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Abstract: We define a class of generalized log-linear models with random effects. For a vector of Poisson or
multinomial means l and matrices of constants C and A, the model has the form C log Al ¼ Xb þ Zu,
where b are fixed effects and u are random effects. The model contains most standard models currently
used for categorical data analysis. We suggest some new models that are special cases of this model and are
useful for applications such as smoothing large contingency tables and modeling heterogeneity in odds
ratios. We present examples of its use for such applications. In many cases, maximum likelihood model
fitting can be handled with existing methods and software. We outline extensions of model fitting methods
for other cases. We also summarize several challenges for future research, such as fitting the model in its
most general form and deriving properties of estimates used in smoothing contingency tables.
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1 The generalized log-linear mixed model

Let y ¼ (y1, . . . , yI) denote a vector of counts that are either (1) independent Poisson
variates, with means l ¼ (m1, . . . , mI), or (2) conditional on n ¼

P
yi, multinomial with

means l ¼ (np1, . . . , npI) with
P

pi ¼ 1, or (3) sets of independent multinomial
probabilities. The ordinary log-linear model has the form

log l ¼ Xb

where X is a model matrix and b is a vector of parameters.
For matrices of constants C and A, the generalized log-linear model, abbreviated

GLLM,

C log Al ¼ Xb (1:1)
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has been considered by various authors, perhaps beginning with Grizzle et al. (1969).
The class describes a much wider variety of models than the ordinary log-linear model,
including logit models, ordinal logit models such as using cumulative logits (Williams
and Grizzle, 1972), association models using ordinal odds ratios (Goodman, 1979;
Dale, 1986), models for marginal distributions of a contingency table and odds ratios
in marginal faces of multi-way contingency tables (Haber, 1985a,b), and models that
simultaneously describe the association structure and marginal distributions (Lang and
Agresti, 1994).

This article extends the generalized log-linear model to include random effects. Let u
denote a vector of random effects having multivariate normal N(0, S) distribution. Let
y denote counts that, conditional on u, are independent Poisson, multinomial, or
independent multinomial with means l. We define the generalized log-linear mixed
model, denoted by GLLMM, to have the form

C log Al ¼ Xb þ Zu (1:2)

where Z is a model matrix for u.
This class provides a unifying framework for a wide variety of models, including the

GLLMs discussed above. We first mention some special cases. A commonly used
GLLMM is the logistic-normal model, by which conditionally on certain random effects
and indices, response variates are independent binomial variates (e.g., Breslow and
Clayton, 1993). Such a model is a special case of (1.2) in which l contains the pairs of
success and failure probabilities for each binomial, A is an identity matrix, and each
row of C has a þ1 in the column corresponding to a particular success probability and
�1 in the column corresponding to the failure probability and 0 everywhere else. With
appropriate specification, (1.2) can be a multinomial logit model with random effects.
Special cases include random effects models using the cumulative logit (Hedeker and
Gibbons, 1994; Tutz and Hennevogl, 1996), continuation-ratio logit (Coull and
Agresti, 2000), and adjacent-categories logit and baseline-category logit models
(Hartzel et al., 2001a,b). Applications of such models are increasingly widespread.

The general class of models (1.2) has sufficient scope to contain a variety of models
that have not yet seen much, if any, use. Our main purposes in posing the GLLMM
class are (1) to unify a wide variety of models, including most models currently used in
categorical data analysis, (2) to make some tentative suggestions of GLLMMs that may
be useful and merit future study, (3) to propose using certain of these models for the
application of smoothing contingency tables and modeling heterogeneous odds ratios,
and (4) to describe a variety of challenges the GLLMM class holds for future research,
including determining properties of the models and developing methods of maximum
likelihood (ML) model fitting that apply to the general form of the model. We hope that
purposes (2)–(4) can lead to interesting future research.

Section 2 discusses a potential application of the GLLMM, that of smoothing
contingency tables either by smoothing cell counts or smoothing summary odds
ratios. It makes some tentative proposals of models that generalize well-known existing
models and that may be useful for this purpose. Section 3 discusses model fitting by
maximum likelihood, focusing mainly on cases in which one can apply existing
methods for generalized linear mixed models but also suggesting ways to fit more
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complex cases. Section 4 presents a simulation study that compares the two methods of
smoothing presented in Section 2, and Section 5 presents two examples. Section 6
discusses other potential applications of GLLMMs as well as further generalizations of
the model and future research challenges.

2 Smoothing associations and counts in contingency tables

One potentially useful application of the GLLMM is to the smoothing of contingency
tables. The goal may be to smooth counts in a large, sparse table or to smooth odds
ratios describing association or interaction structure. In some applications, a particular
unsaturated model may provide too severe a smoothing. Nonetheless, it might still be
beneficial to smooth by shrinking toward the fit of the model. This provides a way of
generating nonzero estimates of cell probabilities in cells that are sampling zeroes but
not structural zeroes. It also has the potential of reducing the mean squared error of
estimators of cell probabilities and of odds ratio effects. One normally thinks of
Bayesian methods for performing shrinkage, but a classical approach using random
effects provides an alternative way of improving estimates by ‘borrowing from the
whole.’

2.1 Association models with random e¡ects

We first consider smoothing of association structure. We extend association models for
contingency tables (Goodman, 1979) to include random effects. Goodman’s association
models describe the structure of local odds ratios in a two-way table with ordered
classifications. They extend to other types of odds ratios such as global odds ratios
(Dale, 1986) and to describing conditional odds ratios in stratified tables (e.g., Clogg,
1982).

