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Summary. This article investigates the performance, in a frequentist sense, of Bayesian confidence intervals
(CIs) for the difference of proportions, relative risk, and odds ratio in 2 × 2 contingency tables. We consider
beta priors, logit-normal priors, and related correlated priors for the two binomial parameters. The goal
was to analyze whether certain settings for prior parameters tend to provide good coverage performance
regardless of the true association parameter values. For the relative risk and odds ratio, we recommend tail
intervals over highest posterior density (HPD) intervals, for invariance reasons. To protect against potentially
very poor coverage probabilities when the effect is large, it is best to use a diffuse prior, and we recommend
the Jeffreys prior. Otherwise, with relatively small samples, Bayesian CIs using more informative (even
uniform) priors tend to have poorer performance than the frequentist CIs based on inverting score tests,
which perform uniformly quite well for these parameters.
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1. Introduction
The methodology using the Bayesian paradigm has advanced
tremendously in the past decade. New computational meth-
ods such as Markov chain Monte Carlo (MCMC) make it eas-
ier to evaluate posterior distributions for model parameters.
However, Bayesian inference does not seem to be used much
yet in practice for basic inference in 2 × 2 contingency tables,
which are ubiquitous in biometric applications. For such data,
computations are not especially difficult and do not require
new methods.

Very little of the literature on Bayesian inference for 2 ×
2 contingency tables refers to interval estimation. One of the
authors of this article is preparing a survey paper on Bayesian
inference for contingency tables; of a few hundred papers on
this topic, only a handful (mentioned below) focus on interval
estimation of parameters for 2 × 2 tables. Some of the most
commonly cited articles (e.g., Good, 1956; Altham, 1969)
on Bayesian inference for contingency tables deal with point
estimation or significance testing and connections between
the Bayesian results and the results based on a frequentist
approach.

For instance, consider two independent samples, with Xi a
binomial bin(ni , pi ) variate, i = 1, 2. Altham (1969) discussed
inference for the odds ratio with a multinomial sample over
the four cells of a 2 × 2 table. In the context of comparing

parameters for two independent binomial samples, Altham’s
results correspond to testing of H0 : p1 ≤ p2 against p1 > p2 us-
ing independent beta(ai , bi ) priors for p1 and p2. She showed
that the posterior probability that p1 ≤ p2 equals the one-
sided P-value for Fisher’s exact test when one uses improper
prior distributions (a1, b1) = (1, 0) and (a2, b2) = (0, 1) fa-
voring the null. Howard (1998) showed that with independent
beta(0.5, 0.5) priors the posterior probability that p1 ≤ p2 ap-
proximately equals the one-sided P-value for the large-sample
z-test using pooled variance for testing H0 : p1 = p2 against
Ha : p1 > p2.

This article investigates the performance, in a frequentist
sense, of Bayesian confidence intervals (CIs) for three of the
most common measures used in biometrics—the difference of
proportions p1 − p2, the ratio p1/p2 (the “relative risk”), and
the odds ratio, [p1/(1 − p1)]/[p2/(1 − p2)]. In many applica-
tions, there are no obvious prior distributions to use for p1

and p2. The main goal of this article is to consider whether
certain prior distributions tend to work well regardless of the
true association parameter values. Hence, the corresponding
CIs might be “default” ones that software could report un-
less the user prefers to select particular prior distributions.
According to this criterion, our results show that it is best to
use highly diffuse priors, perhaps even more diffuse than the
uniform prior. In addition, we argue that CIs using the tail
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method are more sensible than using highest posterior density
(HPD) intervals. We have prepared software (R functions),
available at a website, for constructing tail-method intervals
with independent beta priors.

2. Prior Distributions for Binomial Probabilities
2.1 Beta Prior Distributions
The family of beta densities is conjugate for the binomial pa-
rameter and has received by far the most attention for this
problem. It provides a flexible family of priors, as prior pa-
rameters can be selected to give various shapes with various
degrees of skew. The beta priors with parameters a = b = 0.5,
1, 2.0 are symmetric about 0.5, with U shape, uniform, and
bell shape, and standard deviations 0.35, 0.29, and 0.22.

Complete prior ignorance might suggest a uniform prior
distribution, a = b = 1. Alternatively, a popular prior with
Bayesians is the Jeffreys prior. Unlike a uniform prior, it is
still the appropriate prior for a one-to-one transformation of
the parameter space (e.g., Box and Tiao, 1973, p. 32, 41–42).
This prior is proportional to the square root of the deter-
minant of the Fisher information matrix for the parameters
of interest, for a single observation. For a binomial parame-
ter, the Jeffreys prior equals the beta prior with a = b = 0.5
(Box and Tiao, 1973, p. 34–38). This prior is also the refer-
ence prior, being approximately noninformative in the sense of
Bernardo’s reference analysis approach (Bernardo and Smith,
1994, p. 315). Brown, Cai, and DasGupta (2001) showed that
the posterior distribution generated by this prior yields a CI
for a single binomial parameter p that performs well.

