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 Summary

 This article surveys various strategies for modeling ordered categorical (ordinal) response variables
 when the data have some type of clustering, extending a similar survey for binary data by Pendergast,
 Gange, Newton, Lindstrom, Palta & Fisher (1996). An important special case is when repeated mea-
 surement occurs at various occasions for each subject, such as in longitudinal studies. A much greater
 variety of models and fitting methods are available than when a similar survey for repeated ordinal
 response data was prepared a decade ago (Agresti, 1989). The primary emphasis of the review is on two
 classes of models, marginal models for which effects are averaged over all clusters at particular levels
 of predictors, and cluster-specific models for which effects apply at the cluster level. We present the two
 types of models in the ordinal context, review the literature for each, and discuss connections between
 them. Then, we summarize some alternative modeling approaches and ways of estimating parameters,
 including a Bayesian approach. We also discuss applications and areas likely to be popular for future
 research, such as ways of handling missing data and ways of modeling agreement and evaluating the
 accuracy of diagnostic tests. Finally, we review the current availability of software for using the methods
 discussed in this article.

 Key words: Bayesian inference; Cumulative logit models; Generalized estimating equations, Logit models;
 Marginal models; Matched pairs; Missing data; Ordinal data; Proportional odds; Random effects; Repeated
 measures; Square contingency tables.

 1 Introduction

 This article surveys ways of modeling ordered categorical (ordinal) response variables when the
 data have some type of clustering, such as a cluster of responses for a subject measured repeatedly
 in a longitudinal study. The development of such models has been rather slow, compared to models
 for independent observations. Much of this is due to computational complexity, as the major classes
 of models each present difficulties of this type. For instance, one class of models applies not to the
 probabilities to which the likelihood refers but to marginal probabilities. For another class of models,

 it is difficult even to calculate the likelihood. However, the past decade has seen major progress, and
 it is now possible to handle much more complex models and larger data sets, and a greater variety of
 model-fitting methods have also been developed.

 1.1 Example

 For a simple illustration of the methods discussed in this article, we use Table 1, a dataset typical
 of many studies in the pharmaceutical industry. The table shows results of a randomized, double-
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 blind clinical trial comparing an active hypnotic drug with a placebo in patients with insomnia. The
 outcome variable is patient response to the question "How quickly did you fall asleep after going to
 bed?", using categories (< 20, 20 - 30, 30 - 60, > 60) minutes. Patients responded at the beginning
 and conclusion of a two-week treatment period. Here, each subject forms a cluster, with a natural
 dependence between the two observations for each subject. These data were used to illustrate various
 analyses in Agresti (1989), and results quoted there will be compared to ones obtained using models
 discussed in this paper.

 Table 1

 Distribution of time to fall asleep, by treatment and occasion.

 Initial Follow-up occasion
 Treatment occasion < 20 20-30 30-60 > 60

 Active < 20 7 4 1 0

 20-30 11 5 2 2

 30-60 13 23 3 1

 > 60 9 17 13 8

 Placebo < 20 7 4 2 1

 20-30 14 5 1 0

 30-60 6 9 18 2

 > 60 4 11 14 22

 Source: Francom, Chunag-Stein & Landis (1989).

 1.2 Cluster-specific and Marginal Models

 In the formulation of models, we refer to the sampling units as clusters. In many applications,
 such as Table 1, each cluster is a set of repeated measurements on a subject. In others, each cluster
 is a set of subjects expected to be more similar to each other than to other subjects, such as a litter
 of mice in a teratology study.

 As with binary and other forms of categorical data (Pendergast et al., 1996), two major types of
 model for ordinal responses differ in terms of whether they have population-averaged or cluster-
 specific (sometimes called subject-specific) effects. The latter models refer to conditional distributions

 at the cluster (e.g., subject) level, whereas the former models refer to marginal distributions, averaged

 over clusters in the population. The choice of model affects whether parameter interpretations apply
 at the cluster or the population level (Zeger, Liang & Albert, 1988; Neuhaus, Kalbfleisch & Hauck,
 1991; Ten Have, Landis & Hartzel, 1996). Population-level interpretations are more relevant in
 epidemiological studies that focus on overall frequency of occurrence in a population. As we will
 discuss in Section 3.2, approximate relationships exist between population-averaged parameters in
 marginal models and corresponding parameters in cluster-specific models; however, a cluster-specific
 model usually does not imply a marginal model of the same form, and a marginal model need not
 have any simple and meaningful cluster-specific model that implies it.
 A third type of model, called a transition model, is used in longitudinal studies to describe the

 distribution of a response conditional on past responses and explanatory variables. An important
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 special case is Markov chain models. Transition models, unlike models discussed here, take into
 account the time ordering. This approach has received substantial attention for binary data (e.g.,
 Bonney, 1986; Diggle et al. 1994, Ch. 10), but seems to have received little attention so far for
 ordinal responses (Chuang & Francom, 1986; Albert, 1994).

 1.3 Link Functions for Ordinal Models

 Logistic regression models occupy a central place in the toolkit for analyzing binary data. Like-
 wise, the most popular models for ordinal responses are multi-category generalizations of logistic
 regression. Currently, the most popular model for ordinal responses uses logits of cumulative proba-
 bilities, called cumulative logits. For a c-category ordinal response variable Y and a set of predictors
 x with corresponding effect parameters 3, the model has form

 logit[P(Y < k)] = ak + x'3, k = 1,... c - 1. (1)
 Model (1) assumes an identical effect 3 of the predictors for each cumulative probability; this case
 is referred to as a proportional odds model (McCullagh, 1980). One can motivate such a model
 using a regression model for an assumed underlying continuous response with constant variance
 (Anderson & Philips, 1981). The logit link for cumulative probabilities results from a logistic latent
 variable. Other latent variables yield other "cumulative links" (i.e., links for cumulative probabil-
 ities), such as the probit link for a normal latent variable and a complementary log-log link (i.e.,

 log{- log[1 - P(Y < k)]}) for a latent variable having an extreme value distribution (McCullagh,
 1980). Generalizations exist in which some or all of the effects need not be identical for each cumu-

 lative probability (Peterson & Harrell, 1990).
 An alternative ordinal logit model utilizes single-category probabilities rather than cumulative

 probabilities and hence can be expressed using the canonical parameters for the multinomial distri-
 bution, which are the baseline-category logits log[P(Y = k)/P(Y = c)], k = 1 ..., c - 1. One
 expression of such an ordinal model uses the adjacent-categories logits, log[P(Y = k)/P(Y =
 k + 1)], k = 1 ..., c - 1. Another possibility is the continuation-ratio logit model, which uses
 logits {log[P(Y = k)/P(Y > k + 1)]} or {log[P(Y = k + 1)/P(Y < k)]}. This model form is
 useful when a sequential mechanism, such as survival through various age periods, determines the
 response outcome (Tutz, 1991).

 When used with a single parameter for each effect (as in the proportional odds form (1) of the
 cumulative logit model), these model types tend to fit well in similar situations. They all imply that
 the response distributions are stochastically ordered at the various predictor values. One's choice of

 model is usually based less on goodness of fit than on whether one prefers parameter interpretation
 to refer to individual response categories or instead to groupings of categories or an underlying
 continuous variable. When such models with the common effect 3 for each k fit poorly, possible
 strategies include (i) trying a link function, such as the log-log or complementary log-log, for which
 the response curve is nonsymmetric, (ii) adding additional terms, such as interactions, to the linear

 predictor, (iii) generalizing the model by adding dispersion parameters (McCullagh, 1980; Cox,
 1995), and (iv) permitting separate effects for each logit for some of the predictors (Peterson &
 Harrell, 1990).

 Another common approach to analyze ordinal response variables assigns scores to categories and
 uses ordinary regression or ANOVA methods. Weighted least squares can account for nonconstant
 variance in the response functions (Grizzle, Starmer & Koch, 1969; Koch, Landis, Freeman, Freeman

 & Lehnen, 1977). This approach has the advantage of simplicity of interpretation, particularly when
 it is sufficient to describe effects in terms of simple summaries such as mean location rather than
 odds ratios based on the individual cell probabilities. This is often the case when c is large. With
 models for the mean itself, marginal and cluster-specific models are compatible, and the same effects
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 occur in each.

 1.4 Scope of this Article

 Agresti (1999) surveyed recent research on modeling ordered categorical data. In this article, we
 extend that work by providing a more detailed investigation of methods pertaining specifically to
 models for clustered ordered categorical data. The article complements Pendergast et al. (1996),
 a similar survey for clustered binary data. We review the literature, emphasizing the two major
 types of models, marginal models and cluster-specific models, and provide examples of their use.
 Section 2 introduces marginal models and discusses ways of fitting them using maximum likelihood
 and the quasi-likelihood method of generalized estimating equations. Section 3 introduces cluster-
 specific models specified by introducing cluster-specific random effects and discusses maximum
 likelihood fitting and connections with marginal models. Section 4 summarizes some alternative
 modeling approaches and ways of estimating parameters, such as the Bayesian approach. Section
 5 summarizes applications of the models that have had considerable attention and describes areas
 that are likely to see substantial research activity in coming years. Section 6 reviews the relatively
 limited current availability of software for performing these analyses. Finally, we reference much of

 the literature that has evolved in the past decade for modeling clustered ordered categorical data.