Consider first an I � J table cross-classifying ordinal variables X and Y. Let yij denote
an odds ratio with first cell indexed by level i of X and j of Y. For instance, this may be a
local or global odds ratio with split for X after row i and split for Y after column j.
Goodman’s model of uniform association is

log yij ¼ b, i ¼ 1, . . . , I � 1, j ¼ 1, . . . , J � 1:

Having only a single parameter, this is a strong structure that is often too simplistic.
The uniform association model extends to a GLLMM,

log yij ¼ bþ uij (2:1)

where {uij} are N(0, s2
u) random effects. Correlation structure is possible on {uij},

although for large tables it is computationally much simpler to assume independence.
At first glance, using random effects seems unorthodox here, since the cells are not
sampled from a population. Nonetheless, such a model can be useful for smoothing odds
ratio estimates without requiring them to perfectly satisfy a given model. The magnitude
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of s2
u dictates the amount of smoothing of log odds ratios towards b, with s2

u ¼ 0
corresponding to the extreme smoothness of uniform association. Although one could
specify su, for most applications it is natural to treat this smoothing index as a parameter
and estimate it together with the other parameters using maximum likelihood. After
doing so, we use the usual approach of predicting the random effects by their posterior
mean, given the data. This expectation depends on the model parameters, and we use the
empirical Bayes approach of substituting the ML estimates of those parameters.

The special case log yij ¼ 0 for all i and j corresponds to independence of X and Y.
Fitting model (2.1) with b ¼ 0 shrinks the sample log odds ratios toward its fit. For a
fixed value of s2

u, the implied shrinkage is analogous to that obtained by smoothing cell
counts via maximizing the penalized likelihood

L(p) ¼ log likelihood� l
X

i

X
j

( log yij)
2 (2:2)

where l is a smoothing parameter that dictates the weight of this penalty relative to the
log likelihood. Green (1987) noted that these two models are equivalent only for the
linear model for normal responses, in which case l ¼ s2

e =s
2
u, where s2

e is the residual
variance. Simonoff (1983, 1987) considered (2.2) when yij are local odds ratios, and
discussed selection strategies for the smoothing parameter l based on mean squared
error criteria.

Special cases of (2.1) that provide structure for the random effects may be of interest
in some applications. One such model is

log yij ¼ bþ ui þ vj

with ui � N(0, s2
u) and vj � N(0, s2

v). This mimics the Goodman (1979) R þ C
association model, but treats row and column effects as random rather than fixed.
For large tables, comparing estimates of s2

u and s2
v would indicate whether departures

from uniform association are greater across rows or across columns.
The model-based approach to smoothing in contingency tables extends naturally to

multi-way tables. Consider a three-way table cross-classifying ordinal variables X and Y
at several levels of Z. Let yij(k) denote an odds ratio indexed by level i of X and j of Y in
stratum k. The extension of model (2.1) to

log yij(k) ¼ bk þ uijk (2:3)

shrinks toward uniform association within each stratum, where the level of association
may vary across strata. Simpler models with bk ¼ b and=or uijk ¼ uij allow common-
ality across strata in the level of association or the pattern of shrinkage.

Model (2.3) is directed primarily toward within-stratum smoothing, as the expected
log odds ratio varies across strata but not within strata. In many applications, especially
when the strata are a sample of the possible strata (such as hospitals in multi-center
clinical trials or schools or geographical regions), it may be relevant to smooth among
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strata or to describe variability among strata in the association. This suggests a model
such as

log yij(k) ¼ bk þ uijk (2:4)

with bk � N(b, s2
b) and uijk � N(0, s2

u). The expected log odds ratio is then
uniform across and within strata. The special case s2

u ¼ 0 gives a model where the
log odds ratio is uniform within strata and varies among strata according to a N(b, s2

b)
distribution. The model estimates variation in association among strata while borrow-
ing strength across strata to aid in the estimation for each one. This is useful when
sample sizes within strata are small and so sample estimates are unappealing. An
example is infinite sample odds ratios when all true cell probabilities are positive.

2.2 Cell-wise log-linear smoothing in contingency tables

The models in the previous subsection focused on smoothing associations by shrinking
log odds ratios. An alternative approach focuses directly on the cell probabilities. One
can perform such shrinkage with log-linear models containing cell-specific random
effects. This makes sense when the main goal is to smooth the cell counts or when there
is no obvious baseline for an association pattern. This is usually the case with nominal
variables in two-way tables, for instance, or with very large, sparse tables.

Consider a two-way table with expected frequencies {mij}. The independence model
usually provides too drastic a shrinkage, yet when variables are nominal no obvious
model is more complex and yet unsaturated. A random effects generalization of the
independence model is

logmij ¼ lþ lX
i þ lY

j þ uij (2:5)

where {uij} are N(0, s2
u). Like model (2.1) with b ¼ 0, fitting this model smooths toward

independence. With ordinal variables, one could add to (2.5) a linear-by-linear
association term,

log mij ¼ lþ lX
i þ lY

j þ xiyjbþ uij (2:6)

for fixed, monotone scores {xi} and {yj}. The model then smooths toward an ordinal
trend, namely uniform association for local odds ratios when {xi} and {yj} are equally
spaced.

Because a given log-linear model implies an association structure, this cell-wise
shrinkage also provides another way of smoothing association structure. Model (2.5)
with uncorrelated random effects implies that the local log odds ratios are normal with
mean 0 and standard deviation 2s. Unlike model (2.1) with b ¼ 0, which applied
directly to the odds ratios, any two local log odds ratios that share common cells are
correlated. Thus, the fits of the two models are not equivalent. Generally, cell-specific
models such as (2.5) imply that models such as (2.1) have a certain correlation pattern
for the random effects.
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One can also use cell-wise random effects to smooth cell counts in multi-way tables or
to summarize heterogeneity in conditional associations. For instance, consider a three-
way table in which X and Y have ordered categories. For expected counts {mijk}, the
heterogeneous XY linear-by-linear association model generalizes to

logmijk ¼ lþ lX
i þ lY

j þ lZ
k þ lXZ

ik þ lYZ
jk þ bkxiyj þ uijk

With uncorrelated random effects, the local log odds ratios in stratum k are normal
with mean bk and standard deviation 2s. Like model (2.3), this provides within-stratum
shrinkage while permitting heterogeneity across strata. If the focus is instead on
summarizing variability in an overall summary of association across a large number
of strata, one could replace {bk} in this model by random effects {bk}. Like model (2.4),
it then has a variance component for within-stratum heterogeneity and a separate
variance component for between-strata heterogeneity. Setting s2

u ¼ 0 focuses on
summarizing {bk} by their mean and standard deviation.

