2 5 10
Placebo 2 2 1

3 Drug 11 23 7
Placebo 2 8 2

4 Drug 7 11 8
Placebo 0 3 2

5 Drug 15 3 5
Placebo 1 1 5

6 Drug 13 5 5
Placebo 4 0 1

7 Drug 7 4 13
Placebo 1 1 11

8 Drug 15 9 2
Placebo 3 2 2

1. Introduction

For comparing groups on a categorical response with strati�ed data, a common
starting point for modeling assumes a lack of interaction in the sense that cer-
tain odds ratios relating group and response are the same for each stratum. Tests
exist for checking homogeneity of odds ratios, such as goodness-of-�t tests for the
corresponding models. In practice, however, the true relationship usually has some
heterogeneity, even if it is minor in magnitude and perhaps not even signi�cant in
the sample according to a statistical test. In a clinical trial conducted to compare
treatments among several study centers, for instance, the true treatment e�ects may
have the same direction for each center but might vary somewhat due to unmea-
sured factors such as di�erential mean socioeconomic status or age among subjects
at di�erent centers. In such cases, it may be more relevant to estimate the degree
of the heterogeneity (treatment-by-center interaction) than simply to test whether it
exists.
Table 1, part of a data set analyzed by one of us (I. Liu) during a summer in-

ternship at Merck pharmaceutical company, is an example of this type for an ordinal
response variable. This table shows some preliminary results for eight of the centers
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from a double-blind, parallel-group clinical study. The purpose of the study was
to compare an active drug with placebo in the treatment of patients su�ering from
asthma. Patients were randomly assigned to the treatments. (The original study was
a double-blind, parallel-group study to compare the e�ect of three doses of the active
drug and placebo in chronic asthmatic patients. For simplicity of exposition here, we
compare only the e�ect of the active drug, which is the combination of the three dif-
ferent dose groups, and placebo. Therefore, Table 1 shows a drug group with almost
three times the number of patients as the placebo group.) At the end of the study,
investigators described their perception of the patient’s change in condition, using the
ordinal scale (much better, better, unchanged or worse). The focus of the study was
comparison of the treatments and investigation of potential treatment-by-center inter-
action. We will present analyses that compare the treatments while simultaneously
modeling the association variability among centers.
We study potential heterogeneity using models that contain parameters describing

the variability in odds ratios among strata. We consider two ways of doing this for
ordinal response variables. One approach, a standard one, uses �xed e�ects model-
ing. Our main emphasis is on a second approach that uses random e�ects terms to
describe the variability in conditional associations. This approach is natural when the
strata are a sample, such as a sample of clinics or geographical areas. The analysis
results in a simple summary consisting of a mean and standard deviation estimate
for the variation across strata of an ordinal measure of association. We present these
approaches for cumulative logit models, for which the ordinal measure is a cumula-
tive log odds ratio, and for adjacent-categories logit models, for which the ordinal
measure is a local log odds ratio. For the random e�ects models we use both a
parametric version, assuming a normal distribution for the random e�ects, and a
distribution-free version.
Section 2 reviews the standard �xed e�ects models and introduces the random

e�ects approach with models that imply that ordinal log odds ratios are a sample
from some distribution. Section 3 discusses model �tting and likelihood-ratio tests of
no e�ect and of homogeneity, based on models with random e�ects having normal
or unspeci�ed distribution. Section 4 illustrates the various methods applied to Ta-
ble 1. Section 5 extends the modeling of heterogeneity by also describing variability
within each stratum with respect to rows and columns, using generalized loglinear
models.

2. Describing heterogeneity with �xed and random e�ects in ordinal logit models

Let Y denote an ordinal response variable with c levels, X an explanatory variable
with r levels, and Z a strati�cation factor with L levels. Let nijk denote the count
at level i of X , j of Y , and k of Z . Let �j|ik =P(Y = j|X = i; Z = k). For i=1; : : : ; r
and k =1; : : : ; L, we assume that (ni1k ; : : : ; nick) has a multinomial distribution with
probabilities (�1|ik ; : : : ; �c|ik) and that samples from di�erent levels of X and=or Z
are independent. Let � denote a parameter describing the e�ect of X on Y . We
summarize the e�ect by evaluating how � varies among levels of Z .
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2.1. Cumulative logit models allowing heterogeneity

We illustrate �rst using the cumulative logit form of model. The jth cumulative
probability on Y is �∗j|ik = �1|ik + · · ·+ �j|ik , for j=1; : : : ; c. Suppose that X is itself
ordinal, with �xed monotone scores {xi} for its levels, or binary with indicator
(x1 = 0; x2 = 1). A simple version of the cumulative logit form of model is

logit(�∗j|ik)= log

(
�1|ik + · · ·+ �j|ik
�j+1|ik + · · ·+ �c|ik

)
= �j − k − �xi; j=1; : : : ; c − 1; (1)

for all i and k. Identi�ability requires a constraint such as �1 = 0. When {xi} are
equally spaced with {xi+1− xi=1}, in each stratum � denotes the log odds ratio for
any of the c−1 collapsings to a 2×2 table of the 2×c table consisting of rows i and
i+ 1. That is, at any level k of Z , the odds that Y falls above level j multiplies by
exp(�) for each unit increase in X . We refer to exp(�) as the common cumulative
odds ratio for the X − Y conditional association. It is standard to estimate � using
maximum likelihood (ML), although a Mantel–Haenszel style estimate is useful when
the data are sparse (Liu and Agresti, 1996).
A limitation of model (1) is that it assumes homogeneous e�ects across levels of

Z . To permit heterogeneity, one can generalize this model to

logit(�∗j|ik)= �j − k − �kxi; j=1; : : : ; c − 1: (2)