 2 Marginal Models for a Repeated Ordinal Response

 Let Yrk (x; i) denote the probability that the response is category k, for an observation in cluster i

 with values x of explanatory variables, k = 1 ... c. Let 7rk (x) denote a corresponding "population-

 averaged" probability, that is, the mean of the probabilities k (x; i) for all clusters in a population of
 interest at setting x. Let yk(x; i) = rl (x; i) + ... + rk (x; i) and yk(x) = r1 (x) + ... + rk(x), with
 yo(x; i) = yo(x) = 0.

 For the set of predictor values x* = (xi,..., x) for n observations in a cluster, let rkl,...,kn (X*)

 be the marginal probability of the sequence of responses (kl,...., kn). Assuming independent
 observations within clusters (given the cluster-specific probabilities), this is the mean value of

 [rk, (xl; i) ... k, (Xn; i)] for all clusters at that combination of predictor values. Thus, rk,...k~n (x*) is marginal in terms of averaging over clusters, and rk (x) is a further first-order marginal distribution
 of this n-dimensional distribution.

 The simplest special case is that of matched pairs without covariates. Then, n = 2 and x* = (1, 2)
 simply indicates the two responses in each matched pair. For instance, for a c x c square table of

 probabilities {nkk' (1, 2)), rk (1) = k' 7kk' (1, 2) and rk (2) = -Tk' krwk(1, 2) are row and column
 marginal totals.

 2.1 Model Specification and Complications

 This section discusses cumulative logit models for the first-order marginal probabilities. Let ni
 denote the number of observations in cluster i. Denote the values of the explanatory variables for the
 ni observations in cluster i by x = (xil,...,xin), i = 1,..., N. The models have the form

 logit[yk(xij)] = ak + xij /3, k = 1 ..., c - 1. (2)

 Let Yk1 ,...,k~, (i) = 1 if cluster i makes the set of responses (kl ...., k,,) and let Yk1 ,...,k,, (i) = 0
 otherwise. Marginally, we assume that these indicators are trials from a multinomial distribution
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 with parameters {k1l,....ki (x7)}. Then, the log likelihood equals

 ? k. yk1, W19k .(i)log[7Tkl.,(x] i=1 k = 1 k2=l kni =1

 where Yk,...,ki (i) denotes a realization of Ykl,...,k ,,(i). It is awkward to maximize this log likeli-
 hood because model (2) refers to marginal probabilities {rk(xi1j)} of the multinomial probabilities

 {rk...k., (xT)} in the log likelihood. Hence, one cannot directly substitute the model formula in the log likelihood function and maximize using standard methods.
 Early approaches to this problem used a weighted least squares (WLS) approach (Koch et al.,

 1977; Landis, Miller, Davis & Koch, 1988; Carr, Hafner & Koch, 1989; Agresti, 1989). For cumula-
 tive logit models, this used the delta method to derive a multivariate normal asymptotic distribution
 for the vector of all the sample marginal cumulative logits, and then minimized the quadratic form
 comparing those sample logits to the model predicted values, weighting by the inverse of the esti-
 mated covariance matrix of the sample logits. The delta method is based on the asymptotic normality
 of sample cell proportions in a contingency table. Thus, although this method is simple in terms of
 having a closed-form solution for the parameter estimates, it is severely limited because all predic-
 tors must be categorical and the marginal counts must be nonsparse (e.g., ideally all marginal totals
 having size at least about 5-10).

 2.2 Quasi Likelihood: Generalized Estimating Equation (GEE) Methodology

 The awkwardness of fitting marginal models such as just formulated reflects the lack of a simple
 multivariate family of distributions for categorical responses. Unlike the multivariate normal family
 for continuous responses, with categorical responses it is not natural to parameterize in terms
 of marginal moments and a correlation structure. Rather than attempt to specify fully the joint
 distribution, one can apply methodology based on a multivariate generalization of quasi likelihood.
 The quasi likelihood approach specifies a model for the mean and a variance function expressing the
 dependence of the variance on the mean, and then obtains estimates by solving estimating equations
 that are score equations under the further assumption of a distribution in the exponential family
 with that mean and variance (see Wedderburn (1974) and McCullagh & Nelder (1989, Ch. 9)). In
 the multivariate context discussed here, one also uses a working guess for the correlation structure
 (Liang & Zeger, 1986; Liang, Zeger & Qaqish, 1992), and the estimates are solutions of generalized
 estimating equations. The method is often referred to as the GEE method. Estimates of model
 parameters are consistent even if the correlation structure is misspecified. This approach is appealing
 for categorical data because of not requiring a multivariate distribution, but it has limitations resulting
 from the lack of a likelihood (Lindsey, 1999) and its subsequent reliance on Wald methods.

 The GEE methodology was originally specified for univariate distributions such as the binomial
 and Poisson. Multinomial generalizations now exist for cumulative logit models (Kenward, Lesaffre
 & Molenberghs, 1994; Lipsitz, Kim & Zhao, 1994; Lumley, 1996; Mark & Gail, 1994; Williamson,
 Kim & Lipsitz, 1995) and cumulative probit models (Toledano & Gatsonis, 1996) for clustered
 ordinal responses.

 For the Lipsitz et al. approach, let Yk(ij) = 1 if cluster i makes response k (k = 1, . , c - 1)
 for the jth observation. Then for each pair of response categories (k, f) one selects a working
 correlation matrix Vi for all pairs of observations (jl, j2) in the cluster. The (c - 1) x (c - 1) blocks
 of Vi corresponding to the Y's for a specific observation j in the cluster are multinomial covariance

 matrices with ak(ij) = rk(xij) (1 - 7rk (xij)) on the diagonal and -Kk (xij)1r (Xij) on the off-diagonal.
 The remaining elements of Vi represent the covariance between pairs Yk (ijl) and Ye (ij2); for instance,

 one might choose the exchangeable structure, Cov(Yk(ijl), Ye (ij2)) = Pkeak(ijk)ae(i12) for all j1
 and j2. The generalized estimating equations for estimating /3 (including the cut-points a) take the
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 form

 N

 u(3) D = Vi-I [yi - -i] =0
 i=1

 where yi is the vector of observed responses for the ith cluster, 7ri is the vector of probabilities
 associated with Yi, D = Kwll and the hats denote the substitution of the unknown parameters

 with their current estimates. Lipsitz et al. (1994) suggested a Fisher scoring algorithm for solving the
 above equation for p in conjunction with a method of moments update for estimating the correlation
 parameters pke at each step of the iteration. A robust covariance matrix of 3 is

 V? = DVi- 1Di D Vi-lvar(Yi)Vi-Di D Vi-1Di
 i=1 i=1 i=1

 This is estimated by substituting 7^ri from the model fit and replacing var(Yi) by the empirical
 variance-covariance matrix of Yi. .

 Related literature includes applying GEE to the repeated ordinal case with independence estimating
 equations (Mark & Gail, 1994; Miller, Davis & Landis, 1993), unstructured correlations (Miller et al.,

 1993), and using a model for global odds ratios (Lumley, 1996; Williamson etal., 1995). More general
 models allow for dispersion parameters that also depend on covariates, as discussed in Section 5.1
 (Toledano & Gatsonis, 1996). Miller et al. (1993) showed that under certain conditions the solution

 of the first iteration in the GEE fitting process is simlply the estimate from the WLS approach of Koch
 et al. (1977). For this equivalence, one uses initial estimates based directly on sample values and
 assumes a saturated association structure that allows a separate correlation parameter for each pair of
 response categories and each pair of observations in a cluster. In this sense, GEE with unstructured
 correlation provides an iterated form of WLS. Moreover, in this case, the covariance matrix for the
 estimates is the same in both approaches.

 When marginal models are adopted, the joint dependence structure is usually not the primary
 focus and is regarded as a nuisance. In such cases with ordinal responses, it seems reasonable to use
 a simple structure for the associations, rather than to expend much effort modeling it. For instance,
 one might use an exchangeable correlation structure for the pairs of observations in a cluster, or

 an autoregressive structure in the longitudinal case. It often makes more sense to parameterize
 associations for categorical responses in terms of odds ratios rather than correlations; hence, an

 even simpler structure that might be useful is a common local or global odds ratio. Using a simple
 structure has the potential for slight efficiency gain over the independence equations and the more
 general structures that can have large numbers of parameters to characterize associations, as well as

 less chance of numerical singularities compared to the latter case. An earlier method related in spirit
 to GEE methods forms a weighted combination of estimates from separate models fitted to margins
 of a repeated ordinal response (Stram, Wei & Ware, 1988). This approach does not allow for simpler
 working correlation structures, however.

 When the association structure is itself of interest, a GEE2 approach is available for modeling
 associations using global odds ratios (Heagerty & Zeger, 1996). A disadvantage of GEE2 methods,

 however, is that estimates of parameters in the marginal model are no longer consistent if one
 misspecifies the model for the associations.