The log-linear models in this subsection treat both X and Y as responses. If only Y is a
response, one could instead add the random effects to logit models to perform this
shrinkage, as Section 5.2 illustrates.

When smoothing by adding random effects to association models or to loglinear
models, it may not be obvious how to choose the base model. For instance, should one
add random effects to an independence model or to a uniform association model?
Simulations discussed later suggest that often the choice of base model may not be
crucial to the quality of estimation of cell probabilities. However, lacking particular
theoretical reasons to use a particular form of model, one could compare the base
models using standard criteria. For instance, in deciding whether to use unspecified b or
take b ¼ 0 in models (2.1) and (2.6), one could use a likelihood-ratio test of b ¼ 0 or
compare the models with a criterion such as AIC.

3 Fitting GLLMMs

Maximum likelihood fitting of GLLMMs can be difficult except in certain special cases.
In fact, this is also true for the generalized log-linear model (1.1), which is simpler in
that it does not have random effects. For many models in that family, one cannot
recover l from C log Al. Then, one cannot express the likelihood directly in terms of b.
A simple example of this is the model of marginal homogeneity in square contingency
tables. See, for instance, Haber (1985a,b), Fitzmaurice et al. (1993), Lang and Agresti
(1994), and Glonek and McCullagh (1995). In simple cases in which one can express l
in terms of b, model fitting can often use standard methods for GLMMs, as discussed
next.

3.1 Adaptive Gauss^Hermite quadrature

For some cases, the link function is a one-to-one function of l and the components of b
and u are functionally independent. Then, one can express the conditional distribution
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of y given the fixed effects and the random effects, f (yju; b), in term of those effects. An
example is the multi-center clinical trial example of Section 5.2.

We use the term ‘cluster’ to refer to a level of the random effect. We assume that
f (yju; b) ¼

QS
s¼1 fs(ysjus; b), where fs refers to cluster s. When the dimension of the

random effects vector us is not large, one can integrate out the random effects with
Gauss–Hermite quadrature methods and then use standard methods such as Newton–
Raphson to find the ML estimates. Adaptive quadrature (e.g., Liu and Pierce, 1994)
centers the Gauss–Hermite nodes with respect to the mode of the function being
integrated and scales them according to the estimated curvature at the mode. From our
experience, this dramatically reduces the number of quadrature points needed to
approximate the integrals effectively. This method is available in PROC NLMIXED
in SAS. The appendix illustrates the implementation of the global odds ratio model with
PROC NLMIXED using (3.1).

The form of f (yju; b) depends on the type of odds ratios used in the analysis.
Association models for local odds ratios can be written as log-linear models, for which
existing methods for fitting generalized linear mixed models are applicable. More
specifically, Lang et al. (1999) noted that any association model for a table of cell
probabilities p having the form

L log p ¼Wa

is expressible as log-linear model log p ¼W�a�, where W� ¼ [P: L>(LL>)�1W] and the
column space of P equals the null space of W (see also Goodman, 1979; Glonek, 1996).

GLLMMs for global odds ratios represent mixed extensions of models studied by
Plackett (1965) and Dale (1986) in the bivariate case and extended to the multivariate
case by Molenberghs and Lesaffre (1994). In these settings, mixed association models
do not correspond to a generalized linear mixed model. One must explicitly calculate
the multinomial probabilities implied by the model for the global odds ratios from
formulas presented by Dale (1986), Molenbergh and Lesaffre (1994), and Ten Have
and Morabia (1999).

For instance, consider the two-way table that cross-classifies ordinal variables X and Y
with cell probabilities pij. Suppose we posit a model for the global odds ratios

yij ¼
Pr [X � i, Y � j] Pr [X > i, Y > j]

Pr [X > i, Y � j] Pr [X � i, Y > j]

and marginal probabilities gX
i ¼ Pr (X � i) and gY

j ¼ Pr (Y � j). If Fij ¼ Pr (X � i, Y � j),
then

Fij ¼

1

2
(yij � 1)�1[1þ (gX

i þ gY
j )(yij � 1)� S(yij, g

X
i , gY

j )], if yij 6¼ 1

gX
i g

Y
j , if yij ¼ 1

8><
>: (3:1)

Generalized log-linear models with random effects 7



where

S(yij, g
X
i , gY

j ) ¼ {[1þ (gX
i þ gY

j )(yij � 1)]2
þ 4yij(1� yij)g

X
i g

Y
j }1=2:

For given {gX
i } and {gY

j }, a linear transformation of {Fij} yields {pij} and hence the
log-likelihood

P
ij nij log pij. We use PROC NLMIXED to carry out this strategy in

Section 5.2.

3.2 GLLM algorithms nested within Gauss^Hermite quadrature

The extension of these methods when the conditional distribution of y is not
expressible as a function of the model parameters is more complex. In the fixed
effects setting, several authors have nested iterative algorithms for obtaining the
response probabilities as a function of the parameters within iterative schemes for
model fitting. For instance, Glonek and McCullagh (1995) Q1and Glonek (1996)
proposed using Newton–Raphson to calculate response probabilities given parameter
values, and Fitzmaurice and Laird (1993) Q2and Molenberghs and Lesaffre (1999)
used iterative proportional fitting (IPF).