For each stratum, this model and model (1) assume the proportional odds structure
(McCullagh, 1980) of a common e�ect of X for all categories j at which one can
form a cumulative probability. In practice, it is often too restrictive to require the
same ‘cutpoints’ {�j} in each stratum, but the proportional odds structure also holds
for the more general model with �j − k in (2) replaced by �jk . The maximum like-
lihood �t is then equivalent to �tting a proportional odds model separately in each
stratum. More general models yet (see, e.g., Section 5) do not assume the propor-
tional odds structure or else have a nonlinear form that also allows the dispersion to
depend on the predictor (McCullagh, 1980). One could use alternative link functions
in these various types of models, but we illustrate with the logit link in this article.
We now consider random e�ects versions of models (1) and (2) that treat the

strata as a sample. A random intercept version of the homogeneity model (1) is

logit(�∗j|ik)= �j − ck − �xi; j=1; : : : ; c − 1: (3)

where {ck} are independent observations from a N (; �c) distribution (Alternatively,
one could remove constraints on {�j} and then set =0). This model is an extension
of the random-intercept logistic-normal model for binary data (Pierce and Sands,
1975). In our experience, the ML estimate of the �xed e�ect � for this model and
its standard error are very similar to those for model (1).
A more substantial and more useful extension permits heterogeneity in the condi-

tional associations. A random e�ects version of the heterogeneous e�ects model (2)
is

logit(�∗j|ik)= �j − ck − bkxi; j=1; : : : ; c − 1; (4)
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where {bk} are independent observations from a N (�; �b) distribution and {ck} are
independent observations from a N (; �c) distribution. As in the �xed e�ects case,
one can also consider more complex cutpoint structure that replaces �j−ck by a vector
of random e�ects {ajk ; j=1; : : : ; c − 1}. Although such a model may �t better, it
often presents computational problems for sparse data such as Table 1. In addition,
this usually has little impact on the question of main focus – namely, on estimating
the mean and variability in the association e�ects {bk}.
The normality assumption for the random e�ects in these models can rarely be

checked closely, especially when the number of strata L is not especially large,
such as in many multi-center clinical trials. An attractive alternative that avoids this
parametric assumption assumes a mixing distribution of unspeci�ed form for the
random e�ect (e.g., Aitkin, 1996, 1999). That is, one uses nonparametric maximum
likelihood (NPML) to jointly estimate the regression parameters and the random
e�ects distribution. Section 3 provides details of an EM algorithm for �tting this
model. In either the parametric or nonparametric approach with the interaction model
(4), the primary focus would usually be on estimating the expected cumulative log
odds ratio �, and the variability in the log odds ratios across strata, such as described
by their standard deviation �b.

2.2. Alternative ordinal models allowing heterogeneity

Similar approaches apply for modeling heterogeneity with other types of ordi-
nal odds ratios. For instance, one could model heterogeneity in local odds ratios,
which result both from certain logit and loglinear models. For expected cell counts
{�ijk =E(nijk)} with X and Y both ordinal, the loglinear model of heterogeneous
linear-by-linear association (Agresti and Kezouh, 1983) is

log �ijk = �+ �Xi + �
Y
j + �

Z
k + �

XZ
ik + �

YZ
jk + �kxiyj; (5)

for �xed scores {xi} and {yj}. With {xi= i} and {yj= j}, all local log odds ratios in
stratum k equal �k (i.e., there is heterogeneous uniform association). This parameter
also follows from the adjacent-categories logit model analog of (2),

log

(
�j|ik
�j+1|ik

)
= �j − k − �kxi; j=1; : : : ; c − 1: (6)

(With {yj= j}, the loglinear model (5) is equivalent to the extended version of this
model with �j − k replaced by �jk .) A random e�ects version of model (6) is

log

(
�j|ik
�j+1|ik

)
= �j − ck − bkxi; j=1; : : : ; c − 1; (7)

with {bk} and {ck} speci�ed as in (4), treated either as normal or in a distribution-free
manner.
When Y has c=2 categories, cumulative logit and adjacent-categories logit models

simplify to the same model. In that case, a variety of models have been used to
describe heterogeneity in odds ratios among several 2 × 2 tables. See, for instance,
Skene and Wake�eld (1990), Liu and Pierce (1993), and Agresti and Hartzel (2000).
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When r¿2 and X is nominal or treated as nominal by allowing arbitrary e�ects
rather than assuming a linear trend, one replaces bk in the heterogeneity models by
a vector of correlated random e�ects (bk1; : : : ; bk; r−1) that are coe�cients of dummy
variables.

2.3. Choice of scores and correlation structure for random e�ects

We have not yet fully stated the cumulative logit model (4) and the adjacent-
categories logit model (7) containing random intercepts and slopes, since we have
not indicated the correlation structure for (bk ; ck). For simplicity, one might simply
take these random e�ects to be uncorrelated. However, the results then depend on the
location of the scores for the predictor variable x. For instance, suppose we assume
model (4) but shift the scores to {xi + d} for some �xed d 6= 0. The new model
then has form

logit(�∗j|ik)= �j − ck − bk(xi + d)= �j − c∗k − bkxi;
where c∗k = ck + bkd. Then, (bk ; c

∗
k ) are correlated even if (bk ; ck) are not.

Thus, two models in which the scores in one are a location shift of the scores in
the other are not equivalent when one forces the random e�ects to be uncorrelated;
they will provide di�erent estimates of the parameters (�; �b) of interest, which is
undesirable. The models are equivalent, producing the same estimates of (�; �b), if
one allows the random e�ects to be correlated in the two cases. We recommend
�tting such models allowing correlated random e�ects. For relatively small numbers
of centers such as in Table 1, however, the estimates of variance components and
correlations are typically very imprecise for either case.

3. Model �tting and inference

We now discuss model �tting and inference for the random e�ects models pre-
sented in the previous section. Because the response is multinomial rather than bino-
mial, these models are special cases of multivariate generalized linear mixed models
(MGLMMs) for ordinal responses (Tutz and Hennevogl, 1996). We present the
estimation methods in terms of the MGLMM and note the applications to the previ-
ous models. We then present an EM algorithm for �tting the nonparametric random
e�ects version of the model.