 2.3 Maximum Likelihood Fitting ofMarginal Models

 We mentioned above that it is difficult to fit marginal models using maximum likelihood (ML).
 Multivariate logistic models have been defined with a one-to-one correspondence between joint
 multinomial cell probabilities {rk, ...,k (x*)} and parameters of marginal models as well as higher-
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 order parameters of the joint distribution (Fitzmaurice & Laird, 1993; Glonek, 1996; Glonek &
 McCullagh, 1995). One can then use ML to estimate the model parameters, but the correspondence
 is awkward to specify for more than a few dimensions. One version of this idea (Molenberghs &
 Lesaffre, 1994) uses a multivariate extension of a bivariate model using global odds ratios discussed
 by Wahrendorf (1980) and by Dale (1986). In this approach the joint probabilities are decomposed
 into "main effects" and "interactions". The main effects correspond to the marginal probabilities
 while the interactions are the two-way, three-way and ni-way generalized cross ratios based on
 global odds ratios. Molenberghs & Lesaffre (1994) suggested the use of a multivariate distribution
 based on common values of global odds ratios to determine the joint probabilities from these main
 effects and interactions. In practice, this approach is also difficult to implement except for small-
 dimensional problems.

 An alternative approach treats a marginal model as a set of constraint equations and uses methods
 of maximizing (subject to constraints) likelihoods based on a product of multinomials (Haber,
 1985; Lang & Agresti, 1994). The method is based on iterative use of Lagrange's method of
 undetermined multipliers together with the Newton-Raphson method. One specifies Lagrangian
 likelihood equations of the form h (0) = 0, where 0 is a vector containing the sets of multinomial cell
 probabilities and the Lagrangian multipliers, and solves them using the Newton-Raphson method,

 .-_ (h(h(t))- 0(t+0) = 0(t) ah( h(0(t)

 In these approaches, it is possible also to model simultaneously the joint distribution or higher-
 order marginal distributions. For instance, one might use a cumulative logit model for the marginal
 distributions and a model assuming a common global odds ratio (Glonek, 1996; Glonek & McCullagh,
 1995; Molenberghs & Lesaffre, 1994) or a common local odds ratio (Lang & Agresti, 1994) for the
 pairwise associations.

 Although in principle it is possible to use methods such as these to fit marginal models, it is
 computationally intensive when {ni) are large or when there are several predictors, especially if some
 of them are continuous. The difficulty results because the Newton-Raphson part involves inverting
 a matrix with dimensions larger than the number of cells in the contingency table. A refinement
 of this approach (Lang & Agresti, 1994; Lang, 1996) uses a matrix to be inverted in the Newton-
 Raphson step that has much simpler form but the same probability limit. Continuing computational
 advances are making ML feasible for larger problems, both for constrained ML (Bergsma, 1997;
 Lang, McDonald & Smith, 1999) and for maximization with respect to joint probabilities expressed
 in terms of the marginal model parameters and an association model (Heumann, 1997).

 An alternative approach unifies marginal modeling of ordinal data with methods for continuous
 responses. It is based on assuming an underlying multivariate normal distribution, which implies
 cumulative probit models (Kim, 1995) for the margins. Again, the feasibility diminishes as {ni) or
 the number of predictors increases.

 2.4 Example

 We first use marginal cumulative logit models to analyze Table 1. Consider the model

 logit [yk(x)] = ak +1ixi +P2X2 + f3X1x2, k = 1, 2, 3,

 where x = (xl,x2) with xl a dummy variable for treatment (xi = 1 for active and xl = 0 for
 placebo) and x2 a dummy variable for occasion (x2 = 1 for follow-up and x2 = 0 for initial). Table

 2 shows results for fitting this model and the simpler "no interaction" model with 53 = 0, using
 ML (with the Lang & Agresti 1994 approach) and using GEE assuming an independence working
 correlation structure. With the independence working structure, the GEE estimates are identical to
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 what one would obtain using ML and treating the two observations on a subject as independent, but
 the standard errors empirically account for the actual dependence.
 Results are very similar with the ML and GEE estimation methods, and they are qualitatively

 similar to those in Table IV of Agresti (1989) for fitting the marginal models using weighted least
 squares. With either estimation method, there is evidence of interaction. For instance, with the ML
 approach the Wald statistic for testing Ho : P3 = 0 is (.662/.244)2 = 7.4 (df = 1, P = .007) and
 the likelihood-ratio statistic equals 6.9 (df = 1, P = .009). The ML estimated occasion effect is
 P2 = 1.074 with placebo and P2 + P3 = (1.074 + 0.662) = 1.736 with the active drug. With the
 active drug, for instance, at the follow-up occasion the estimated odds of falling asleep in less time
 than k are exp(1.736) = 5.7 times the estimated odds at the initial occasion. Similarly, the estimated
 drug effect equals ,6 = 0.046 initially and ~i + P3 = 0.708 at the follow-up occasion; initially the
 response distributions were essentially identical, and at the follow-up occasion, the estimated odds
 of falling asleep in less time than k with the active drug are exp(0.708) = 2.0 times the estimated
 odds with placebo.
 An advantage of the ML approach over the GEE approach is that one has a likelihood function,

 thus permitting both likelihood-ratio tests of effects as well as tests of goodness of fit. For instance,

 the deviance statistic equals 15.0 for the no interaction model (df = 7) and 8.0 for the interaction
 model (df = 6). Although the data are sparse and conclusions are tentative, the fit appears adequate
 for the interaction model and better than that for the no interaction model. The df = 6 value
 for the interaction model represents the modeling of 12 marginal logits (for the three cumulative
 probabilities at each of the four combinations of treatment and occasion) with a model containing 6
 parameters.

 Table 2 does not show {&k}, which are of secondary interest, needed for obtaining fitted values
 but not for interpreting treatment effects. For each method it is unnecessary to impose constraints
 on the fitting process to reflect their ordering; it has always been our experience that the ordinary
 estimates are properly ordered (e.g., for the ML fit with the interaction model, 1 = -2.27, &2 =
 -0.96, &3 = 0.32). Although the response variable is actually a grouped continuous variable with
 known cutpoints, {&k } are not based on those values since the model-fitting does not assume a
 parametric shape for an underlying continuous distribution.

 Table 2

 Results offitting cumulative logit models (with standard errors in parentheses) to Table 1.

 Marginal Random
 Model Effect ML GEE Effects

 No Interaction Treatment 0.402 (.198) 0.394 (.200) 0.606 (.307)

 Occasion 1.342 (.136) 1.394 (.138) 2.100 (.230)

 Interaction Treatment 0.046 (.236) 0.034 (.238) 0.058 (.366)

 Occasion 1.074 (.162) 1.038 (.168) 1.602 (.283)

 Treatmentx Occasion 0.662 (.244) 0.708 (.244) 1.081 (.380)

 Note: Random effects fit used PROC NLMIXED in SAS, based on adaptive Gauss-Hermite
 quadrature with 30 quadrature points.
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 3 Random Effects and Mixed Models for Ordinal Responses

 Cluster-specific models usually represent cluster effects by a random effects term in the model.
 Those random effects can help to describe extra variability occurring in a variety of situations, due
 to factors such as subject heterogeneity, unobserved covariates, and other conditions that lead to
 overdispersion. The repeated responses are typically assumed to be independent, given the random
 effect, but variability in the random effects induces a marginal nonnegative association between pairs

 of responses after averaging over the random effects.
 For binary repeated measurement data, the basic model has a logit link with a linear predictor

 that contains random effects having normal distributions with unknown variances. The model form

 extends to ordinal logits. For instance, for the random intercept form of proportional odds model,
 the kth cumulative logit for response j in cluster i has form

 logit [yk(Xij; i)] = Ui + k + xij /, k = 1,... c - , (3)

 where {ui } are iid from a N(0, o"2) distribution. More generally, it is often sensible to treat slopes as
 well as intercepts as random. Thus, it is useful to have the more general form

 logit [yk(xij; i) = ak + XI j / + zijui, k = 1 .... c - 1, (4)
 where zij refers to a vector of explanatory variables for the random effects (which may overlap with

 some of the xij), and {ui } are iid from a multivariate N(O, ) distribution.

 3.1 ML Model Fitting

 Since the random effects are unobserved, to obtain the likelihood function one constructs the

 usual product of multinomials that would apply if they were known and then integrates out the
 random effects. Given the data, the likelihood function depends on the fixed effects parameters and
 the parameters of the random effects distributions. Except in rare cases, this integral does not have
 closed form and it is necessary to use some approximation for the likelihood function. One can then
 maximize the approximated likelihood using a variety of standard methods.

 Algorithmic approaches for approximating the integral that determines the likelihood include
 Gauss-Hermite quadrature, an automated Monte Carlo EM algorithm, and a pseudo-likelihood al-
 gorithm that utilizes Taylor series and Laplace approximations. When feasible, in our opinion the
 best method is Gauss-Hermite quadrature, which replaces the integral by an approximating finite
 sum. The precision of approximation improves as the number of elements in the sum increases. An
 adaptive version of Gauss-Hermite quadrature (e.g., Pinheiro & Bates, 1995) uses the same weights
 and nodes for the finite sum as Gauss-Hermite quadrature, but to increase efficiency it centers the
 nodes with respect to the mode of the function being integrated and scales them according to the
 estimated curvature at the mode. Using the transformed Gauss-Hermite nodes, the contribution to
 the likelihood by the ith cluster is approximated by a finite summation taken over K quadrature
 points.

 Because of the "curse of dimensionality," multivariate adaptive quadrature is currently computa-
 tionally feasible only for integral dimensions up to about 5 or 6. For models with higher-dimensional
 integrals, more feasible methods use Monte Carlo methods, which use K randomly sampled nodes
 to approximate integrals. An important issue is then the number of nodes to sample to approximate
 adequately the integrals. Booth & Hobert (1999) proposed an automated Monte Carlo EM algorithm
 for generalized linear mixed models that assesses the Monte Carlo error in the current parameter
 estimates and increases the number of nodes if the error exceeds the change in the estimates from
 the previous iteration.