When the dimension of u in a GLLMM is not large, one can nest these approaches
for inverting l within a Gauss–Hermite quadrature scheme. For density function g for
the random effects, the marginal likelihood is

L(b; y) ¼

ð
f (yju; b)g(u) du (3:2)

Here, the notation reflects the fact that l is a function of both the fixed effects b and the
random effects u. A quadrature approximation to (3.2) is

L(b; y) ¼
XQ
q1¼1

� � �
XQ
qp¼1

f (yjzq1,...,qp
; b)wq1,...,qp

(3:3)

where {zq1,...,qp
} and {wq1,...,qp

} are pre-determined quadrature nodes and weights, res-
pectively (Aitkin, 1996). As usual, a larger number of quadrature points are necessary
for adequate accuracy when the variances of the random effects are large. Then, (3.3)
is the objective function to be maximized with respect to w ¼ (b,h). Maximization
requires inverting the set of equations g ¼ C log Al(b, zq1,...,qp

), qk ¼ 1, . . . , Q, k ¼
1, . . . , p, with p being the dimension of the random effects. Thus, we propose nesting
existing algorithms for performing this inversion (IPF or Newton–Raphson) within a
Newton–Raphson scheme for maximizing (3.3). We plan to discuss this approach in
more detail in a separate paper. Our studies so far suggest that nesting the IPF algorithm
of Molenberghs and Lesaffre (1999) within a Gauss–Hermite quadrature scheme
works well.
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3.3 Monte Carlo EM

When a closed-form expression exists for f (yju; b) but the dimension of the random
effects renders quadrature methods infeasible, one can use Monte Carlo algorithms for
model fitting (Chan and Ledolter, 1995; McCulloch, 1997; Booth and Hobert, 1999).
The EM algorithm iterates between calculating the expectation of the complete data
log-likelihood given the observed data (E-step) and maximizing this expectation with
respect to b and h (M-step). Denote the associated conditional density as h(ujy, w(r)).
The calculation of the normalizing constant for h(ujy, w(r)) entails computing an
intractable integral, and one must replace the required expectation with an approxima-
tion. Monte Carlo EM constructs Monte Carlo estimates of these expectations at each
E-step. Existing implementations sample from the distribution h(ujy, w(r)) using either
Markov chain Monte Carlo (McCulloch, 1997; Quintana et al., 1999) or independent
samples based on importance or rejection sampling (Booth and Hobert, 1999).

3.4 Penalized quasi-likelihood

Breslow and Clayton (1993) proposed a penalized quasi-likelihood (PQL) method to
fitting GLMMs. This is computationally simpler than ML, but in some cases (e.g.,
binary data, large variance components) may provide poor approximations for ML
estimates. Because ML is feasible for the smoothing applications presented in Section 5,
we have not discussed this method. However, in the simulation study discussed in
Section 4, we compared the quality of the ML and PQL estimates of the cell
probabilities. We observed little difference between these estimates. This result is not
surprising, as there is no reason to expect ML results to outperform approximate
methods when the random effects are simply a tool for smoothing towards a given
model. Hobert and Wand (2000) and Wager et al. (2003) reported similar simulation
results in logistic and spatial smoothing applications. The PQL method may still be
useful for complex versions of GLLMMs that are not readily amenable to ML model
fitting.

4 A simulation study illustrating benefits of GLLMM smoothing

One would hope that when a simplistic model such as independence or uniform
association does not hold, fitted proportion estimates based on GLLMM smoothing
would tend to have smaller mean squared errors than the estimates based on the simpler
model or the sample proportion estimates based on the saturated model. We do not
expect a uniform domination, as when the simpler model nearly holds it has the benefit
of model parsimony unless the sample size is very large. In addition, the GLLMM
framework enables one to smooth either the associations directly or in a cellwise
fashion.

We conducted a simulation study to investigate these issues. We compared estimates
from different models for log odds ratios: (a) the independence model [i.e. (2.1) with
b ¼ 0 and s ¼ 0), (b) the uniform association model (i.e., (2.1) with s ¼ 0), (c) the
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sample proportions, (d) the local odds ratio association model (2.1) with b ¼ 0, (e) the
local odds ratio association model (2.1) with unrestricted b and s, (f) the mixed log-
linear model (2.5), and (g) the mixed log-linear model (2.6) having uniform association
term. In addition to these special cases of GLLMMs, we also considered the local linear
likelihood estimates as outlined in Simonoff (1996; Section 6.4, 1998). For this fully
nonparametric approach, we chose the smoothing parameter for each simulated table
by minimizing the corrected AIC (AICC) (Simonoff, 1998). We compared the estima-
tors for 36 different cases, corresponding to

1. Two table sizes (3� 3 and 6� 6)
2. Three sample sizes (n¼ 50, 200, 1000)
3. Two models for the true probabilities (uniform association, with scores 1, 2, 3 for

the 3� 3 case and 1, 2, 3, 4, 5, 6 for the 6� 6 case; nonuniform association, with
scores 1.0, 2.5, and 3.0 for the 3� 3 case and 1.0, 2.8, 4.2, 5.2, 5.8, 6.0 for the
6� 6 case)

4. Three levels of association (b ¼ 0:1, 0.4 and 1.0)

Table 1 shows the n-normalized average MSE for each of the estimators in 3� 3
tables, based on 1000 simulated tables for each scenario. Monte Carlo standard errors
for all estimates are less than or equal to 0.0025. Results for 6� 6 tables are not shown
here, since they were qualitatively similar. Table 1 shows that the relative performances of
the different smoothing methods depend on the strength of association and sample size.