3.1. Multivariate generalized linear mixed models

In a general setting with clustered data, let yik be the response vector for the
ith observation in the kth cluster and let uk be a vector of random e�ects. In a
MGLMM one assumes that (1) conditionally on uk the observations are independent
with conditional distribution f( yik |uk), a member of the multivariate exponential
family, with conditional mean and linear predictor given by

�ik =E( yik |uk)= h(�ik); �ik =Zik� +Wikuk ;
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and (2) the uk are independent with a N (�;�) distribution. To express the ordi-
nal models as MGLMMs, treating strata as clusters, we �rst re-express the ordi-
nal response Y for subject s with treatment i in stratum k as a response vector
ysik =(ysi1k ; : : : ; ysiqk):

ysijk =
{
1 if Y = j; j=1; : : : ; q= c − 1;
0 otherwise;

with corresponding response probabilities �′ik =(�1|ik ; : : : ; �q|ik). Then, denote the
multinomial proportions for the nik subjects having treatment i in stratum k by
yik =(

∑
s ysik)=nik . Since the distribution f( yik |uik) of nikyik is multinomial and thus

in the multivariate exponential family, the models of the previous two sections are
MGLMMs (Fahrmeir and Tutz, 1994, p. 69).
The relationship between the mean �ik and the linear predictor �ik for cumulative

logit models is de�ned by the response function h(�ik),

�1|ik = h1(�ik)=
1

1 + exp(−�i1k) ;

�j|ik = hj(�ik)=
1

1 + exp(−�ijk) −
1

1 + exp(−�i; j−1; k) ; j=2; : : : ; c − 1:

The relationship for adjacent-categories logit models has the response function

�j|ik = hj(�ik)=
exp[− (j − c)�ijk]

1 +
∑q

j= 1 exp[− (j − c)�ijk]
:

Then, for instance, for the heterogeneity models (4) and (7), the model matrix Zik
for the �xed e�ects �′=(�1; : : : ; �c−1) is the (c − 1) × (c − 1) identity matrix, the
model matrix for the random e�ects u′k =(ck ; bk) is the (c − 1)× 2 matrix

Wik =



−1 −xi
...

−1 −xi


 ;

and uk ∼ N [(; �)′;�] in the normal case.

3.2. ML model �tting with normal random e�ects

Let g(u; �;�) denote the multivariate normal density function with mean � and
covariance matrix �. The likelihood function for a MGLMM with strati�ed multi-
nomial responses for r groups has the form

L(�; �;�)=
L∏

k = 1

∫ ∞

−∞
· · ·
∫ ∞

−∞

[
r∏

i= 1

f( yik |uk ; �)
]
g(uk ; �;�) duk : (8)

Maximum likelihood estimates are obtained by maximizing (8), which involves
evaluating intractable integrals. For the case of cumulative logit models, Tutz and
Hennevogl (1996) utilized the EM algorithm along with either Monte Carlo or
Gauss–Hermite quadrature approximations for the integrals. Hedeker and Gibbons
(1994) considered both cumulative logit and cumulative probit models and directly
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maximized the likelihood after approximating the integrals by Gauss–Hermite quadra-
ture. Here, we also consider the adjacent-categories logit model, we utilize a di�erent
method for approximating the integrals in (8), and we consider a nonparametric as
well as the normal parametric approach. We directly maximize (8) but approximate
the integrals by adaptive Gauss–Hermite quadrature (Liu and Pierce, 1994; Pinheiro
and Bates, 1995). Adaptive quadrature centers the Gauss–Hermite nodes with re-
spect to the mode of the function being integrated and scales them according to the
estimated curvature at the mode. From our experience, this dramatically reduces the
number of quadrature points needed to approximate the integrals e�ectively.
To approximate the integrals for the kth stratum in (8), we �rst calculate the mode,

�̂k , of the integrand
∏r
i= 1 [f( yik |uk ; �)]g(uk ; �;�) and center the original Gauss–

Hermite nodes about that point. We then scale the centered nodes according to the
curvature of the integrand around the mode. An estimate of the curvature at the mode
of the integrand can be obtained by inverting the negative of the second derivative
matrix of the integrand evaluated at the estimated mode. We use numerical second
derivatives for the estimation of the curvature, Q̂k . Denote the dimension of the
random e�ects vector uk by m. The adaptive quadrature nodes for the kth stratum
are then

z∗kl = �̂k +
√
2 Q̂

1=2

k zl

where l =(l1; : : : ; lm); zl =(zl1 ; : : : ; zlm), and {zl} are the original Gauss–Hermite
nodes. The m-dimensional integral approximation is then∫ ∞

−∞
· · ·
∫ ∞

−∞

[
r∏

i= 1

f( yik |uk ; �)
]
g(uk ; �;�) duk

= |Q̂|1=22m=2
∑
l

wl

[
r∏

i= 1

f( yik |z∗kl ; �)
]
g(z∗kl ; �;�)exp(z

′
l zl);

where wl =
∏m
t = 1 wlt and {wlt} are the original Gauss–Hermite weights. The upper

limits of the multiple summations over l should be increased until the desired ac-
curacy in the approximation is reached. However, using s quadrature points in each
dimension requires summing over sm terms. Due to the exponential growth in com-
putational e�ort with each dimension, only dimensions of up to 5 or 6 are currently
computationally feasible.
Maximization of the likelihood (8) can be carried out by standard methods, such

as Newton–Raphson or quasi-Newton methods. Care must be taken when maximizing
with respect to the unique parameters of the covariance matrix, since nonnegative
de�nite matrices can occur during the maximization routine. With a modest amount
of work the observed information matrix can be calculated to provide standard errors
at convergence (Hartzel, 1999).
We developed an OX program (Doornick, 1998) using adaptive Gauss–Hermite

quadrature to �t cumulative logit and adjacent-categories logit models with random
e�ects. The recently released Version 8 of SAS contains PROC NLMIXED for �tting
generalized linear mixed models using adaptive Gauss–Hermite quadrature. Although
it is not obvious that one can �t ordinal models using this procedure, it is possible
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to do so by de�ning the appropriate likelihood function, as we illustrate in the next
section. Hedeker and Gibbons (1994) developed a FORTRAN program, MIXOR,
for proportional odds models with random e�ects, available at Hedeker’s web site
(www.uic.edu= ∼hedeker).

