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Abstract For cross-classification tables having an ordinal response variable, logit and probit 
models are formulated for the probability that a pair of subjects is concordant. For multidimen- 
sional tables, generalized models are given for the probability that the response at one setting of 
explanatory variables exceeds the response at another setting. Related measures of association are 
discussed for two-way tables. 

1. Introduction 

The notion of concordance or discordance of a pair of observations has been 
important  in the development of measures of association for ordinal variables. 
For  instance, Kendall 's  tau equals the difference between the probabilities of 
concordance and discordance, for a randomly selected pair of observations. 
For  ordinal categorical data, Goodm an  and Kruskal 's  gamma equals this 
difference, conditional on the event that the pair is untied on both variables. 
Other generalizations of Kendall 's  tau for categorical data  include tau-b, tau-c, 
and Somers' d. 

The main focus in this article is on logit and probit  models for the relative 
numbers of concordant and discordant pairs, for cross-classification tables in 
which the response variable is ordinal. Section 2 deals with the case in which 
there is a single explanatory variable, the categories of which are assigned 
scores. An example is discussed in which the loglt of a concordance probabil-  
ity for mental health status is modeled as a simple function of parental 
socioeconomic status. Section 3 introduces multidimensional generalizations in 
which qualitative and quantitative explanatory variables can appear. The 
fitting of these models using weighted least squares is described in an 
appendix. Section 4 presents model-related measures of association that corre- 
spond to generalized correlation measures for ordinal and interval variables. 

2. Models for two-way tables 

Consider an rxc  cross-classification table in which the column variable, Y, is 
an ordinal response variable and for which scores x 1 < x 2 < . . .  < x r can be 
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assigned to the levels of the row (independent) variable, X. For example, Y 
might measure a subject's views concerning the legalization of abortion 
(should be available on demand, should be legal only in restricted cases, 
should never be legal), whereas X might measure the subject's attained 
education level. 

For the models we consider, the response is a function of the conditional 
probabilities on Y, given X. Hence, it is natural to assume a product 
multinomial sampling model. Specifically, we assume that independent sam- 
ples of sizes { n i} are taken at the various levels of X, and that ~r~j denotes the 
probability that when X = x,, a subject is classified in the j t h  level of Y. Note 
that ~2flri~ = 1 for i = 1 . . . . .  r. 

Let ~ denote the response for a subject selected at random in row i, and let 
Yj denote an independent observation on the response for a subject selected at 
random in row j. For x~ < xj, let P~.(x,, xj) denote the probability that the 
pair (~ ,  Yj) satisfies Yi < Yj, given that ~ ~ ~.  That is, P,.(x,, xj) is the 
probability of concordance for the pair, conditional on the event that the 
responses differ. Hence, 

EE ~ 
t , > ~  . [ 2 . 1 ]  

b > a  b < a  

Similarly, the conditional probability of discordance for this pair of X-values 
is Pa(x,, x j )=  1 -Pc(x i ,  xj). 

In some cases, it would be informative to describe how the relative numbers 
of concordant and discordant pairs depend on the values (x i, x j ) f o r  the 
possible pairings of the explanatory variables. The concordance or discordance 
of a pair can be treated as a quasi-binary response. Paralleling the develop- 
ment of linear models for various transformations of the probability of 
"success" for binary variables, we model transformations of the probability of 
concordance. 

To motivate the choice of transformation for the probability of concor- 
dance, suppose that there is an underlying continuum such that for each fixed 
value of X, Y has a normal distribution with mean Y0 + Yx X and variance o 2. 
If �9 denotes the standard normal cumulative distribution function, then for 
any pair of values x, < ~ ,  

x i )  = 

Hence, the probability of concordance depends on the x-values only through 
their difference, and the probit (inverse normal) transformation is linearly 
related to this difference. Note also that P.(x~, xj) is a monotonic function of 
(xj - xi) and that p,(x,,  xj) ~ 1 /2  as (xj - xi) ---, 0. 