Table 1 Monte Carlo estimates of n-normalized MSE for cell probability estimates based on Gaussian
quadrature-based ML estimation in GLLMMs, simpler models without random effects (GLM), local likelihood
(LL) using AICC-chosen smoothing, and sample proportions (SP) for 3�3 tables

Estimator

GLM
Cellwise
GLLMM

Association
GLLMM

Scores b n SP Indep. L�L Indep. L�L Indep. L�L LL

Unif. 0.1 50 0.099 0.053 0.064 0.053 0.064 0.059 0.066 0.038
200 0.099 0.062 0.064 0.062 0.064 0.065 0.066 0.039

1000 0.099 0.106 0.065 0.104 0.065 0.085 0.067 0.040
0.4 50 0.098 0.092 0.064 0.089 0.065 0.076 0.067 0.042

200 0.098 0.222 0.064 0.146 0.064 0.084 0.066 0.052
1000 0.098 0.915 0.064 0.106 0.064 0.091 0.066 0.109

1.0 50 0.093 0.291 0.067 0.120 0.067 0.084 0.068 0.067
200 0.093 1.039 0.067 0.099 0.067 0.087 0.067 0.145

1000 0.093 5.034 0.064 0.095 0.064 0.091 0.065 0.585

Non unif. 0.1 50 0.099 0.054 0.063 0.055 0.063 0.060 0.066 0.039
200 0.099 0.062 0.063 0.062 0.063 0.064 0.065 0.039

1000 0.099 0.114 0.071 0.110 0.071 0.080 0.072 0.049
0.4 50 0.098 0.102 0.072 0.094 0.072 0.079 0.073 0.049

200 0.098 0.265 0.096 0.138 0.094 0.086 0.090 0.083
1000 0.098 1.138 0.233 0.104 0.147 0.092 0.103 0.268

1.0 50 0.091 0.354 0.102 0.107 0.099 0.081 0.092 0.107
200 0.091 1.306 0.230 0.092 0.130 0.084 0.096 0.322

1000 0.091 6.368 0.902 0.092 0.100 0.090 0.091 1.469
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For small samples and=or small b, the local likelihood estimates outperform both their
parametric and GLLMM counterparts. This is somewhat surprising, as one would
expect that the maximum likelihood estimates from the true model would perform best.
Thus, the asymptotic optimality of the ML estimates does not hold for the small to
moderate samples of this setting. When the association is large (b ¼ 1:0), the perfor-
mance of the local likelihood estimates deterioriates rapidly with increasing sample size,
whereas the GLLMM estimates behave well. Also, it seems as if shrinking in the
GLLMMs with b ¼ 0 (i.e. shrinking to independence) is essentially as good as shrinking
to uniform association unless uniform association truly holds, there is a strong
association, and the sample size is relatively large (e.g., b ¼ 0:4 or b ¼ 1:0, n ¼ 1000).

Results from this study also provided direct comparison among the different
GLLMM formulations. These comparisons showed no systematic differences between
the performances of the cellwise and association models. Overall, these results suggest
that an effective way to smooth large, sparse contingency tables is to fit mixed log-linear
models that contain cell-specific random effects. In applications in which an alternative
association structure is particularly relevant, however, the general GLLMM formula-
tion provides the flexibility to smooth on the relevant association scale.

5 Examples of smoothing using GLLMMs

We now present examples of smoothing cell counts and associations using GLLMMs.
Section 5.1 uses GLLMMs to smooth a large sparse contingency table. Section 5.2 uses
GLLMMs to characterize heterogeneity in stratified ordinal contingency tables.

5.1 Smoothing counts in a large sparse contingency table

Table 2 presents data from Simonoff (1996; p. 229) on responses of 55 first-year MBA
students at New York University’s Stern School of Business to questions about the
importance of statistics and economics in business education. Responses were coded on
a seven-point scale from 1¼ ‘completely useless’ to 7¼ ‘absolutely crucial.’ Simonoff
(1996) smoothed the sparse counts using local polynomial estimators based on kernel
density estimation. He noted that this approach can yield negative probability
estimates, but this can be avoided by using local polynomial likelihood estimates
(Simonoff, 1996, Section 6.4; 1998).

Simulation results presented in Section 4 suggest that the association and cell-wise
approaches to smoothing cell probabilities yield estimates having similar mean squared
errors, with the cell-wise approach having the added advantage that maximum like-
lihood (ML) fitting is straightforward. Thus, for simplicity here we report only
shrinkage estimates of the cell probabilities by fitting the cell-wise model (2.6), both
with unspecified b and with b ¼ 0 (shrinking towards independence). The model with
unspecified b seems natural here, to reflect the ordinal classifications. Model fitting for
these GLLMMs used the adaptive Gauss–Hermite quadrature approach to ML
estimation discussed in Section 3.1. We also compared these estimates to those obtained
using the local linear likelihood approach of Simonoff (1998).
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Table 2 presents results for the two GLLMMs, each assuming uncorrelated random
effects, and local likelihood. The estimated random effects standard deviations from the
two GLLMMs are su ¼ 0:25 for the independence base model and su ¼ 0:0 for the
uniform association model, suggesting that the L�L model does not smooth the data
too severely. The estimated association is b ¼ 0:44 (SE ¼ 0:14), and a likelihood ratio
test for H0: b ¼ 0 provides strong evidence of an association between the two
responses, with the likelihood ratio statistic equaling 13.2 on 1df. A comparison of
the GLLMM fit with unspecified b and the local likelihood approach shows that the
GLLMM fit suggests more strongly that the cells corresponding to responses (2,6) and
(6,1) are unusual relative to the general association of the table. The agrees with
comments made by Simonoff (1996, p. 231), who noted that these cells are outliers
compared to the others. This model-based approach also suggests that the large (6,6) cell
is perhaps not as unusual as local likelihood would suggest.