3.3. ML model �tting with the nonparametric approach

An alternative to the normality assumption in the MGLMM is to assume that g(uk)
is a discrete distribution with unknown support size P, mass points m=(m1; : : : ; mP),
and probabilities p=(p1; : : : ; pP). Joint estimation of �, m, and p can be implemented
with an EM algorithm. We describe this for the case of a single random e�ect,
uk = uk , generalizing work of Aitkin (1999) for binary response models. Denote the
complete log-likelihood that contains both the observed data y and unobserved data
u by

log L( y; u; �)=
L∑

k = 1

log

[
r∏

i= 1

f( yik |uk ; �)
]
+

L∑
k = 1

log g(uk): (9)

In the E-step at iteration (s+1) the expectation of the complete log-likelihood (9)
is calculated with respect to the conditional distribution f(u|y; �(s);m(s); p(s)), where
�(s);m(s); and p(s) are the working parameter estimates from the previous iteration.
Using independence, Bayes Rule, and expressing g(uk) in terms of the masses p and
mass points m, one obtains

E[log L( y; u; �;m; p|�(s);m(s); p(s))]

=
L∑

k = 1

P∑
l= 1

[
q(s)kl log

r∏
i= 1

f( yik |ml; �) + q(s)kl logpl
]
; (10)

where

q(s)kl =
p(s)l

∏r
i= 1 f( yik |m(s)l ; �(s))∑P

l= 1 p
(s)
l

∏r
i= 1 f( yik |m(s)l ; �(s))

:

Here, q(s)kl represents the estimated posterior probability that the response vector
( y1k ; : : : ; yrk) for stratum k comes from component l. The {q(s)kl } are calculated from
the parameter estimates at the sth iteration.
The M-step consists of maximizing (10) with respect to �; m, and p. The second

term of (10) is not a function of � or m and can be maximized separately from the
�rst term. Maximizing

∑
k

∑
l q

(s)
kl logpl subject to

∑P
l= 1 pl=1 yields simply

p̂(s)l =
L∑

k = 1

q(s)kl =L:

Since q(s)kl is known, the �rst term of (10),
∑

k

∑
l q

(s)
kl log

∏
i f( yik |ml; �), is sim-

ply the log-likelihood of a weighted multivariate GLM. Hinde and Wood (1987)
noted that ml, l=1; : : : ; P, can be estimated by incorporating a P-level factor in
the model in place of ml. By absorbing the additional mass point parameters into
�∗=(�′; m1; · · · ; mP−1)′ and adjusting the model and response matrices accordingly,
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one can maximize the weighted multivariate GLM using the Fisher scoring algorithm
with forms of the score function and expected information matrix given in Fahrmeir
and Tutz (1994, p. 346).
The EM algorithm with a Fisher scoring algorithm embedded in each M-step can

be summarized as follows:

0. Calculate initial values �∗(0) = (�(0)
′
; m(0)1 ; : : : ; m

(0)
P−1)

′ and p(0).
For s=0; 1; 2; : : :

1. Calculate posterior probabilities q(s)kl , k =1; : : : ; L; l=1; : : : ; P, using �
∗(s) and p(s).

Calculate p(s+1) using q(s)kl , k =1; : : : ; L; l=1; : : : ; P.
2. Carry out the Fisher scoring algorithm to obtain �∗(s+1) using the weights q(s)kl ;
k =1; : : : ; L; l=1; : : : ; P.

For initial estimates of the regression parameters � in �∗, one can use the ML
estimates from the parametric random e�ects model or else estimates obtained by
�tting a GLM to the original data, ignoring the random e�ect. A number of ways
of obtaining initial estimates for the mass points m exist. Most of these utilize the
residuals from �tting a GLM to the original data (Hinde and Wood, 1987; Follmann
and Lambert, 1989). Aitkin (1996) suggested using the P nodes and weights from
P-point Gaussian quadrature, which is the approach we used.
Convergence of the EM algorithm, which is often slow, can be determined by the

change in successive deviances or by the absolute di�erence in parameter estimates.
Usually it is adequate to monitor the deviance, but it is wise to check also the pa-
rameter estimates to check whether any seem to be heading to in�nity. Convergence
to a local maximum is possible, so trying di�erent starting values is also recom-
mended. Standard errors can be obtained through the calculation of the observed
information matrix. One can calculate the observed information matrix using Louis’
method (Louis, 1982) or, as we have done, by directly calculating �rst and second
derivatives of the log-likelihood function,

L∑
k = 1

log
P∑
l= 1

pl

[
r∏

i= 1

f( yik |�∗)
]

with respect to p and �∗ (Hartzel, 1999). Upon convergence of the NPML algorithm,
the observed information matrix is evaluated at the maximum likelihood estimates
of the �xed parameters and mixing distribution and then inverted to obtain an esti-
mated variance–covariance matrix for the parameters. We developed an OX program
(Doornick, 1998) to do these analyses.
In the EM algorithm described above, we assumed that the support size of the

mixing distribution g(uk) is a �xed quantity, P, when it is in fact an unknown
parameter. One approach for estimating P is to start with P=2 and successively
apply the algorithm while incrementing P until the optimal support size is reached.
There are a number of ways to determine if the optimal support size has been
reached. Typically an increase in the support size beyond the optimal value leads to
multiplicities in mass points, or masses with zero probabilities. In conjunction with
these occurrences, there is usually little to no change in the deviance between the
successive �ts. Thus one can determine convergence in P by comparing deviances
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between �ts. Occasionally, however, an increase in the support size beyond the
optimal value will lead to singular matrices within the Fisher scoring algorithm as
mass points take on identical values. The deviance would then be unde�ned, but the
choice of P would be obvious.
A question we are currently investigating is whether there are random e�ects

distributions for the models discussed in this article such that estimates obtained
with the nonparametric approach di�er substantively from those with the parametric
normal approach. That is, can misspeci�cation of the random e�ects distribution,
assuming normality when reality is far from normal, result in serious bias? We do
not expect this to happen for inferences about �xed e�ects, such as inferences about
� in random-intercept forms of models such as (3); however, it could plausibly
happen for inferences about the mean � of highly skewed distributions of e�ects
{bk} in heterogeneity models such as (4).