 Once one has approximated the likelihood function, large-sample inference proceeds in the usual
 manner. Maximizing the log likelihood yields the ML estimates. Their asymptotic covariance matrix
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 is based on estimating the curvature at the mode of the integrand by inverting the negative of the sec-

 ond derivative matrix of the integrand evaluated at the estimated mode. In practice, one sequentially
 increases K until the changes are negligible in both the resulting parameter estimates and standard
 errors. Inference about variance components requires some care. Under the null hypothesis that a
 variance component ao2 = 0, complications result from being on the boundary of the parameter
 space. For instance, the likelihood-ratio statistic does not have the usual chi-squared asymptotic dis-
 tribution, but rather has a mixture distribution since with null probability approximately equal to 1/2,

 6- = 0 and the likelihood-ratio statistic equals 0. One can obtain ordinary chi-squared distributions
 using the score test (Li & Lin, 2000), since the score (i.e., derivative of the log likelihood with respect
 to ar, evaluated at cr = 0) is not constrained to 0 when a = 0.

 The random effects literature for ordinal data so far considers primarily cumulative logit and probit
 models. An exception is Coull & Agresti (2000), who fitted random effects models for clustered
 data with continuation-ratio logits using a binomial model with multivariate random effects, and

 Hartzel, Liu & Agresti (2001) who used adjacent-categories logits. An early approach for param-
 eter estimation utilized best linear unbiased prediction of parameters of an underlying continuous
 model (Harville & Mee, 1984). Recent work considers extensions with heterogeneous variances for

 the latent variables (Jaffr6zic, Robert-Grani6 & Foulley, 1999). Model fitting has used a variety of
 approaches for approximating the integral over the random effects that determines the likelihood
 function, including Gauss-Hermite numerical integration (Ezzet & Whitehead, 1991; Hedeker &
 Gibbons, 1994; Jansen, 1990; Tutz & Hennevogl, 1996; Hartzel et al., 2001), Laplace approximation
 (Sheiner, Beal & Dunne, 1997), and a combination of Monte-Carlo and EM algorithms (Natarajan,
 1995; Hartzel et al., 2001). A rare exception in which the log likelihood has closed form occurs for a
 complementary log-log link with the log of a gamma or inverse Gaussian distribution as the random
 effects distribution (Crouchley, 1995; Ten Have, 1996).

 3.2 Connections with Marginal Models

 The fixed effects 3 in a model such as (4) with random effects refer to a conditional effect,
 given the random effect. That is, P has a cluster-specific interpretation, referring to the change in
 the link function for a given subject or cluster. This is not normally the same as the marginal (i.e.,
 population-averaged) effect 3 in the corresponding marginal model (2).
 Specifically, consider the generalization of model (4) with an arbitrary link function g. Then,

 yk (Xij; i) = g-1 (k + + Xij + zjui).

 The marginal cumulative probabilities satisfy

 yk(Xij) = E g1(k ij /3 +iji
 with expectation taken with respect to the normal random effects distribution. Then, the same link
 applied with the marginal model implies that

 g [yk(X)] = g E [g(k + X-+ z ju)

 Generally, the right-hand side does not equal ak + xij 3 with the same parameter values as in the

 cluster-specific model. The exceptions are the identity link (i.e., the model yk (xij; i) = oxk + X:j 1 +
 zijui) and a general link but with elements of ui having zero variance. In fact, if the cluster-specific
 model holds with a particular link, the implied marginal model will not normally hold with that same

 link. An exception is the probit link, in which case the cluster-specific cumulative probit model with
 normal random effect does imply a marginal model of probit form, but with different parameters. In
 the case of a univariate random intercept (i.e., a probit-normal model), the marginal model has effect
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 equal to the cluster-specific effect multiplied by [1 + u02]-1/2 (Zeger et al., 1988).
 Approximate connections exist between cluster-specific and marginal models when the variance

 components are small. If the cluster-specific model holds with the logit link, then to the first order
 in a Taylor series expansion one can show that the marginal model is approximately of logit form.
 For the special case of a random intercept model, the fixed effect parameters for the marginal model

 equal those for the random effects model multiplied by approximately [1 + .59a2]-1/2. Thus, the
 estimate of 3 from the marginal model is typically smaller in absolute value than the estimate

 from the cluster-specific model. The discrepancy between the two increases as a0, and hence the
 correlation between observations within a cluster, increases. Neuhaus et al. (1991) and Zeger et al.
 (1988) provided approximate relationships between the two types of estimates for various models.

 3.3 Example

 For Table I we now consider the model

 logit[yk(x; i)] = ui + a1k + l1xi + .2X2 + f3X1X2, k = 1, 2, 3,
 with (xl, x2) defined as in Section 2.4. Table 2 shows results for this model and the simpler one
 without interaction, based on using adaptive Gauss-Hermite quadrature with 30 quadrature points.
 Results are qualitatively similar to the marginal model, but estimates and standard errors are on
 the order of 50% larger. This reflects the relatively large variance component (a = 1.85 for the

 no-interaction model and 9- = 1.90 for the model permitting interaction) and the consequent strong
 association between the responses at the two occasions.

 4 Other Approaches

 The previous two sections have focused on estimating marginal and random effects models for
 clustered ordinal data within a traditional frequentist structure and assuming normality for random
 effects. This section presents other approaches for estimation in models for clustered ordinal data.

 4.1 Bayesian Modeling

 Bayesian methods have gained increasing popularity in the last decade, in part due to the devel-
 opment of computational algorithms such as the Gibbs sampler, and more generally Markov Chain
 Monte Carlo (MCMC). One of the first papers to illustrate the application of MCMC techniques for
 ordinal data was written by Albert & Chib (1993). This paper focused on models for independent
 ordinal responses using a family of t-distributions to generate the link function. One can approximate
 the cumulative probit and logit links with certain settings. Posterior calculations were then imple-
 mented under a diffuse normal prior distribution for the regression coefficients /3 and a uniform prior

 for the threshold cut-points ok. The ideas contained in this paper have subsequently been generalized
 to models that allow for clustering in the ordinal measurements.

 Tan, Qu, Mascha & Schubert (1999) described a Bayesian hierarchical model for modeling the
 performance of a group of anaesthesiology residents on oral practice examinations (OPEs). The OPE
 outcome was an ordinal test score consisting of four categories ("Definite Not Pass", "Probable Not
 Pass", "Probable Pass", "Definite Pass") which was determined by two board certified anaesthesi-

 ologists randomly selected from a pool of 12 experts. Furthermore, in order to assess the validity
 of the OPE, residents were required to take multiple examinations. The authors used a proportional
 odds model for the analysis, while accounting for the correlation within residents and raters through
 the use of a two-dimensional random effect vector. Their preference for this cluster-specific strategy
 was motivated by their focus on accurately estimating the correlation parameters. Johnson (1996)
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 described a similar model for studying inter-rater reliability in situations where the repeated ordinal
 measurements are ratings of items by multiple raters. His approach differs from that of Tan et al.
 (1999) in the choice of link function (a probit link was used primarily for computational conve-
 nience) and by allowing the category cut-offs ak to be specific to each rater. (This idea has previously
 been utilized by Farewell (1982) in a frequentist context with a cumulative complementary log-log
 link function in order to allow for variation in the values regarded as category boundaries on an
 underlying scale.) More recently, Chen (1998) and Chen & Shao (1999) have proposed extensions
 of these models to cases where the correlated outcomes may be a combination of binary and ordinal
 measurements.

 We will now describe the basic ingredients of a Bayesian treatment for modeling clustered ordinal

 data. As with the classical frequentist approach, the cumulative probability yk(xij; i) is modeled
 conditionally on a cluster-specific random effect ui according to the specification on the right-hand-

 side of (4). This formulation is typically completed by assuming that {ui } arise from a N(O, E)
 distribution, although other distributions may be easily accommodated. The remaining stages of

 the model specify prior distributions on the regression coefficients 3, the cut-points ak's and the
 components of variance in E. Chen (1998) described a procedure for constructing a prior when
 historical information is available. However, in the absence of such information, the usual strategy is
 to employ "non-informative" prior distributions. The choices suggested by the authors above include
 a uniform or diffuse normal prior for P and the ak 's, and an inverted Wishart distribution (or inverted

 gamma for scalar variances) for E. The hyperparameters of these distributions are then modeled
 using uniform distributions (e.g., Johnson (1996)), or more typically seemingly innocuous values
 are chosen for them.

 The main advantage offered by these priors is computational, as they allow for particularly straight-
 forward MCMC implementation using software such as BUGS (Spiegelhalter, Thomas, Best & Gilks,
 1996). However, there is no sound theoretical basis for these choices, and in fact recent research for

 binary data models shows that such priors may actually lead to badly behaved posterior distributions,
 particularly for E (Natarajan & Kass, 2000). Hence an important area for future research appears to
 be the development of alternate non-informative priors in hierarchical models for clustered ordinal
 data. Two ideas that may prove fruitful in this context are the approximate uniform shrinkage prior
 proposed by Natarajan & Kass (2000) for generalized linear mixed models, and the conditional
 means prior suggested by Bedrick, Christensen & Johnson (1996) for generalized linear models.
 Although these prior distributions are conceptually different, they are similar in that both are induced

 by prior distributions placed on transformation of the parameters. In the former, the reparameteriza-

 tion corresponds to the weight given to the prior mean of ui in its posterior update, while in the latter

 it is the cumulative probability of the categories. The benefits of working with such transformations

 are two-fold. Firstly, the transformed scale is often more meaningful from the perspective of prior
 specification. Secondly, the priors on the transformed scale are themselves proper (i.e., integrate to
 a finite number) and hence ensure propriety of the resulting posterior distributions.