Table 1. Cross-classification of mental health status by parent's socioeconomic status. 
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Parent's 
socioeconomic 
status 

Mental Health Status 

Well Mild Moderate Impaired 
Symptom Symptom 
Formation Formation 

A (high) 64 94 58 46 
B 57 94 54 40 
C 57 105 65 6O 
D 72 141 77 94 
E 36 97 54 78 
F (low) 21 71 54 71 

In many applications it would seem reasonable to assume that there is an 
underlying distribution for which Pc(x~, x j )  is approximately a monotonic 
function of xj - x~ such that Pc(x~, x j )  ---, 1/2  as x j  - x i ---, O. Then a simple 
model that may be adequate for the cross-classification table is 

F j = / ~ ( x j -  x i ) ,  xi < xj [2.21 

where F~j is a monotone transformation from (0, 1) onto ( - o o ,  oo). For 
instance, natural choices are the probit transformation F~j = ~- l (Pc(X"  x j ) )  
or the logit transformation F/j = log[Pc(x,, x j ) / ( 1  - Pc(xi ,  xj))]. The assump- 
tion that P~(x~, xj)---, 1/2  as x j -  x~---, 0 implies that no constant term is 
needed in the model. For model [2.2] when the x-values are u units apart, the 
probability of concordance is d~(flu) for the probit model and exp(Bu)/(1 + 
exp(flu)) for the logit model. 

If model [2.2] holds, then 

F,j + ~k = F/k, f o r l < ~ i < j < k < ~ r .  [2.3] 

It follows that there are r - 1 linearly independent pairs of comparisons. Since 
model [2.2] has only one parameter, it has r - 2 residual degrees of freedom. 
The appendix shows how this model can be fitted using weighted least squares. 

The data in Table 1 were analyzed using standard loglinear and logit 
models by Goodman (1979) and by Agresti (1984, pp. 134-135). Here we treat 
mental health status as an ordinal response, and we will use model [2.2] to 
estimate the probability that a subject at one parent's SES level has better 
mental health than a subject at some other parent's SES level. We used integer 
scoring { x i = i } for the levels of parent's SES, but other monotonic choices of 
scores gave similar results. 

Cox (1970, pp 26-29) notes that the logit and probit transformations are in 
reasonable agreement for values of the probability of concordance in the range 
of 0.1 through 0.9. Thus, we restrict our illustration to the logit transformation 
in this discussion. Using methods discussed in the appendix, we obtained a 
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Table 2. Comparison of observed concordance probabilities with values (in parentheses) predicted 
by model [2.2], for Table 1. 

Parent's SES 
levels B C D E F 

A 0.496 0.543 0.561 0.616 0.669 
(0.536) (0.571) (0.605) (0.639) (0.671) 

B 0.548 0.566 0.622 0.677 
(0.536) (0.571) (0.605) (0.639) 

C 0.519 0.575 0.630 
(0.536) (0.571) (0.605) 

D 0.555 0.610 
(0.536) (0.571) 

E 0.556 
(0.536) 

goodness-of-fit statistic of X 2 = 3.36 for model [2.2], based on d f =  r - 2 = 4 
degrees of freedom. The parameter estimate /3 = 0.142 has standard error 
0.023, implying that there is very strong evidence that the concordance 
probabilities exceed the discordance probabilities; in other words, higher 
parent's SES tends to correspond to better mental health status. 

Using model [2.2], we obtain an estimated probability of concordance of 

exp[0.142(xa - x,)] 

P~.(x,, x j )  = 1 + e x p [ O . 1 4 2 ( x s -  x , )  ]. 

The estimated probabilities are 0.536, 0.571, 0.605, 0.639, 0.671 for the 
parent's SES distances 1, 2, 3, 4, and 5. For instance, the probability that SES 
level i + 1 corresponds to higher mental health status than SES level i is 
estimated to be 0.536/0.464 = 1.15 times higher than the probability that it 
corresponds to lower mental health status. The estimated probabilities are 
compared to their observed sample values in Table 2. The difference is less 
than 0.05 for all 15 comparisons. Based on the goodness-of-fit test and this 
comparison, it appears that model [2.2] adequately models concordance prob- 
abilities for these data. 