5.2 Random association models for strati¢ed ordinal data

Table 3 shows preliminary results for eight centers from a double-blind, parallel-group
clinical study. The purpose of this study was to compare an active drug with placebo in

Table 2 Opinions of MBA students about the importance of statistics and economics in
business education, and fitted values from association and cell-wise smoothing

Statistics
Economics response

response 1 2 3 4 5 6 7

2 0 1 0 0 0 1 0
(0.04)a (0.04) (0.14) (0.46) (0.58) (0.62) (0.07)
(0.50)b (0.28) (0.48) (0.52) (0.18) (0.04) (0.00)
(0.09)c (0.19) (0.24) (0.23) (0.22) (0.15) (0.06)

3 0 0 0 1 0 0 0
(0.02) (0.02) (0.07) (0.24) (0.29) (0.29) (0.04)
(0.09) (0.08) (0.21) (0.35) (0.19) (0.07) (0.00)
(0.08) (0.35) (0.77) (0.92) (1.04) (0.38) (0.11)

4 0 0 3 6 4 0 0
(0.23) (0.23) (1.06) (3.59) (3.92) (3.22) (0.46)
(0.31) (0.42) (1.74) (4.51) (3.82) (2.08) (0.12)
(0.06) (0.31) (1.85) (4.73) (3.61) (0.99) (0.19)

5 0 0 1 4 7 4 0
(0.27) (0.28) (1.11) (3.73) (5.20) (4.54) (0.54)
(0.08) (0.16) (1.04) (4.18) (5.50) (4.65) (0.41)
(0.12) (0.38) (1.55) (4.32) (6.49) (3.20) (0.94)

6 1 0 0 2 6 10 1
(0.36) (0.35) (1.29) (4.03) (5.85) (7.05) (0.72)
(0.02) (0.05) (0.51) (3.19) (6.52) (8.56) (1.15)
(0.17) (0.28) (0.68) (1.82) (5.19) (4.60) (2.38)

7 0 0 0 0 0 2 1
(0.05) (0.05) (0.21) (0.67) (0.84) (0.96) (0.11)
(0.00) (0.00) (0.03) (0.25) (0.79) (1.60) (0.33)
(0.06) (0.09) (0.15) (0.32) (1.39) (2.23) (2.02)

aCell-wise smoothing of independence base model using SAS PROC NLMIXED.
bCell-wise smoothing of L�L base model using SAS PROC NLMIXED.
cAICC-chosen smoothing based on local linear likelihood.
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the treatment of patients suffering from asthma. Patients were randomly assigned to
treatment. At the end of the study, investigators described their perception of the
patients’ change in condition, using the ordinal scale (much better, better, unchanged or
worse). Hartzel et al. (2001b) presented results from fixed-effect association models
based on both local and cumulative odds ratios. However, these authors noted that it is
natural to view the eight centers as a sample from the population of clinics of interest.

From their fixed effects analysis, Hartzel et al. (2001b) concluded that association
models containing stratum effects only describe the data well. We consider analogous
mixed association models of the form

log yij(k) ¼ bk (5:1)

where bk�
iid

N(b, s2
b). As noted in Section 2.1, this model is the special case of model

(2.4) with s2
u ¼ 0. From results discussed in Section 3, one can use some software for

GLMMs to implement ML fitting of model (5.1) for both local and global log odds
ratios. Table 4 presents predicted odds ratios from both the local and global versions of
the model. Because this example has only two treatments, the model for global odds
ratios is equivalent to a model for cumulative odds ratios. Table 5 shows the predicted
cell counts for the two cases.

The estimated mean for the center-specific global log odds ratios is b̂b ¼ 0:84
(SE ¼ 0:48), providing moderate evidence of a positive mean treatment effect. The
estimated standard deviation of {bk} is ŝsb ¼ 1:03 (SE ¼ 0:48). The likelihood ratio
statistic for testing H0: sb ¼ 0 is 3.7, yielding strong evidence of heterogeneity in the
global log odds ratios across centers with approximate p-value p ¼ P(w2

1 > 3:7)=
2 ¼ 0:027 (Self and Liang, 1987). The model fit for the local odds ratios yields similar
results, with estimated mean log local odds ratio 0.59 (SE ¼ 0:24), but less evidence of
heterogeneity across strata ŝsb ¼ 0:34 (SE ¼ 0:36).

Table 3 Clinical trial relating treatment to response for eight centers

Response

Center Treatment Much better Better Unchanged=worse

1 Drug 13 7 6
Placebo 1 1 10

2 Drug 2 5 10
Placebo 2 2 1

3 Drug 11 23 7
Placebo 2 8 2

4 Drug 7 11 8
Placebo 0 3 2

5 Drug 15 3 5
Placebo 1 1 5

6 Drug 13 5 5
Placebo 4 0 1

7 Drug 7 4 13
Placebo 1 1 11

8 Drug 15 9 2
Placebo 3 2 2
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Table 4 also presents estimated center-specific log odds ratios from the fixed effects
version of model (5.1). The random effects models shrink the fixed effects estimates
towards the overall mean log odds ratios. For instance, four of the fixed effects esti-
mates are negative, whereas only one of the random effects estimates is. In all centers,
the global log odds ratio estimates are larger than their local counterparts in both the
fixed and random GLLMs. This is usually the case for association between ordinal
categorical variables.

In this example, with ML estimation, shrinkage was greater for the local log odds
ratios than their global counterparts. This can be seen by comparing estimated standard
deviations of the random effects (0.34 for local versus 1.03 for global), or by comparing
shrinkage of the individual fixed effects (Table 4). This difference arises because, for
each stratum, the local odds ratios use less data than the global odds ratios. As a result,
the overall mean plays a more important role in the local predictions. Because each
global odds ratio uses all the data in each stratum, the data from that stratum are
weighted more heavily than for the local version using only a subset of the data.