 The primary advantage of a Bayesian approach over the classical viewpoint is that one does not
 need to rely on asymptotic arguments in order to make inferences, which can be beneficial when
 the sample sizes are small. Further, since Bayesian computations typically involve generation of
 samples from the posterior distribution, rather than the high-dimensional maximization often re-
 quired for maximum likelihood, the Bayesian approach is often less awkward from a computational
 perspective. Thus, we believe that the development and dissemination of Bayesian methodology for
 this class of models should be an important direction for future work.
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 4.2 Semi-parametric Random Effects Modeling

 In the random effects models discussed in Section 3, advantages of assuming a normal distribution
 for the random effects include permitting a variety of covariance structures for them and connec-
 tions with Gaussian mixed models. However, the normality assumption can rarely be checked very
 carefully. An attractive alternative that avoids this parametric assumption is to assume a mixing
 distribution of unspecified form for the random effect. Aitkin (1999) discussed this approach for
 binary data. One assumes a discrete distribution with unknown support size, mass points, and prob-
 abilities. Joint estimation of the fixed effects parameters and the discrete mixing distribution can be

 implemented with an EM algorithm. Hartzel et al. (2001) utilized this approach for summarizing
 heterogeneity among centers in ordinal odds ratios describing results of clinical trials.

 Inference with the semi-parametric approach presents complications and suggests some interest-
 ing research problems. The complications are partly due to the unknown number of mass points for
 the mixing distribution. This number of parameters describing the mixing distribution may be dif-
 ferent for two models, for instance under null and alternative hypotheses about fixed effects. Hence,
 the dimension of the parameter vector is also unknown for a given model or a model comparison.
 Similarly, work is needed on developing inferences about the mixing distribution. For instance, one
 might want to compare the heterogeneity model to one not containing the random effect, essentially

 testing that the variance component equals 0. This entails testing that the masses are on the boundary

 of the parameter space and precludes the ordinary use of the likelihood-ratio test. Another compli-
 cation that needs addressing is that the estimated mixing distribution can have positive probability at

 -0oo, particularly when all observations in some clusters have the same response. This can influence
 standard error estimates obtained through inverting the observed information matrix.

 A traditional nonparametric way to handle cluster-specific terms in logit models for binary re-
 sponse data is conditional maximum likelihood. With this approach, one treats those terms as fixed

 nuisance parameters rather than random effects and eliminates them from the likelihood by condi-
 tioning on their sufficient statistics. Examples of such methods include Rasch models (Rasch, 1961)
 for item response modeling and logistic regression for case-control studies (Breslow & Day, 1980).
 The conditional ML approach has not received nearly as much attention for ordinal responses. It is
 limited to models for which sufficient statistics exist, which are models using canonical link functions
 such as the logit for binomial response data. It is also limited to within-cluster effects rather than

 between-cluster effects, since the distribution relating to the latter effects disappears in the condi-
 tioning process. For multinomial responses, the canonical link functions are the baseline-category
 logits in which each logit pairs a particular category with a baseline, or logits that are equivalent
 to these. For ordinal response data, the (c - 1) adjacent-category logits are an equivalent set. For
 examples of the use of this approach for within-subject effects in multinomial models, see Conaway
 (1989). The conditional approach is not relevant for cumulative logit models, because of the lack of
 reduced sufficient statistics for those logits.

 For binary responses with the Rasch item-response model, Tjur (1982) showed that the conditional
 ML approach provides identical estimates as obtained by fitting a certain loglinear model for the
 cross classification of the repeated responses. Specifically, when each cluster has the same number of

 responses n and there are no covariates, the conditional ML estimates comparing the item parameters
 are determined by ordinary ML estimates of main effect parameters in the quasi-symmetry model
 (Bishop, Fienberg & Holland, 1975) for the 2n contingency table that cross classifies the responses.
 Analogous results apply for an adjacent-categories logit model. Conditional ML estimates for the
 model that expresses this logit as an additive function of a subject effect and an item parameter are
 related to ML estimates for a corresponding quasi-symmetric loglinear model of ordinal form hav-
 ing quantitative main effects with fixed scores for the ordered response categories (Agresti, 1993a,
 1993b). Applications of ordinal generalized Rasch models and corresponding loglinear models in-
 clude cross-over studies and randomized clinical trials with matched-pairs responses (Kenward &
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 Jones, 1991; Agresti, 1993b).
 In the case of matched pairs without covariates, simple special cases occur for semi-parametric

 modeling of ordinal repeated measures. Denote cell counts in a square contingency table for outcome

 k at the first response and k' at the second by {nkk' }, and denote their expected values by ttkk' }. The
 cumulative logit model (3) for a square table simplifies to

 logit [yk(Xij; i)] = ui + k + Xijp, k = 1 ...., c - 1, j = 1, 2,
 where xil = 0 and xi2 = 1. Simple estimates then exist (McCullagh, 1977; Agresti & Lang, 1993a)
 of the effect P comparing the margins. One such estimate, based on summarizing the conditional
 ML estimates from the (c - 1) possible collapsings of the response, is

 = log [ (k' - k)nkk' (k - k')nkk'

 For a corresponding adjacent-categories logit model

 log [rkk(xij; i)/ rk+l(xXij; i)] = ui + Ok + xij

 with a cluster-specific intercept and shift f for each subject between margin 2 and margin 1, the
 conditional ML estimate of P is identical to the ordinary ML estimate for logit model

 log(ftkk'/Lk',k) = fP(k' - k),
 fitted treating the c(c - 1)/2 pairs (nkk', nk'k) of cell counts as independent binomial variates (Agresti,

 1993a, 1993b). Goodman (1979, 1994) discussed other models pertaining to matched pairs with an
 ordinal response, and S. Tomizawa has written numerous papers (e.g., Tomizawa, 1995) on this topic.

 The approach of using an arbitrary discrete mixing distribution instead of a normal distribution has

 much in common with traditional latent class and latent variable modeling. Again, for this approach
 the main emphasis is on describing within-subject effects rather than effects of explanatory variables
 on the clustered responses. For the ordinal response case, see for example Samejima (1969); Rost
 (1985); Masters (1985); Croon (1990); Croon (1993), and Heinen (1993).

 4.3 Alternative Model Forms

 We have emphasized models using the logit link. Results with this link function are very similar
 to those using a probit link. That link has not been as common in the statistics literature, but it arises

 naturally with cumulative probabilities from latent models assuming underlying normality (Harville
 & Mee, 1984; McCullagh, 1980). The complementary log-log and log-log links are natural ones for
 underlying distributions that are extremely skewed, such as extreme value (Crouchley, 1995; Ten
 Have, 1996).

 Many researchers have difficulty interpreting effects, such as odds ratios, resulting from non-
 linear link functions. For purposes of conveying information, it may be useful in some applications
 to provide results in a manner more widely understood, such as with means. For instance, having
 fitted an ordinal model, one could report estimated means for its fitted distributions or for the sample

 distributions based on a reasonable scoring of response categories. For Table 1 with response scores
 {(10, 25, 45, 75} for time to falling asleep, for instance, the initial means were 50.0 for the active drug
 group and 50.3 for the placebo, and the follow-up means were 28.8 for the active drug group and
 37.3 for the placebo.

 In principle, when one is willing to score the ordinal categories, one could model the marginal
 means and report effects relating to differences of means in the context of such models. Rather than

 use ordinary regression, one should treat the responses as multinomial rather than normal. Koch et

 al. (1977) did this using weighted least squares methods. This approach breaks down for sparse data
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 or small marginal counts, but one could use maximum likelihood subject to whatever constraints
 may be natural to impose on the marginal distributions.

 5 Applications and Areas for Future Research

 This section describes some recent applications of modeling clustered ordered categorical data. It
 also discusses possible problems for future work.

 5.1 Receiver Operating Characteristic (ROC) Curves

 The Receiver Operating Characteristic (ROC) curve is a graphical technique for evaluating the
 accuracy of diagnostic tests in discriminating between two populations of individuals, typically
 labelled "diseased" and "non-diseased". The ROC curve plots the false positive rate (proportion of
 non-diseased individuals classified as diseased) on the x-axis versus the true positive rate (proportion
 of diseased individuals classified as diseased) on the y-axis. A typical ROC curve is concave in shape
 with each point representing a false-positive and true-positive pair calculated using a particular
 threshold to discriminate between diseased and non-diseased individuals. Diagnostic tests having
 area under the ROC curve close to 1.0 are preferred, as such a value can be obtained only when the
 true positive rate of the test is high even for small false positive rates. Hence, such tests have the
 desirable property that they correctly diagnose diseased subjects a large proportion of the time, while
 maintaining a small probability of misclassifying non-diseased individuals.