3.4. Predicted values

Besides estimating the model parameters, one might also want predicted values for
the center-speci�c cumulative log odds ratios {bk} in model (4). Point predictors for
these random e�ects are based on their conditional expectation, given the observed
data. For example, the prediction for bk is

E(bk |yk ; �̂; �̂; �̂)=
∫∞
−∞ bk

∫∞
−∞ [

∏r
i= 1 f( yik |bk ; ck ; �̂)]g(bk ; ck ; �̂; �̂) dck dbk∫∞

−∞
∫∞
−∞ [

∏r
i= 1 f( yik |bk ; ck ; �̂)]g(bk ; ck ; �̂; �̂) dck dbk

; (11)

where yk is the data vector for the kth center and �̂ has elements �̂b, �̂c, and �̂bc.
Both the numerator and denominator of (11) contain intractable integrals and thus
some approximation is required. As in the estimation routine in Section 3.2, these
integrals can be approximated using adaptive Gauss–Hermite quadrature. The modes
and curvatures of the integrands in the numerator and denominator are found and
adaptive quadrature is applied individually to each set of integrals. Although Eq. (11)
seems to suggest that the prediction of bk depends only on the data for center k,
the parameter estimates depend on all the data; as a consequence, these predictions
typically exhibit considerable shrinkage from the estimates for corresponding �xed
e�ects models, especially when the sample size is small.
Standard errors for the predicted random e�ects are also calculated conditionally.

As this conditional variance is a function of the estimated parameter vector, additional
steps are needed to take into account the sampling variability associated with that
estimate. Booth and Hobert (1998) have proposed a conditional mean squared error
of prediction (CMSEP) criterion for predictions of linear combinations of the �xed
and random e�ects that does this.

3.5. Testing homogeneity versus heterogeneity

The traditional way to check the homogeneity of odds ratios is the �xed e�ects
approach of testing that �1 = · · · = �L in model (2) for cumulative odds ratios and
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in model (6) for local odds ratios. The likelihood-ratio test statistic, the di�erence
between the deviances for the model with this restriction and the more general model,
follows an asymptotic chi-squared distribution with L− 1 degrees of freedom. Alter-
natively one can check homogeneity in terms of other measures of ordinal association
(e.g., Uesaka, 1993).
For the parametric normal random e�ects models (4) for cumulative odds ratios

and (7) for local odds ratios, one can check homogeneity with the likelihood-ratio
test of whether the normal distribution of {bk} is degenerate, which we express as
H0: �b=0. Under H0, the likelihood-ratio statistic,

− 2[max log L(�; �; ; �b=0; �c)−max log L(�; �; ; �b; �c)]; (12)

is approximately an equal mixture of degenerate at 0 (which occurs when �̂b=0)
and chi-squared distributed with 1 degree of freedom. The value 0 occurs when the
maximized likelihoods are identical under the null and the alternative, and hence
their ratio equals 1. Thus, when �̂b¿0 and the observed test statistic has value
t¿0; the P-value for this large-sample test is (1=2)P(�21¿t), half the P-value that
applies for �21 asymptotic tests (such as tests about �xed e�ect components). Although
analogous results may hold with the nonparametric approach, as yet there is not any
de�nitive research on the distribution of likelihood-ratio statistics when comparing
such a model to one without the discrete random e�ect. For instance, one di�culty
is that the number of mass points is itself a parameter. The estimated value of this
may increase with the sample size, yet standard asymptotics treat the number of
parameters as a �xed and known constant as n→∞.

4. Example: Ordinal multi-center clinical trial data

We now return to the application of comparing treatments when data are collected
from several centers of some type, such as medical clinics. Table 1 is an example of
this type. We analyze these data using �xed and random e�ects models permitting
heterogeneity.

4.1. Example: �xed e�ects models

For a baseline, we begin with model (1) with x1 = 0; x2 = 1, which assumes a
common cumulative log odds ratio � for each center. The treatment e�ect estimate
is �̂=0:93 with standard error of 0.28. The data are sparse, but the deviance and
Pearson goodness-of-�t statistic values of G2 = 53:7 and X 2 = 53:5 with df =22 give
some cause for concern about the adequacy of this model.
The heterogeneity model (2) allows the cumulative log odds ratio to vary among

centers and yields {�̂k} as shown in Table 2,ranging from �̂2 = − 1:62 to �̂1 = 3:03.
The likelihood-ratio statistic testing homogeneity of associations by comparing this
model with the homogeneity model (1) equals 24.8 (df =7), giving strong evidence
(P-value ¡0:001) against a common cumulative odds ratio. The heterogeneity model
itself shows potential lack of �t (G2 = 28:9, df =15). It follows from model-�tting
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Table 2
Summary of center-speci�c cumulative log odds ratio estimates and standard errors for treatment e�ects
with �xed and random e�ects heterogeneity models applied to Table 1a

Fixed e�ects model (2) Random e�ects model (4)

E�ect Estimate Std. Error Estimate Std. Error

Center 1 3.03 (2.74) 0.87 (0.88) 2.35 0.75
Center 2 −1:62 (−1:67) 0.95 (1.00) −0:62 0.92
Center 3 0.20 (0.30) 0.55 (0.65) 0.32 0.52
Center 4 0.71 (0.81) 0.85 (0.93) 0.76 0.72
Center 5 2.84 (2.26) 0.95 (0.95) 2.11 0.83
Center 6 −1:06 (−0:94) 1.21 (1.14) −0:10 0.94
Center 7 1.76 (1.55) 0.87 (0.87) 1.53 0.73
Center 8 0.83 (0.89) 0.82 (0.81) 0.84 0.73

aParenthesized values for Model (2) result from better-�tting version of model with separate cutpoint
structure for each center.

discussed in Section 5 that this is due to requiring the same relative distances
between cutpoints in each center rather than the proportional odds assumption. That
is, the more general model with �j − k in (2) replaced by �jk provides a good �t
(G2 = 5:0, df =8). Table 2 also shows estimates and standard errors of {�̂k} for this
more general model. Results are similar. In our experience, the cutpoint structure for
the model has little e�ect on inferences and substantive conclusions about associ-
ations, even though the two sets of parameters are not orthogonal. Since the main
focus here is on describing heterogeneity of association rather than heterogeneity of
response probabilities and since the data are so sparse for each center, the follow-
ing discussion of random e�ects models primarily discusses models with the simpler
cutpoint structure.