Hartzel et al. (2001b) considered an analogous approach with random effects in
proportional odds models. In their model the random effects enter directly on the
cumulative logit scale rather than the log odds ratio scale. This model is

logit[P(Y � j)] ¼ aj þ uk þ bkxi

where the indicator x1 ¼ 0 and x2 ¼ 1 and where (uk, bk) are correlated random effects
with possibly different variances. This model implies a center-specific cumulative log
odds ratio bk having a mean of 0.92 with standard error of 0.53. This model is not
equivalent to the model (5.1) for the cumulative log odds ratios, because that model
results from the more complex intercept structure ajk for the logit. The generalized

Table 4 Estimated center-specific local and global log odds ratios
for clinical trial data (Table 3)

Model

Center Odds ratio Fixed (GLLM) Random (GLLMM)

1 Local 1.73 0.93
Global 2.74 2.00

2 Local �1.15 0.23
Global �1.67 �0.49

3 Local 0.24 0.49
Global 0.30 0.45

4 Local 0.72 0.62
Global 0.81 0.82

5 Local 1.33 0.81
Global 2.26 1.63

6 Local �0.42 0.35
Global �0.94 0.0

7 Local 0.95 0.70
Global 1.55 1.25

8 Local 0.69 0.62
Global 0.88 0.86
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log-linear formulation for the global odds ratios is more general, as the GLLMMs do
not require cutpoint parameters to be the same across stratum Q4. Likewise, expressing the
model directly in terms of adjacent categories logits and using the simpler cutpoint
structure, Hartzel et al. (2001b) reported an estimated mean log local odds ratio of 0.63
(SE ¼ 0:34).

For tables with more than two rows, the cumulative odds model and the GLLMM for
global odds ratios relate to different sets of odds ratios. In this case, the choice of one
model over the other would depend on the scientific questions of interest. Global odds
ratios are useful when rows and columns use the same ordered categories, in which case
they provide a natural way of specifying a joint distribution for a bivariate response
(Plackett, 1965). Cumulative logits are relevant if interest focuses on a stochastic
ordering among rows on a column response variable.

Table 5 Predicted cell counts from random association model (5.1)

Response

Center Treatment Much better Better Unchanged=worse

1 Drug (12.1)a (5.8) (8.0)
(12.6)b (6.2) (7.2)

Placebo (1.8) (2.2) (7.9)
(1.4) (1.8) (8.8)

2 Drug (3.3) (5.5) (8.1)
(2.8) (5.2) (9.0)

Placebo (0.7) (1.5) (2.8)
(1.2) (1.8) (2.0)

3 Drug (10.9) (23.9) (6.0)
(10.8) (23.9) (6.3)

Placebo (2.0) (7.1) (3.0)
(2.2) (7.1) (2.7)

4 Drug (6.3) (12.0) (7.5)
(6.4) (12.0) (7.6)

Placebo (0.6) (2.0) (2.4)
(0.6) (2.0) (2.4)

5 Drug (14.0) (3.1) (5.8)
(14.3) (3.1) (5.6)

Placebo (1.9) (0.9) (4.1)
(1.7) (0.9) (1.1)

6 Drug (14.4) (4.0) (4.4)
(14.0) (4.1) (4.9)

Placebo (2.5) (1.0) (1.5)
(3.0) (0.9) (1.1)

7 Drug (6.7) (3.6) (13.5)
(6.7) (3.9) (13.4)

Placebo (1.3) (1.4) (10.3)
(1.3) (1.1) (11.0)

8 Drug (15.2) (8.3) (2.4)
(15.3) (8.1) (2.6)

Placebo (2.7) (2.7) (1.5)
(2.7) (2.9) (1.4)

aRandom local odds ratio model.
bRandom global odds ratio model.
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6 Extensions and challenges

This paper has proposed a new class of generalized log-linear mixed models for
categorical data. Special cases include many existing models. In addition, this unifying
framework suggests ways to extend certain methods for categorical data, such as the
penalized likelihood smoothing of Simonoff (1983; 1987) and association models for
stratified contingency tables.

We considered specific cases for bivariate responses. Then, model fitting is relatively
straightforward in that one can usually write the conditional distribution of the data
given the random effects as a function of the fixed and random effects. Given a closed
form for this distribution, one can subsequently use existing methods for GLMMs to fit
the model. When the dimension of the random effects is large in this setting, the Monte
Carlo EM algorithm is an effective algorithm for model fitting.

A topic for future research is the development of general model-fitting strategies when
a GLLMM does not yield closed-form expressions for this conditional distribution and
the dimension of the random effects is large. Unfortunately, MCEM algorithms are
computationally prohibitive in this case, because computation of the simulated com-
plete data log-likelihood, which requires iteration, would then be necessary for all
Monte Carlo samples within all EM iterations. A potential alternative approach to
model fitting is the modified EM scheme of Steele (1996), in which the expectation of
the complete data score equations is approximated with a second-order Laplace
approximation. In the GLMM setting, Steele (1996) showed through both analytical
arguments and simulation that the second-order correction decreased the bias incurred
by the PQL approach of Breslow and Clayton (1993). Other fitting approaches may
also be possible. For instance, for GLLMs, Haber (1985a,b), Lang and Agresti (1994),
and Lang et al. (1999) have used Lagrange multipliers to maximize the log-likelihood
subject to constraints implied by the model. Overall, finding a general mechanism for
fitting the class of GLLMMs is a strong challenge for future research.

A referee has pointed out that several interesting questions occur relating to proper-
ties of GLLMMs. For instance, when used for smoothing, what are the asymptotic
properties of the cell probability estimates? For a fixed number of cells in a contingency
table, presumably these estimates give relatively more weight to the sample proportions
as the sample size increases. Thus, we conjecture that they are consistent even when a
simpler model that is the basis of the smoothing does not hold. As support for this, in
the simulation study, the GLLMMs behave as well as the sample proportions in very
large samples (n ¼ 1000). Compared to other smoothing methods, it is difficult to study
this analytically because of the lack of a closed form for the estimates.