3. Models for multidimensional tables 

For x i 4 ~ x  j,  let P ( x  i, x j )  denote the probability that Yi < Yj, given that 
~ Yj. that is, P ( x  i, x j )  = Pc(xi ,  x j )  if x, < x s and P ( x i ,  x j )  = Pa(x9,  x i )  if 

x i > xj .  Thus, model (2.2) can be expressed in terms of any ( x  i, x ; )  (rather 
than only x i < x ; )  by defining Fi9 to be the probit or logit transformation of 
P ( x , ,  x j ) .  This type of notation is useful when the explanatory variable is a 
vector, which is the case considered in this section. Specifically, suppose that 
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the cross-classification table has ordinal response variable Y and a vector X of 
k >/2 explanatory variables. We consider two types of models. The first, a 
direct generalization of (2.2), describes how P ( ~  > Y/IY, ~ Yj) depends on 
values x i and xj of X. The second describes how the conditional association 
between Y and one element of X varies according to the values of the other 
elements of X. 

Let Y, and ~ be independent observations on Y at the values x~ and x i of 
X. As in Section 2, we can model how P(Yj > Y/[ Y~ 4: Yj) depends on x i and 
xj. Let F O denote the logit or probit transformation of P ( ~  > Y, I Y~ ~ Y)- If it 
is reasonable to assume that for each fixed value of X, the underlying 
distribution of Y is approximately normal with mean 3'0 +- / 'X and constant 
variance, then a natural generalization of model (2.2) is 

F,j = O ' (  x j  - x~) .  [3.ll 

Suppose we take x i and xj such that x~ = (x i, wl) and x~ = (xj, ~ ' )  with 
x i ~ xj  but w i' = ~'. Then Fij represents a transformed probability of concor- 
dance for the conditional (Y, X) association, given IV. Model [3.1] is rather 
restrictive, since it implies that this probability is identical at all w values. 

If our primary interest is directed at how conditional (Y, X) concordance 
probabilities depend on a vector of covariates IV, a different form of model 
may be more reasonable. Let P(x~, x j; w) denote the probability that Y/< Yj 
given that Y, #: Yj, when x~ = (x i, w') and x~ = (x j, w'); i.e., w is the common 
value of W in both members of the pair. Let F,7(w ) denote the logit or probit 
transformation of P(x~, x j; w). Then a simple generalization of model [2.2] 
that describes how the conditional (Y, X) concordance probability depends 
on W is given by 

[3.2] 

Given X = x, the transformation of P(x , ,  x j; w) is again directly proportional 
to the distance between the X-values. For a given distance between X-values; 
the transformation of P ( x  i, xj; w) is a linear function of W. Note that in 
model [3.2], unlike model [3.1], both members of a pair must have the same W 
value. 

Model [3.2] is analogous to a Bradley-Terry paired comparisons model 
proposed by Semenya and Koch (1980) (see also Semenya et al., 1983) in 
which the preference parameters have a linear pattern. For the special case of 
c = 2 responses, the logit formulation of model [2.2] is equivalent to the 
loglinear model with linear-by-linear association, which corresponds to Good- 
man's (1979) uniform association model when the {x~} are equal-interval. 
When c = 2 it also is equivalent to standard linear logit models. When c > 2, 
models discussed here are not equivalent to loglinear models or other models 
that have been proposed for ordinal responses (e.g., see McCullagh 1980 and 
Agresti 1983). A disadvantage of the concordance models, relative to these 
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others, is that cell probabilities are not determined by the model parameters. 
Hence, the models do not provide information about structural aspects such as 
stochastic orderings on the response. If concordance probabilities are of 
interest, though, an advantage of these models is the direct modelling of such 
probabilities. 

All these models can be fitted using weighted least squares. Details are 
rather cumbersome, and are presented in the appendix. For several examples 
and additional model, formulations for the multidimensional case, see Schol- 
lenberger (1982). Listings of programs for implementing these procedures 
which use the Statistical Analysis Systems (SAS) procedure MATRIX can also 
be found there, and are available upon request from the authors. 