 Obtaining model-based estimates of the ROC curve has been an active area of research in the
 diagnostic radiology literature. See, for instance, Toledano & Gatsonis (1995), Toledano & Gatsonis
 (1996), and references therein. The diagnostic test results in these applications are recorded on an
 ordinal scale depicting an expert rater's level of suspicion regarding the presence of disease. To
 explain the connection between ROC curves and ordinal regression models, we first discuss the case

 of independent observations. In this situation, a single ordinal rating is observed for each of several
 subjects. The measurement on the ith individual is assumed to arise from a cumulative probit link
 model:

 )-I [Yk (X1i, X2i; i)] = k - Xl /, (5) exp (X2 6)'

 where 4-' is the inverse cumulative distribution function of the standard normal density, and x1i and

 X2i are covariate vectors associated with the location parameter /3 and scale parameter 6 respectively.
 This model is a member of a general class of ordinal models proposed by McCullagh (1980), with
 links including the probit and logit. The denominator accounts for the possibility that the dispersion
 of the response varies according to covariates.

 For simplicity, here, suppose the true disease status is the only covariate in the location and scale

 pieces of the model, with xli = 2i = 0 for non-diseased, xi = x2i = 1 for diseased. Suppose that
 higher categories for the ordinal rating denote greater severity of disease. Then, when the cutpoint to

 distinguish disease status follows category k of the ordinal response, the false positive rate is 1 - t (ak)

 and the true positive rate is 1 - c[exp(-8)(ak - f)]. The ROC curve is a plot of these rates for
 a varying between (-oo, x0). The area under this curve equals [ exp([)/ exp() (+exp(-25))], or

 simply , (6//2) when there is no dispersion effect. Derivations similar to this yield ROC curves
 for the various covariate strata when (5) includes covariates in addition to the true disease status. For
 details, see Tosteson & Begg (1988).

 In practice, study protocols typically require the re-reading of scans taken on a particular subject
 by multiple raters, thereby leading to potential correlations among the measurements taken on the
 same subject. Hence, the methods described in Sections 2 and 3 for clustered ordinal data have
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 found much use in this arena. The ordinal regression model in (5) can be extended to accommodate
 correlated observations. Toledano & Gatsonis (1996) considered a marginal model approach in which
 the cumulative probability of the kth category for the jth rating occasion on subject i depends on

 cut-points akj, location parameters 3j, scale parameters bj and covariates x1ij and X2ij through
 equation (5). The occasion-specific parameters determine a separate ROC curve at each rating
 occasion; for instance, when true disease status is the only covariate, the ROC curve at occasion j

 plots (1 - P(a), 1 - ([exp(-3j)(a - ij)]) for a in (-oo, oo). A comparison of the areas beneath
 pairs of curves is of primary interest in this context.

 An estimate of the ROC curves and the areas beneath them is obtained by substituting estimates
 of 3j and 6j, which can be calculated by the GEE method. If the correlations between pairs of
 ratings on a subject are nuisance parameters, then one might implement the GEE method using a
 working assumption of independence. However, if these correlations are themselves of interest or

 if gains in efficiency are desired, then Toledano & Gatsonis (1996) suggested modeling the joint
 ratings with a bivariate normal distribution. To account for the various dependencies induced by a
 typical radiological study design, they posit three types of correlation: one to model correlations on

 the same case (or subject), a second to model correlations on a particular case that also share the
 same diagnostic modality, and a third to model the correlation on a particular case that also share

 the same reader. These correlation parameters may themselves depend on covariates Xi3 using a link
 function such as the logit. The correlation parameters can also be estimated by the GEE method.
 Toledano & Gatsonis (1999) and Ishwaran & Gatsonis (2000) have proposed modifications of the

 above methodology to accommodate missing data and cluster-specific formulations. One limitation

 of all these methods, and indeed cumulative link models in general, is that the regression parameters
 pertain to the distribution of the latent degree of suspicion variable rather than to the covariate effects

 on the observed data. Hence, Pepe (1997) suggested an alternative approach that directly models the
 covariate effects on the ROC curve. In a recent survey article on ROC methodology, Pepe (2000)
 also noted that future challenges include developing methods for situations where the true disease
 status may be imprecisely measured, or may be time-varying or is vector valued.

 5.2 Missing Data in Longitudinal Studies

 Missing data occurs in longitudinal studies when one or more of the responses on a subject are
 unavailable. If the missing responses are pre-planned by design, then the data are typically analyzed
 using standard methods for unbalanced data. The analysis of all the available data from unbalanced

 designs can be mathematically complicated, but is perfectly valid in that consistent estimates may
 be obtained without any regard to the missing data mechanism. However, this is no longer true when
 the missing responses are not pre-planned. In this situation, the mechanism underlying the missing
 responses becomes important and focusing on the observed data alone can result in biased estimates.

 Little & Rubin (1987) distinguished among three possible missing data mechanisms. Suppose
 Y(o) denotes the observed responses, Y(m) the missing responses and D is a missing data indicator.
 Then, they classified a missing data process as completely random if D is statistically independent of

 both Y(o) and Y(m) and random if it is independent only of Y(m). The process is termed informative
 otherwise. They demonstrated that a likelihood-based analysis using the observed responses Y(o)
 is valid only when the missing data process is either completely random or random, and when

 the distributions of Y(o) and D are separately parameterized. For this reason completely random
 and random missing processes are often termed as ignorable. However, random processes are not
 necessarily ignorable when non-likelihood-based methods, such as GEE are used (Mark & Gail,
 1994). Kenward et al. (1994) provided an empirical illustration of the breakdown in the GEE
 estimates for data from a longitudinal psychiatric study in which the missingness pattern is not
 completely random. Hence, developing models for the joint distribution of the responses and the
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 missing data mechanism has been an active area of research in recent years.
 The models for handling missingness differ primarily in the manner in which the joint distribution

 is factored. In selection models, the joint distribution of Y(o), Y(m) and D is factored as

 f (y(o), y(m), DIx) = f (DIY(?), y(m), x) f (Y(o), y(m)Ix)

 where f (.) denotes a generic probability density (mass) function and x is a vector of covariates.
 Pattern mixture models are based on the alternative factorization:

 f (y(o), y(m), DIx) = f (Y(o), Y(m)ID, x) f (Dlx).

 When the missing data mechanism is ignorable, selection models seem preferable because they
 then do not require modeling the missing data mechanism (Little, Raghunathan & Tang, 2000).
 Both models accommodate non-ignorable missing data mechanisms, but in different ways. The
 selection model achieves this more directly by requiring fairly detailed specification of the drop-out

 distribution, while pattern-mixture models do so indirectly by placing restrictions on the distribution
 of the responses depending on the drop-out pattern. Typically little is known about the missing-data
 mechanism, so a sensitivity study is necessary to check how results depend on that specification.

 We will now review some of the modeling approaches that have been suggested for longitudinal
 ordinal data with missing outcomes. Molenberghs, Kenward & Lesaffre (1997) considered the
 problem of incorporating informative drop-outs in a longitudinal study with T common times of
 measurement for each subject on an ordinal response. At each time, a vector of covariates xi and a
 dropout indicator D (= 2, - - - , T + 1) are also measured, where D = T + 1 indicates no drop-out.
 They used a selection model factorization, modeling the marginal distribution of the hypothetical
 complete data by a multivariate model based on describing patterns of association for pairs of
 variables using global odds ratios, as in Molenberghs & Lesaffre (1994). The conditional distribution
 of the drop-out variable is assumed to have the form:

 Pr (D = dly(),y(m,x) = pd(HdY ), ),

 where Hd denotes the observed history through time td-1, yd() is the unobserved value at time td,
 and 4 is a set of unknown parameters. They suggest modeling the logit of pd as a linear function
 of Hd, ym), and covariates chosen from xi. They maximized the resulting likelihood function using
 the EM algorithm.

 An alternate approach was proposed by Cowles, Carlin & Connett (1996) for modeling longitudinal
 compliance data. Their model evolved from a study of the effectiveness of an inhaled bronchodilator

 in smoking cessation. The observed data at each visit are (ylij, y2ij, Y3ij), where ylij is an ordinal
 variable with three categories signifying the participant's level of compliance with the study protocol

 and Y2ij and Y3ij are additional continuous measures of compliance. The values of y2ij and y3ij may
 be unobservable, depending on the value of ylij, and hence the problem becomes one of making
 inferences in the presence of intermittent missingness. The variable Ylij plays the same role as the
 drop-out indicator D in the previous paragraph. Cowles et al. (1996) proposed a pattern mixture model

 that factors the joint distribution of the data into the marginal distribution of ylij and the distribution
 of {Y2ij, Y3ij } conditional on Ylij. They used a cumulative probit model for the first distribution and

 a tobit model for the second, while incorporating the correlations among (ylij, Y2ij, Y3ij) through
 patient-specific random effects. They estimated parameters within a Bayesian framework using
 diffuse normal prior distributions for the regression coefficients and inverse Wishart distributions for
 the variance components.

 So far, we have discussed missingness in the responses. In some cases, however, information may
 be missing in a key covariate rather than the responses. Toledano & Gatsonis (1999) encountered this

 in a study comparing two modalities for the staging of lung cancer. The true disease status (presence
 or absence of bronchial invasion) was missing for several subjects for reasons potentially related to
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 their outcome measurements. To avoid biases that could result from a non-ignorable missing data
 mechanism, Toledano & Gatsonis (1999) suggested modifying the GEE equations by weighting
 the contribution of the ith subject by Di/li, where Di denotes whether the covariate is observed
 (Di = 1) or missing (Di = 0) and 7ri = Pr (Di = 1). Hence, only the complete cases contribute to
 the GEE equations, but subjects who are less likely to have an observed covariate value are accorded
 more weight. The probability 7ri is then linked with covariates and the observed outcomes through
 a link function. The parameters of this relationship are also estimated using a set of generalized
 estimating equations.