The asymptotic properties become even more questionable under the sparse frame-
work whereby the number of cells grows with the sample size. For cell probabilities {pi}
and estimates {p̂pi}, Simonoff (1983) showed that for penalized likelihood estimators
consistency can occur in the sense that supi jp̂pi=pi � 1j ! 0 in probability as the sample
size and number of cells grow in such a way that the {pi} themselves approach 0. It is
unclear whether such a property would apply to the estimates obtained using
GLLMMs, but the connection mentioned in (2.2) with penalized likelihood estimation
suggests that this may happen.
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For the smoothing application, another interesting question relates to whether there is
a theoretical advantage to using a good base model. Our simulations suggested that
unless there is a strong association and large sample size, adding random effects to
a baseline independence model worked essentially as well as adding random effects to a
baseline uniform association model. For model (2.1) for smoothing odds ratios, is
the relative size of ŝsu for this model compared to ŝsu for the independence version of the
model (b ¼ 0) related to the quality of estimation in the two cases?

Another area worthy of future research is development of specific GLLMMs that may
be useful for various applications. For instance, Section 2 mentioned some models that
generalize Goodman’s association models that may be worth special study. In addition,
it may be worth studying models that have random effects for describing both
association and marginal distributions. For instance, in a study with matched pairs,
let (Y1s, Y2s) denote the responses for cluster s, with pjjrs ¼ P(Yrs ¼ j), and let gjjrs ¼

P(Yrs � j). In repeated measurement studies, one could simultaneously model effects of
covariates on the marginal distributions of Yrs, r ¼ 1, 2 and model odds ratios
describing the (Y1s, Y2s) association. Let xrs and zrs represent covariates of interest
associated with Yrs, r ¼ 1, 2, and let x3s and z3s represent the covariates associated with
the odds ratios. Then, a GLLMM for (Y1s, Y2s) is

log
gjj1s

1� gjj1s

 !
¼ a1j þ x>1sb1 þ z>1su1 (6:1)

log
gjj2s

1� gjj2s

 !
¼ a2j þ x>2sb2 þ z>2su2 (6:2)

log yijjs ¼ b0 þ x>3sb3 þ z>3su3, for all i, j (6:3)

where {arj} are nondecreasing in j for r ¼ 1, 2. Ten Have and Morabia (1999)
considered models of this type for binary responses. Model (6.1)–(6.3) also contains
as special cases mixed model representations (e.g., Brumback et al., 1999) of
generalized additive models for marginal and association parameters (Bustami
et al., 2001).

Lang and Agresti (1994) and Lang et al. (1999) provided conditions under which the
simultaneous association and marginal models specified by a GLLM are compatible,
and it is of interest to extend this work to GLLMMs. It is also important to determine
when problems may exist with identifiability. Recent theoretical results given by
Bergsma and Rudas (2002) on ‘sets of ordered sets’ should be useful for this purpose.

Other potentially useful extensions of the GLLMM involve relaxing particular
assumptions made by (1.2). For instance, one may want to take a distribution-free
approach for the random effects, assuming only an unspecified number and location of
discrete mass points. This would adapt an approach described by Aitkin (1996).
Overall, the general GLLMM class holds potential for a wide variety of applications,
with general approaches to model fitting representing a significant challenge for future
research.
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Appendix

Example of SAS code (Version 8) for using PROC NLMIXED to implement maximum
likelihood fitting of random association model (5.1) using global odds ratios to Table 3.

data clin1;
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datalines;
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3 11 23 7 2 8 2
4 7 11 8 0 3 2
5 15 3 5 1 1 5
6 13 5 5 4 0 1
7 7 4 13 1 1 11
8 15 9 2 3 2 2
;
run;

data clin2;
set clin1;
r1tot¼y11 þ y12 þ y13;
r2tot¼y21 þ y22 þ y23;
c1tot¼y11 þ y21;
c2tot¼c1tot þ y12 þ y22;
total¼r1tot þ r2tot;
run;

proc nlmixed data¼clin2 qpoints¼15 cov;
parms alpha¼0.82 sd¼1.0;
global1¼exp(alpha þ u);
global2¼exp(alpha þ u);
eta1¼r1tot=total;
zeta1¼c1tot=total;
zeta2¼c2tot=total;
s1¼((1 þ (eta1 þ zeta1)*(global171))**2

þ 4*global1*(17global1)*eta1*zeta1)**.5;
s2¼((1 þ (eta1 þ zeta2)*(global271))**2

þ 4*global2*(17global2)*eta1*zeta2)**.5;
if (global1¼1.0) then

f1¼eta1*zeta1;
else
f1¼.5*((global171)**(�1))*

(1 þ (eta1 þ zeta1)*(global171)7s1);
if (global2¼1.0) then

f2¼eta1*zeta2;
else

f2¼.5*((global271)**(�1))*
(1 þ (eta1 þ zeta2)*(global271)7s2);

f11¼f1;
f12¼eta17f11;
f13¼zeta17f11;
f14¼17(f11 þ f12 þ f13);
f21¼f2;
f22¼eta17f21;
f23¼zeta27f21;
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f24¼17 (f21 þ f22 þ f23);
pi11¼f11;
pi12¼f217f11;
pi13¼f22;
pi21¼f13;
pi22¼f237f13;
pi23¼f24;

ll¼y11*log(pi11) þ y12*log(pi12) þ y13*log(pi13)
þ y21*log(pi21) þ y22*log(pi22) þ y23*log(pi23);

model y11
�
general(ll);

random u
�
normal(0, sd*sd) subject¼center;

predict alpha þ u out¼pred;
run;
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