4. Associat ion measures  

Most ordinal measures of association give summary descriptions of the relative 
numbers of concordant and discordant pairs. Let S denote the sign function, 

- 1 ,  u < 0  
S ( u )  = O, u = 0 

1, u > 0 .  

A pair of observations with x,  < x j  is concordant if S ( ~ - Y ~ ) =  1, and 
discordant if S ( ~ - Y / i )  = - l .  We can regard model (2.2) as a way of 
describing how well S(Yj - Y~) can be predicted based on the distance xj - x~. 
Related association measures can be defined that, like that model, utilize the 
ordinal nature of Y and the quantitative nature of X. 

Suppose there are n observations on (X, Y). Daniels (1944) defined a 
generalized correlation coefficient 

G = ~ aUbij  
l j2 '  

where aij is an x-score and b~j is a y-score for the (i, j ) - th  pair of 
observations, such that aij  = - aji and bij = - bj~. For the scoring a,j  = x j  - x~ 
and big = y j - y  i, G is the Pearson correlation coefficient. For the scoring 
a~j = S ( x j -  x i )  and b,j = S ( y j - Y i ) ,  G is Kendall's tau for fully-ranked data 
and it is Kendall's tau-b for ordered categorical data. 

Corresponding to model [2.2], it seems natural to take aig = x  j - x ~  and 
b~j = S ( y j - y ~ )  in G. Some properties of this interval-ordinal measure are as 
follows: 

1. For an r • r table with Pi, = 1 / r ,  G = [2(r + 1) /3 r ]  1/~. 
2. For a sample of size n with continuous variables, G ~< [2(n + 1 ) / 3 n ]  ~/2. 
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3. If (X, Y) is distributed bivariate normal with correlation p, then y 
= V/2-/~r O, where 

y =  
[Var(~-  X i ) ] x / 2 [ V a r ( S ( Y j  - Yi))] 1/2 

4. An interval-ordinal measure that is a compromise between the Pearson 
and Spearman correlations is given by G with aij = x j -  x, and b,j = 
R(yj)  - R(Yi), where R is the rank function. When the observations are 
fully ranked on Y, this measure is the constant multiple (3n/2(n + 1)) 1/2 
times the value of G obtained using the sign score for Y. 

Unfortunately, these compromise measures do not seem as useful as their 
ordinal-ordinal or interval-interval analogues. For instance, S ( ~ -  Y~) cannot 
be perfectl~ correlated with Xj - X~ when either X or Y has more than two 
distinct values, so [ G I cannot equal 1.0 for tables of size greater than 2 • 2. A 
more thorough discussion of these measures together with the derivation of 
their asymptotic variances using the delta method, is contained in Schollen- 
berger (1982). 

Appendix: WLS estimation of model parameters 

The models we presented have the form F = Ufl, where U is a design matrix and F is the vector of 
the F 0 obtained at all the appropriate pairings of settings of explanatory variables. The models 
can be fitted using the weighted least squares methodology for categorical data, as described in 
Grizzle, Starrner and Koch (1969). 

Let /~ and ~ j  denote F and F,j calculated for the sample proportions�9 For instance, for the 
logit transformation and the two-way rxc table of cell counts {no}, -f has the r(r-1)/2 
elements 

F= (El2, El3 . . . . .  1~1 . . . . . .  Fr-  l ,r ) ,  

with 

~J=l~ ] " 

However, there are dependencies among the (F,j  } leading to a singular asymptotic covariance 
matrix. To avoid this singularity, we use a smaller set of responses transformed from the (/~/y }. 
For simplicity, we discuss this transformation for the two-way table and model [2�9 

If model [2.2] holds, then 

F = ZFT, 

where F~ = ( Fx2, Fl3 . . . . .  F1,) and 

1,2 1,r 2,3 2,r  r - l , r  

Z'= 

j 0 0 ... 
1 0 ... 
0 1 ... 

0 0 ... 