4.2. Example: random e�ects models

In �tting random e�ects models in which the strata are levels of a random e�ect,
ideally one would prefer to have more than the 8 strata that Table 1 has. Moreover,
for most data sets of this type the strata are not truly a random sample. However, we
agree with the statement by Grizzle (1987), ‘Although the clinics are not randomly
chosen, the assumption of random clinic e�ect will result in tests and con�dence
intervals that better capture the variability inherent in the system more realistically
than when clinic e�ects are considered �xed.’ In addition, the random e�ects ap-
proach more naturally directs resulting inference toward the true population of inter-
est rather than just these eight centers. The �xed e�ects models have the limitation
that their inferences, strictly speaking, apply only to those centers. Thus, keeping in
mind the limitations of a small number of (nonrandomly chosen) centers and sparse
data and the fact that estimates of variance components would be rough for such
samples even with a more random design, we now use Table 1 to illustrate such
models. This subsection assumes normal distributions for random e�ects.
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The homogeneity cumulative logit model (3), which assumes a distribution only for
the center e�ects, has very similar results as the corresponding �xed e�ects model
(1), with �̂=0:95 and standard error 0:28. (With the more complex ajk cutpoint
structure, using a vector of correlated random e�ects, �̂=0:93 and standard error
0:28). More realistically, to allow for interaction we use the heterogeneity model
(4), which has �̂=0:92 with standard error 0:53. Although the treatment estimate
is similar, the standard error is much larger. This larger standard error results from
the extra variance component for {bk}, described by �̂b=1:22. That is, model (4)
predicts that cumulative log odds ratios vary among centers with a mean of 0:92 and
a standard deviation of 1.22.
Given the heterogeneity model (4), the likelihood-ratio statistic for testing homo-

geneity of associations (�b=0) equals 5.9, which corresponds to a P-value of 0:008
(half the tail probability for a �21 variate). As with the �xed e�ects models, there is
strong evidence of heterogeneity. Recognizing the heterogeneity, we must be content
with a less precise estimate of the overall association level. In our experience, the
standard error of �̂ is similar to that of the corresponding estimated �xed e�ect in a
homogeneity model only when �̂b=0 or close to it.
Table 2 shows the predicted values of the cumulative log odds ratios according to

model (4), based on estimating the expected value of bk in this model given the data.
The standard errors provided are based on a Laplace approximation to the conditional
mean squared error of prediction. Since the random e�ects estimates ‘borrow from
the whole,’ they show a considerable shrinkage compared to the estimates from the
�xed e�ects model. For instance, the negative estimates of −1:62 and −1:06 shrink
to −0:62 and −0:10. When datasets have small sample sizes per stratum, we be-
lieve that shrinkage of e�ect estimates is highly appealing for models permitting
heterogeneity, since the stratum-speci�c estimates are then likely to exhibit more
variability than the true parameters. In particular, stratum-speci�c estimates are in�-
nite when either none of the sample pairs of observations are concordant or none are
discordant.

4.3. Likelihood-ratio tests of treatment e�ects

Next, we consider the signi�cance of the treatment e�ect, for various models. We
begin with the homogeneous e�ects models, but only for illustrative purposes since
they �t poorly. For the �xed e�ects model, the likelihood-ratio statistic for testing
that �=0 (i.e., conditional independence of response and treatment, given clinic)
equals 11.5, with df =1 (P¡0:001). For the model (3) with random center e�ects,
the likelihood-ratio statistic equals 12:0 (P¡0:001). These tests, coupled with the
positive sign for �̂, provide strong evidence that the response tends to be better with
drug than placebo, but we have seen that their assumption of association homogeneity
is unrealistic. By contrast, if we use the better-�tting random e�ects heterogeneity
model (4), the likelihood-ratio statistic for testing that the mean � of the cumulative
log odds ratios is zero equals 2.5 with df =1 (P=0:11 for the alternative, � 6= 0).
Thus, the evidence of a treatment e�ect is considerably weaker, and that e�ect is then
a ‘mean’ e�ect rather than a common e�ect for each stratum. In using more realistic
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Table 3
Estimated treatment log odds ratio and standard error, for cumulative logit and adjacent-categories logit
models, with Table 1

Cumulative logit Adjacent-Cat. logit

Random e�ect
E�ect Center distribution Model �̂ Std. error Model �̂ Std. error

Homogeneous Fixed — (1) 0.932 0.278 0.656 0.193

Random Normal (3) 0.947 0.276 0.654 0.190
Nonparametric (3) 0.938 0.282 0.654 0.191

Heterogeneous Random Normal (4) 0.923 0.526 (7) 0.633 0.341
Nonparametric (4) 0.978 0.530 (7) 0.602 0.232

models permitting heterogeneity, it can be more di�cult to establish signi�cance of
e�ects because of the extra variability inherent in the model.

4.4. Alternative models

All results discussed so far in this section refer to the cumulative logit form of
model. Similar results occur with adjacent-categories logit models and inferences re-
garding local odds ratios. Table 3 summarizes the association parameter estimates for
various models applied to Table 1. The {�̂k} in �xed e�ects model (6) range from
�̂2 = − 1:12 to �̂1 = 2:00. The simpler homogeneity model has �̂=0:66 with stan-
dard error 0.19. The likelihood-ratio statistic for testing homogeneity (�1 = · · · = �8)
equals 21.7 (df =7; P-value= 0:003), providing evidence of nonhomogeneous local
odds ratios. With the adjacent-categories logit random e�ects heterogeneity model
(7), �̂=0:63 with a standard error of 0.34. Again the standard error is considerably
larger than for the homogeneity models. The variability among {bk} is described by
�̂b=0:77.
Substantive results are similar with the nonparametric random e�ects models,

as Table 3 shows. For these models the likelihood achieved its maximum using
a discrete mixture distribution with few mass points. This coincides with results
found by others for binomial response models (Follmann and Lambert, 1989; Aitkin,
1996,1999). For example, the cumulative logit homogeneity model (3) required a
discrete mixing distribution with only three mass points (see Table 4). The non-
parametric estimation algorithm in Section 3.3 can be used to �t the heterogeneous
e�ects cumulative logit model (4) or adjacent-categories logit model (7) by including
interaction terms between the treatment factor and the mass point dummy variables.
The nonparametric version of the cumulative logit heterogeneity model (4) re-

quired only 4 mass points for the joint distribution of (ck ; bk), shown in Table 4.
The log odds ratios were estimated to vary around a mean of 0.98 (std. error = 0:53)
with �̂b=1:25, compared to a mean of 0.92 (std. error = 0:53) with �̂b=1:22 in
the normal random e�ects model. The likelihood-ratio statistic for testing that �=0
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Table 4
Estimated mass points and probabilities (in parentheses) of mixing distribution for nonparametric ran-
dom e�ects �tting of cumulative logit models (3) and (4) with Table 1