 The literature on the behavior of test statistics in the presence of incomplete data is relatively sparse.

 Lipsitz & Fitzmaurice (1996) derived the score test of independence for two-way contingency tables
 and showed that the test statistic continues to have an asymptotic chi-squared null distribution.
 Methods for inference in the presence of missingness is an area that is likely to see considerable
 research in future years. However, as pointed out by Molenberghs et al. (1997), such methods
 should be used with caution because the assumptions regarding the missing data mechanism are
 unexaminable and hence the inferences may not be robust. They suggested regarding any such
 modeling as merely a component of a sensitivity analysis.

 5.3 Modeling Agreement

 When the repeated measurement takes the form of ratings by several observers, agreement between
 pairs of observers or between each observer and a gold standard is of interest. For observations on a

 sample of cases by a pair of observers, one can summarize their ratings in a square contingency table
 with the same categories in each dimension. Traditionally, it has been popular to describe agreement
 on an ordinal scale using weighted kappa (Fleiss, Cohen & Everitt, 1969). This is a summary measure
 that compares the frequency of cases of agreement to the frequency expected by chance if the table

 satisfied the model of independence, where a distance metric between pairs of categories quantifies
 the extent of disagreement.

 Recent work has focused on the modeling of interrater agreement and handling more than two
 observers. A variety of modeling strategies have been suggested. These include latent trait models
 (Johnson, 1996; Uebersax & Grove, 1993), quasi-symmetric loglinear models and related association

 models and latent class models (Agresti, 1988; Becker, 1989; Becker, 1990; Becker & Agresti, 1992;
 Agresti & Lang, 1993b), random effects (Williamson & Manatunga, 1997), and the area under a
 ROC curve (Toledano & Gatsonis, 1996).

 We illustrate a simple loglinear approach for the case of two observers, A and B. For a sample
 of cases, let yij denote the number of cases rated in category i by A and in category j by B, and
 let A ij = E(yij). Let ul < u2 < ... < u, be scores assigned to the ordered response categories. A
 useful loglinear model for ordinal contingency tables is the model of linear-by-linear association,

 log plij = +)' + iA + fuiuj.
 The model of independence is the special case with fi = 0. This model often fits cross classifications
 of ordinal variables well, but when both dimensions have the same categories (as in observer
 agreement studies) typically more cases occur on the main diagonal than this model predicts. A
 model that allows for such extra agreement is

 log /ij = ) +f A + h.j + Buiuj + 1(i = j),
 where I() is an indicator that equals 1 when i = j and 0 otherwise. The agreement may be described
 by odds ratios such as

 iuiiij= e-xp( (u- uj) 2+8}. Ikij tji
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 Hence, the level of agreement depends on a general association component (with size depending on
 #), the distance between the categories, and the parameter 8 describing extra agreement on the main
 diagonal.

 A paper (Cook & Farewell, 1995) for binary responses uses a conditioning argument for a two-
 stage agreement analysis in which the first stage focuses on cluster-specific agreement and the second

 stage on marginal agreement. This interesting analysis could be extended to ordinal responses. Also,
 current approaches typically treat the observers as a fixed set, whereas in most applications it is more

 natural to treat them as a sample. A cumulative logit model with random effects both for subjects
 rated and for the observers may be promising for many applications.

 5.4 Comparing Marginal Distributions of Contingency Tables

 In repeated measurement studies, effects of interest may be either between-subject or within-
 subject. For categorical responses, methods for the within-subject comparison of marginal distribu-
 tions of contingency tables have a long history (Bishop et al., 1975). Two model-based methods have
 traditionally been used. One is the likelihood-ratio test for the marginal model, based on compar-
 ing the maximized log likelihood under the assumption of marginal homogeneity and without that
 assumption. The other is based on comparing loglinear models of symmetry and quasi symmetry;
 assuming quasi symmetry, marginal homogeneity is equivalent to symmetry. Examples presented
 in the literature tend to be simple, with few dimensions and usually even without incorporating
 covariates, since both approaches have computational difficulties as the table that cross classifies
 the responses gets more sparse. Yet another approach to testing, computationally simpler but not
 model-based so not yielding estimated effects under the alternative, can be based on a randomization
 argument (Landis et al., 1988) or an extension of the Cochran-Mantel-Haenszel test to ordered
 response categories (Landis, Heyman & Koch, 1978).

 Landis & Koch (1977) gave an example in which seven pathologists made diagnoses about car-
 cinoma of the uterine cervix, with ratings on a five-point ordinal scale ranging from negative to
 invasive carcinoma, for a sample of 118 cases. Consider testing the hypothesis of marginal ho-
 mogeneity, meaning that the seven pathologists had the same distribution for the response scale.
 Although such a problem seems simple, computational problems result from having a contingency
 table with 57 = 78,125 cells; that is, the model of marginal homogeneity applies to the one-way
 margins but maximization of the likelihood requires using all 78,125 cells.

 The more recent literature suggests two approaches that are computationally simpler than the
 likelihood-based approach, with or without loglinear models: The GEE marginal model approach
 described in Section 2 and the random effects cluster-specific model approach described in Section
 3. We illustrate for the Landis & Koch (1977) example, using a cumulative logit model. Let yk(j; i)
 denote the cumulative probability in category k for the rating of subject i by pathologist j. The
 marginal model allowing location shifts among the margins for the seven pathologists is

 logit [Yk(j; i)] = ak j+ ij.

 For identifiability, we use the constraint 67 = 0. The corresponding random intercept model for the
 cluster-specific approach is

 logit [yk(j; i)] = ui + ak + 8j,

 where {ui) } are iid from a N(0, oa) distribution. ML is less awkward with this model than with the
 marginal one, as it applies to a 7 x 5 x 118 table, namely a 7 x 5 table giving the response for each
 of the seven pathologists (one observation for each row) for each of the 118 cases. Assuming either

 model, marginal homogeneity is the special case f1 = ,2 = ... = 7.
 Table 3 shows estimates and standard errors of the estimated {/j } for the two models. The estimates
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 using GEE for the marginal model use the independence working correlation, so they are the same as

 the ML estimates one would obtain by treating the 7 responses on each subject as independent. The
 estimates using the random effects model tend to be much larger in absolute value. This reflects a
 strong within-case correlation, summarized by &^ = 3.85 for the normal random effects distribution.

 The GEE Wald statistic for testing marginal homogeneity (,1 = P2 = ... = 7) equals 114.2,
 based on df = 6. This is similar to results obtained in a related approach by Agresti, Lipsitz & Lang

 (1992), who used the "pseudo ML" {fij} estimates based on a working independence structure and
 obtained their covariance matrix using the jackknife; they reported a Wald statistic value of 113.6,
 with df = 6. The random effects approach is likelihood-based, so one can construct a likelihood-ratio
 test of marginal homogeneity. The test statistic equals 253.6, with df = 6.

 Table 3

 Results of fitting cumulative logit models (with

 standard errors in parentheses) to 57 table from
 Landis & Koch (1977) cross classifying seven
 observers on a 5-category ordinal scale.

 Observer Random

 Effect GEE Effects

 A -0.451 (.108) -1.201 (.300)

 B -0.391 (.093) -0.919 (.299)

 C 0.319 (.118) 0.558 (.301)

 D 0.632 (.105) 1.545 (.313)

 E -0.491 (.098) -1.379 (.300)

 F 1.252 (.161) 2.907 (.344)

 Note: Estimate set equal to 0 for observer G. Random effects fit used PROC NLMIXED
 in SAS, based on adaptive Gauss-Hermite quadrature with 20 quadrature points.

 5.5 Survival Modeling of Interval-censored Data

 An application that is tangentially related to the analysis of clustered ordinal response data is
 survival analysis with interval censoring. This is a type of censoring for time-to-event data in which
 one observes only a time interval in which a response occurred rather than the exact time. For
 instance, in a series of clinical examinations, the time of an event is known only to fall between the

 examination times preceding and subsequent to the event. Thus, the ordered categories refer to a
 discretized version of an inherently continuous response.

 Here, repeated measurement may occur on each subject, but ultimately the response is simply
 the interval in which the event occurred. So, the cluster of observations for a subject reduces to a
 univariate measure that is the interval censoring of the time-to-event variable. This application leads
 naturally to a proportional odds type of model. Let Ti be the unobserved event time for subject i.
 Then the model has the form

 logit [P(Ti < t)] = a(t) - xi' x ,

 where () is an unspecified baseline function that is an infinite-dimensional nuisance parameter and
 / describes the effects of interest. For details, see Rossini & Tsiatis (1996), Rabinowitz, Betensky
 & Tsiatis (2000), and Xie, Simpson & Carroll (2000). For use of a proportional hazards sort of
 model with an ordinal response, for which the link function is the complementary log-log link, see
 McCullagh (1980) and Farewell (1982).
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 5.6 Paired Preference Modeling

 The Bradley-Terry model describes outcomes of pairwise competitions of a set of items (e.g, pro
 players in tennis matches, brands of a type of wine in taste comparisons). Each item has a parameter,
 and the logit of the probability of preference of item i over j equals the difference between the
 parameters for those items. This model extends to response scales on which there is an ordering
 for the evaluation. For instance, one wine might be rated as much better, slightly better, equal,
 slightly worse, or much worse than another wine. Direct applications apply of ordinal models using
 cumulative logits or adjacent-categories logits (Agresti, 1992; Fahrmeir & Tutz, 1994; Bockenholt
 & Dillon, 1997).