0 - 1  
0 1 
0 0 

1 0 

- 1  ... - 1  
0 ... 0 
1 . . .  0 

:::o 
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Alternatively, Fr = TF, where T = ( Z ' Z )  1Z'. This suggests the r -  1 transformed responses 

d=rP 

for the model G = (TU)B.  This transition can also be motivated by a Bradley-Terry model for the 
comparisons of responses, and it was suggested for a related purpose by Semenya and Koch 
(1980). 

Let ~ '  = (qr l' . . . . .  ~rr'), where ~t'= (r a . . . . .  %.) with ~/r , j  = 1. Let V(~?,) = (1/ni+)[D(~ri) - ~qr,'], 
where D(~r~) is the cxc diagonal matrix with the elements of ~r~ on the diagonal. The covariance 
matrix of r is the r c x  rc block diagonal matrix V(~?) that has the { V(r matrices on the 
diagonal. If H denotes the r ( r / 1 ) / 2  x rc matrix of partial derivations [3F,/ /3%~],  the  asymp- 
totic covariance matrix of k ~ is H V ( # ) H ' ,  and the asymptotic covariance matrix of G is 

v( 6)  = r n v (  + )n ' r ' .  

Depending on the response function in the model, H will have different forms. If A t /=  
Z• . . . .  ~ri,,~ . and B G = ~]~ .. . . .  'n',v~ju , the logit response has the form F,j = log[ Ais / Bij ] and the 
probit response has the form F, /=  O - l ( A , s / ( A i s  + B,j)). Define 

b < u  v < b  

b > u  v > b  

Then for the logit response, a row in H has elements 

~Fi+ A~<h).j Bi'<b).+ 

OCr, b AL, B, j  

3F, j A* B* t,j(b) i,)(b) 

3~'/b A,j B,j 

OF/,.+ 
= 0  

0 r 

b = l , . . . , c  

b = l , . . . , c  

i f a4=i ,  a4=j.  

If 4' denotes the standard normal density function, then for the probit response, 

OF~/ BoA'<b), ) - A,jBi'<b)./ 

2[ lc A j 
a~,h (A,j+B.)+ �9 \Aij+Ej]J 

af ; j  BijA,*,j(b ) -- Ai jBi , j (b)  

0"/b (A , j+B. )  4' O 

~Ej 
= 0  

3%h 

b = l , . . . , c  

b = l , . . . , c  

i f a ~ i  and a4=j.  

Let ~'(G) denote the sample value of V(6~). For the model G = (TU)~8, it follows that the 
WLS estimate of fl is 

b = ( U ' T ' f Z ( C , ) - ' T U ) = ' U ' T ' f " ( C , ) - ' C , .  
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It is easily seen that the same value b is obtained for several other ways of forming G, for instance 
for T matrices corresponding to F~ = (F12, F23 . . . . .  Fr--1,r) or F~- = (Fli, F2, . . . ,  Fir). 

The goodness of fit of the model can be tested using the statistic 

X 2 = ( G -  T U b ) ' f ' ( G )  1 (~  _ TUb).  

For the transformed version of model [2.2], there are r - 1 response functions and 1 parameter, so 
X 2 has a null asymptotic chi-squared distribution with df  = r - 2 .  Hypotheses of the form Cfl = O 
can be tested using the statistic 

for which the null asymptotic chi-squared distribution has degrees of freedom equal to the rank of 
C. 

If we consider multidimensional tables, the above approach is easily generalized. For models 
like [3.1] that are not of the conditional type, we adopt the following convention. If the i-th 
explanatory variable has r i levels, i = 1, . . . ,  k, we simply view the problem in the r x c context 
with r = rlr2.., r k. The same transformations discussed earlier in this section lead to the desired 
results. For conditional models like [3.21 we make the corresponding transformation within each 
level of the control variables. For instance, suppose X (2) is a control variable that has r 2 levels 
and X O) is an interval variable with r 1 levels. Then, for each value of X (2) we make the 
transformation given by T with r = rl, leading to r 1 - 1 response functions for each of the r 2 
values of X (2). Thus, in this case, we would analyze a set of r2(r 1 - 1 )  response functions. 
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