Mixing distribution
Model Random Support m̂1 m̂2 m̂3 m̂4

e�ect size (P) (p̂1) (p̂2) (p̂3) (p̂4)

Homogeneous (3) ck 3 −0:59 −1:43 −2:38
(0.31) (0.46) (0.23)

Heterogeneous (4) (ck ; bk) 4 (0.20, 0.16) (−1:32; 2:91) (−0:87;−0:04) (−2:28; 1:71)
(0.25) (0.25) (0.37) (0.13)

equals 4.3; again there is much weaker evidence of an e�ect than with the homo-
geneity model (3), for which the test statistic equals 11.7. The heterogeneity model
shows slightly stronger evidence of a treatment e�ect with this approach than with
the parametric one (for which the test statistic equals 2.5). However, we make this
observation with some caution, since the chi-squared asymptotic theory has weaker
validity in the nonparametric case; the number of parameters is unknown, since the
support size is unknown, and indeed the ML �ts could have di�erent numbers of
support points under the null and alternative (in which case at least one parameter for
the larger support size falls on the boundary of the parameter space for the smaller
support size). Results from a simulation study that we performed do suggest that
the use of the likelihood-ratio test is reasonable for the NPML approach, and can
provide at least approximate inferences even when the support sizes di�er between
the null and the alternative hypotheses (Hartzel, 1999).

4.5. Choosing a model form

In this section we have analyzed Table 1 with a variety of models, di�ering in
terms of the type of logit (cumulative or adjacent categories), type of e�ects (�xed
or random), whether the model allows heterogeneity among centers in the treatment
e�ects, and in the random e�ects case the choice of distribution for the random e�ect
(normal or nonparametric). We now discuss issues in choosing a model from among
those resulting from the possible combinations of these factors. Testing goodness of
�t is not the primary issue here, as several models can provide an adequate �t to
any given data set.
Conditional on the other choices, substantive conclusions are usually the same for

the two types of logit. We believe this choice is the least important of the four just
mentioned. The cumulative logit is the most popular in the literature both for �xed
e�ects and random e�ects models, and it relates naturally to a regression model
for an underlying continuous response (McCullagh, 1980). The adjacent category
logit is more natural if one wants conclusions in terms of odds ratios to apply to
pairs of response categories rather than to cumulative probabilities and hence ordinal
groupings of categories.
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In applications such as multi-center clinical trials and meta analyses, in which the
strata are a sample of possible ones, we prefer the random e�ects approach because
of its scope of inference, applying more generally than to only the strata sampled.
Even when the strata are not a sample, when the number of strata is large the random
e�ects approach can be bene�cial because of the smoothing e�ects on stratum-speci�c
estimates and the natural summary of a mean and standard deviation for the treatment
e�ects. Our experience with a variety of examples indicates that the random e�ects
model assuming no interaction tends to provide similar results about the common
treatment e�ect as the random e�ects interaction model does for the mean of the
treatment e�ects when the variance component estimate for the treatment e�ects
equals 0 or is close to 0. The latter model may provide a much wider con�dence
interval for the average e�ect when that variance component estimate is substantial,
as we observed for Table 1, but this is reasonable because of the extra source of
variability. Of the random e�ects models, we recommend allowing heterogeneity by
using the interaction model. If one uses the simpler homogeneity model but there is
actually substantial heterogeneity, the standard error of the estimated treatment e�ect
will be unrealistically low.
When the primary interest is in summarizing the treatment e�ect, our hunch is that

the choice of distribution for the random e�ect is not crucial. This appears to be the
case for binary data (Neuhaus et al., 1992). Since some of the asymptotic inferential
issues are still unresolved with the nonparametric approach, for now our preference
is for the normal random e�ects model. The normal choice also has the advantage of
extending naturally to multivariate random e�ects that may have a particular form of
correlation structure. However, the potential e�ects of misspeci�cation require closer
study. Even if there is a minor e�ect on summary treatment e�ects, the e�ect may
be greater on stratum-speci�c estimates, especially for sparse asymptotics in which
the number of centers grows with the overall sample size.
Because of these considerations, our preferred choice for analyzing Table 1 is

model (4) with a bivariate normal distribution for (bk ; ck). Thus, we would summarize
Table 1 by predicting that cumulative log odds ratios vary about a mean of 0.92
with a standard deviation of 1.22, and the estimated mean of 0.92 has a standard
error of 0.53.

4.6. Fitting random e�ects models with SAS

Table 5 illustrates the use of PROC NLMIXED in Version 8 of SAS to �t ran-
dom e�ects models such as (4). Though the multinomial distribution is not directly
supported by NLMIXED, one can de�ne the general likelihood function needed to
�t the models considered here through the use of SAS programming statements. In
Table 5 we enter the counts for each cell and create variables denoting the center,
treatment group, and response value. Within the NLMIXED procedure, we de�ne the
cumulative logit probabilities as functions of the linear predictors �1 and �2. Since
the �rst threshold and the mean of the random e�ects distribution are aliased, we set
the �rst threshold to zero and use the BOUNDS statement to maintain the ordering of
the remaining threshold parameter. The RANDOM statement de�nes the distribution
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Table 5
Example of SAS code (Version 8) for using PROC NLMIXED to �t cumulative logit random e�ects
heterogeneity model (4) to Table 1

data ordinal;
do center= 1 to 8;

do trt= 1 to 0 by −1;
do resp= 3 to 1 by −1;