 In this type of application, clustering and subsequent dependence can arise from repeated com-
 parisons by the same subjects. For instance, a given rater may compare several pairs of wines. For
 future work, a random effects approach seems natural here to help account for the various types of
 dependence that can occur in such studies and to account for the raters typically being a sample of
 the possible ones.

 5.7 Interface with Rank-based Methods

 Traditional nonparametric methods deal with ranks of observations. Methods for ordered cat-
 egorical data may be regarded as dealing with a crude type of ranking in which the categorical
 response corresponds to a large number of ties. As the number of categories increase and the data
 are "more continuous", there is a natural connection of rank-based methods and methods for ordered

 categories. There is scope for exploring these connections with some of the recent work done in
 extending rank-based methods to repeated measurement and other forms of clustered data. So far the

 main emphasis of the rank-based literature has been on hypothesis testing. See, for instance, Akritas
 & Brunner (1997) and Brunner, Munzel & Puri (1999).

 5.8 Other Applications

 The literature on methods for clustered ordinal data continues to grow at a rapid rate. For a variety

 of other methods and applications, see Catalano (1997), Gange et al. (1995), Gansky et al. (1994),
 Gibbons et al. (1994), Glynn & Rosner (1994), Kenward & Jones (1994), Lesaffre et al. (1994,
 1996), Lindsey et al. (1997), Qu & Tan (1998), Qu et al. (1995), Wang (1996), Williams et al.
 (1996), Williamson & Kim (1996), and Williamson & Lee (1996).

 6 Software

 New methods are rarely used in practice unless accompanied by user-friendly software. Of partic-
 ular benefit would be a program that can handle a variety of strategies for multivariate ordinal logit

 models, including ML fitting of marginal models, GEE methods, and mixed models, all for a variety
 of link functions. Even with binary data, such goals currently require a variety of software, and
 more basic software needs exist that are not nearly as ambitious. For instance, some major statistical
 packages (e.g., SPSS) do not yet contain procedures for fitting univariate cumulative logit models or
 other models for multinomial responses.

 Currently, SAS offers the greatest scope of methods for repeated categorical data (see the SAS/STAT
 User's Guide online manual at their website). Starting in Version 7, PROC GENMOD can fit cu-
 mulative link models and can perform GEE analyses (with independence working correlation) for
 marginal models using that family of links, including cumulative logit and probit. Table 4 illustrates
 this with the cumulative logit link for the marginal model fitted to Table 1. There is, however, no
 capability of ML fitting of marginal models. For cumulative link models containing random effects,
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 one can use PROC NLMIXED (starting in Version 7). This uses adaptive Gauss-Hermite quadrature
 for integration with respect to the random effects distribution to determine the likelihood function.

 NLMIXED is not naturally designed for multinomial responses, but one can use it for such models
 by specifying the form of the likelihood. Table 4 illustrates for the cumulative logit link. See Hartzel
 et al. (2001), Agresti, Booth, Hobert & Caffo (2000), and the SAS website mentioned above for
 other examples.

 Table 4

 Example of SAS code (Version 8) for using PROC GENMOD and PROC NLMIXED to fit cumulative logit marginal and

 random effects models allowing interaction to Table 1.

 data example;
 input case treat occas outcome;
 datalines; ** two lines for each subject, as illustrated;

 1 101

 1 111

 2 101

 2 111

 3 101

 3 111

 239 0 0 4

 239 0 1 4

 proc genmod data=example;
 class case;
 model outcome = treat occas treat*occas /

 dist=multinomial link=cumlogit;
 repeated subject=case / type=indep corrw;

 run;

 proc nlmixed data=example qpoints=40;
 bounds i2>0, i3>0; ** ensures intercepts have proper ordering **;
 etal = il + treat*betal + occas*beta2 + treat*occas*beta3 + u;
 eta2 = il+i2 + treat*betal + occas*beta2 + treat*occas*beta3 + u;
 eta3 = il+i2+i3 + treat*betal + occas*beta2 + treat*occas*beta3 + u;

 pl = 1/(1 + exp(-etal)); ** probability in category 1 **;
 p2 = 1/(1 + exp(-eta2)) - 1/(1 + exp(-etal));
 p3 = 1/(1 + exp(-eta3)) - 1/(1 + exp(-eta2));
 p4 = 1 - 1/(1 + exp(-eta3));
 if (outcome=1) then yl=1; else yl=0;

 if (outcome=2) then y2=1; else y2=0;
 if (outcome=3) then y3=l; else y3=0;
 if (outcome=4) then y4=1; else y4=0;

 11= yl*log(pl) + y2*log(p2) + y3*log(p3) + y4*log(p4);
 model outcome~ general(ll); ** Define general log likelihood **;
 estimate 'alpha2' il+i2;
 estimate 'alpha3' il+i2+i3;
 random u ~ normal(0, su*su) subject=case;

 run;
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 A FORTRAN program (MIXOR) is also available for cumulative logit models with random effects
 (Hedeker & Gibbons, 1996). It uses Gauss-Hermite numerical integration, but standard errors are
 based on expected information whereas NLMIXED uses observed information.

 The approach of ML fitting of marginal models using constrained methods of maximization is
 available in a S-plus function available from Prof. J. B. Lang (Statistics Dept., Univ. of Iowa). The ML
 marginal fitting approach based on maximization with respect to joint probabilities expressed in terms

 of the marginal model parameters and an association model is available in software called MAREG.
 It is designed for either ML or GEE fitting of marginal models for ordinal responses (Heumann,
 1997). For details, see http://www.stat.uni-muenchen.de/- andreas/mareg/winmareg.html.

 The software package STATA has some random effects and GEE capability for modeling clustered
 ordinal categorical data, but we do not have any experience with these procedures. Perhaps surpris-
 ingly, there do not yet seem to be any generally available Splus or R functions for generalized linear
 mixed modeling or marginal modeling of ordinal response data. Splus does have GEE capability for
 binary data and other univariate distributions, but we are unaware of any functions for multinomial
 responses.
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 Resume

 Cet article passe en revue diverses strategies pour la mod6lisation de variables de reponse qualitatives et ordinales, quand
 les donnees presentent des phenomenes de grappes. II prolonge une etude similaire realisde pour les variables dichotomiques
 par Pendergast et al. (1996). Les mesures repet6es a plusieurs reprises pour chaque individu, par exemple dans les etudes
 longitudinales, constituent un cas particulier important. Il existe a present une variet6 beaucoup plus grande de modules et
 de methodes d'ajustement, que lors de la realisation d'une etude similaire pour les variables ordinales et repet6es il y a une
 dizaine d'annees (Agresti, 1989). I1 est mis particulierement l'accent sur deux types de modules, les modules marginaux
 pour lesquels on prend la moyenne des effets sur toutes les grappes pour des niveaux donnes des variables explicatives,
 et les modules par grappes pour lesquels les effets sont pris en compte au niveau de chaque grappe. Nous presentons les
 deux types de modules dans le cas de variables ordinales, brossons un panorama de la littdrature pour chacun des deux
 types, et discutons les relations entre eux. Puis nous resumons d'autres approches pour la mod6lisation et l'estimation de
 parametres, notamment une approche bayesienne. Nous discutons aussi des applications et des domaines qui devraient susciter
 de nouvelles recherches, par exemple les methodes de traitement des donnees manquantes ou d'evaluation de l'exactitude de
 tests. Enfin, nous considerons la disponibilit6 actuelle de logiciels pour mettre en oeuvre les methodes discuties dans cet article.

 Mots clds: Inference bayesienne; Modbles logit cumulatifs; Equations d'estimation gendralisees; Modeles logit; Modbles
 marginaux; Paires apparides; Donnees manquantes; Donnees ordinales; Risques proportionnels; Effets aleatoires; Mesures
 repetees; Tableaux de contingence.

 [Received July 2000, accepted February 2001]

This content downloaded from 128.227.198.185 on Wed, 27 May 2020 18:17:16 UTC
All use subject to https://about.jstor.org/terms


	Contents
	[345]
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371

	Issue Table of Contents
	International Statistical Review / Revue Internationale de Statistique, Vol. 69, No. 3 (Dec., 2001), pp. 345-504
	Volume Information
	Front Matter
	Modeling Clustered Ordered Categorical Data: A Survey [pp. 345-371]
	Modelling Overdispersion for Complex Survey Data [pp. 373-384]
	Idiot's Bayes: Not So Stupid after All? [pp. 385-398]
	Uses, Abuses and Misuses of Significance Tests in the Scientific Community: Won't the Bayesian Choice Be Unavoidable? [pp. 399-417]
	On Conformity Testing and the Use of Two Stage Procedures [pp. 419-432]
	The History of the Dirichlet and Liouville Distributions [pp. 433-446]
	Statistics by Gender: Measures to Reduce Gender Bias in Agricultural Surveys [pp. 447-460]
	Estimation Methods and Related Systems at Statistics Canada [pp. 461-485]
	Sampling and Estimation Issues for Annual and Sub-Annual Canadian Business Surveys [pp. 487-504]
	Back Matter