input count @@;
output;

end;
end;

end;
datalines;
13 7 6 1 1 10 2 5 10 2 2 1
11 23 7 2 8 2 7 11 8 0 3 2
15 3 5 1 1 5 13 5 5 4 0 1
7 4 13 1 1 11 15 9 2 3 2 2

run;

proc nlmixed data= ordinal qpoints=15;
** To maintain the threshold ordering define thresholds such that **;
** threshold 1= 0 and threshold 2= i2, where i2 ¿ 0. **;
** Use starting value of 0 for sig cb **;
bounds i2¿0; parms sig cb= 0;
eta1= c-b*trt;
eta2= i2-c-b*trt;
if (resp= 1) then z = 1/(1+exp(-eta1));

else if (resp= 2) then z= 1/(1+exp(-eta2))−1/(1+exp(-eta1));
else z = 1−1/(1+exp(-eta2));

if (z ¿ le-8) then ll = count*log(z); ** Check for small values of z **;
else ll =− le100;

model resp ∼ general (ll); ** Define general log-likelihood. **;
random c b ∼ normal ([gamma, beta],[sig c*sig c, sig cb, sig b*sig b])

subject = center out = out1; ** OUT1 contains predicted center- **;
** specific cumulative log odds ratios **;

run;

and covariance structure of the random e�ects. For multiple random e�ects, the co-
variance matrix in the RANDOM statement consists of the lower triangle of the
desired covariance structure. The OUT option in the RANDOM statement requests
the predicted values of the random e�ects to be outputted to the named dataset. The
standard errors of the predicted random e�ects are based on a Laplace approximation
to the conditional mean squared error of prediction.
The QPOINTS= option in PROC NLMIXED forces SAS to use the speci�ed

number of quadrature points. We recommend specifying this to be upwards of 15
to 20 to ensure accurate approximation of the integrals, since in our experience the
default in SAS was insu�ciently large to approximate standard errors and predictions
adequately. Running on a Pentium II, 400 MHz computer with 128 MB of RAM,
the example in Table 5 needed about 8 seconds to obtain convergence using 10
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quadrature points and about 19 seconds to obtain convergence using 20 quadrature
points.

5. Extensions to modeling within-stratum and between-stratum heterogeneity

The models considered in this paper study between-strata heterogeneity but have
a single parameter describing association within each stratum. Although it is also
unrealistic to think that all odds ratios within a stratum are truly exactly equal, in
practice it is often su�cient to summarize the overall association within a stratum
and describe the variability in that overall association across strata. Alternatively,
one could model the heterogeneity both within and between strata.
One can model both sources of heterogeneity in a traditional manner using �xed

e�ects. For instance, let �ij(k) denote an odds ratio with split following row i and
column j in stratum k, where this association may refer to local odds ratios, cumula-
tive odds ratios, global odds ratios, or some other form. Then, one could consider an
ANOVA-like model that describes how the association varies around some summary
value as a function of the levels of the variables. To illustrate, consider a model of
the form

log �ij(k) = � + �i + j + �k ; i=1; : : : ; r − 1; j=1; : : : ; c − 1; k =1; : : : ; L;
(13)

where
∑
�i=

∑
j=

∑
�k =0. Here, � is an overall level of association, and the

other parameters refer to departures due to rows, columns, and strata. There are
(r − 1)(c − 1) odds ratios in each of the L strata, so the residual df for testing �t
equal

df = (r − 1)(c − 1)L− [1 + (r − 2) + (c − 2) + (L− 1)]
= L(rc − c − r)− r − c + 4:

For local log odds ratios with L=1, this is the Goodman (1979) R + C model
having additive row and column e�ects, with df =(r−2)(c−2). One can generalize
this model to allow, for instance, log �ij(k) = � + �ik + jk + �k , in which the row
and column e�ects may vary by stratum. Its residual df =L(r − 2)(c − 2). This
model is equivalent to applying Goodman’s R+C model separately to each stratum.
Regardless of the type of odds ratio in this approach, one can express such models
in the generalized loglinear model form

C logA�=X�;

where � is the vector of expected frequencies. One can �t models in this class using
ML methods presented in Lang and Agresti (1994). An S-plus function for �tting
the model is available from Prof. J.B. Lang (Statistics Department, University of
Iowa).
To illustrate, we again consider Table 1. It has only two rows, so row e�ects

do not apply. For both types of odds ratio, the data are described adequately by a
model that has only stratum e�ects, that is, log �ij(k) = �k , with G2 = 5:0 for cumula-
tive odds ratios and G2 = 5:4 for local odds ratios, each with df =8. These models
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with stratum e�ects are not equivalent to the cumulative logit model (2) or the
adjacent-categories logit model (6), since there is no requirement that cutpoint pa-
rameters be the same in each stratum; they correspond instead to replacing �j−k in
those models by �jk . In each case, the overall estimate shows evidence of a positive
treatment e�ect, the estimate equalling 2.3 standard errors (e.g., 0.74 with std. error
= 0:32 for the cumulative log odds ratios), although again there is weaker evidence
than with models that assume homogeneous associations.
When the strata are a sample, in the models described above one could replace

�xed stratum e�ects by random e�ects. In model (13) for decomposing log odds
ratios, for instance, one could replace {�k} by random e�ects {dk}. We do not
pursue this here, but in future research it might be worth considering this as well
as other ways to model heterogeneity using random e�ects. One possibility may be
to add a random e�ect to each cell in a loglinear model. For instance, consider the
generalization of the heterogeneous linear-by-linear association model,

log �ijk = �+ �Xi + �
Y
j + �

Z
k + �

XZ
ik + �

YZ
jk + �kxiyj + �Zijk ;

where {Zijk} are independent standard normal variates. With {xi= i} and {yj= j},
the local log odds ratios in stratum k are then normal with mean �k and standard
deviation 2�. If we replace {�k} by {bk} from a normal distribution, then the model
has a variance component for within-stratum heterogeneity and a separate variance
component for between-strata heterogeneity. This is a nonstandard application of
random e�ects in the sense that the cells are not a random sample, and it is analogous
to an approach often used to handle overdispersion.
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