For two independent binomial samples, we consider a
beta(ai , bi ) prior for pi , i = 1, 2. For simplicity, we shall
treat p1 and p2 as independent with the same beta priors.
There are corresponding priors for the measures themselves.
For instance, with uniform priors for p1 and p2, p1 − p2 has a
triangular density over (−1, +1), r = p1/p2 has density g(r) =
1/2 for 0 ≤ r ≤ 1 and g(r) = 1/2r2 for r > 1, and the log
odds ratio has the Laplace density (Nurminen and Mutanen,
1987). The independent posterior distributions for p1 and p2

induce posterior distributions for their difference, ratio, and
the odds ratio.

2.2 Normal Prior Distributions for Logits
An alternative approach specifies priors for the logit, the nat-
ural parameter in the exponential family representation of the
binomial distribution. With an N(0, σ2) prior distribution for
log [pi/(1 − pi )], on the pi scale the shape of this density is
symmetric, being unimodal when σ2 ≤ 2 and bimodal when
σ2 > 2, but always tapering off toward 0 as pi approaches
0 or 1. Specifically, it is mound-shaped for σ = 1, roughly
uniform except near the boundaries when σ ≈ 1.5, and with
more pronounced peaks for the modes when σ is about 2 or
larger. The peaks for the modes get closer to 0 and 1 as σ
increases further, and the curve has appearance that is essen-
tially U-shaped when σ = 3 and similar to that of a beta(0.5,
0.5) prior. For σ = 1, 2, 3, the standard deviations on the
pi scale of these priors are 0.21, 0.31, and 0.37, similar to the
values of 0.22, 0.29, and 0.35 for the beta priors mentioned
above with a = b = 2.0, 1, 0.5. The logit-normal prior with
σ = 2.67 matches the Jeffreys prior in the first two moments
(on the probability scale), and the logit-normal prior with
σ = 1.69 matches the uniform prior in the first two moments.

Using a logit-normal prior connects this Bayesian approach
with models for the log odds ratio that use normal priors
for the parameters of the saturated log-linear model (e.g.,
Leonard, 1975). This builds on the work of Lindley (1964),
who had considered approximations for the posterior distri-
bution of contrasts of log probabilities, such as the log odds
ratio. A hierarchical version puts second-stage priors on the
parameters of the prior distribution (Leonard, 1972, 1975).
The logit-normal prior also has a natural connection with
Bayesian approaches for logistic regression (e.g., Wong and
Mason, 1985).

3. Evaluating Posterior Distributions and Confidence
Intervals for Measures of Association

Suppose that X is a binomial variate for n trials with param-
eter p. When p has a beta prior distribution with parameters
a and b, then given X = x, the posterior distribution of:

� p is beta with parameters x + a and n − x + b, or
equivalently the same as the distribution of(

x + a

n− x + b

)
F

1 +

(
x + a

n− x + b

)
F

,

where F is an F random variable with df 1 = 2(x + a)
and df 2 = 2(n − x + b);

� [(n−x+ b)/(x+ a)][p/(1 − p)] is the F distribution with
df 1 = 2(x + a) and df 2 = 2(n − x + b).

With independent beta priors, these posterior distributions
induce posterior distributions for the difference of propor-
tions, odds ratio, and relative risk. Hashemi, Nandrum, and
Goldberg (1997) and Nurminen and Mutanen (1987) gave in-
tegral expressions for these posterior distributions. Equivalent
expressions using finite sums were provided by Latorre (1982)
for the odds ratio, Hora and Kelley (1983) for the odds ra-
tio and relative risk, Weisberg (1972), Aitchison and Bacon-
Shone (1981), and Gupta et al. (1997) for the relative risk
(the latter authors also used uniform priors over restricted
ranges), and Pham-Gia and Turkkan (1993) for the difference
of proportions (see also Walters, 1986 for uniform priors). It
is relatively simple to evaluate numerically these posterior
distributions.

For the logit-normal prior with mean 0, the prior density
function for p is

f(p) =
1√

2πσ2
exp

{
− 1

2σ2

(
log

p

1 − p

)2
}

1

p(1 − p)
,

0 < p < 1.

The posterior density function for p, given the outcome x, is

f(p |x) =

exp

{
− 1

2σ2

(
log

p

1 − p

)2
}
px−1(1 − p)n−x−1

∫ 1

0

exp

{
− 1

2σ2

(
log

p

1 − p

)2
}
px−1(1 − p)n−x−1 dp

.

Because the posterior distribution of p does not have closed-
form in this case, the posterior distributions of the summary
measures of interest are more complex to evaluate than with
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beta priors. However, they are not so difficult as to require
MCMC methods.

A Bayesian CI is a region (sometimes called a credible set)
that has posterior probability equal to the desired confidence
level. One approach is to construct HPD CIs. Such intervals
have posterior probability equal to the desired confidence level
and have higher posterior density for every value inside the
interval than for every value outside of it. This approach was
used by Hashemi et al. (1997). An alternative confidence in-
terval uses the “tail method,” by which a 100(1 − α)% interval
for a parameter consists of values between the α/2 and (1 −
α/2) quantiles.

In our opinion, a fatal disadvantage of the HPD interval
for the odds ratio and relative risk is its lack of invariance
under parameter transformation. For instance, if (L, U) is
a 95% HPD interval using the posterior distribution of the
odds ratio, then the 95% HPD interval using the posterior
distribution of the inverse of the odds ratio (which is relevant
if we reverse the labeling of the two groups being compared)
is not (1/U, 1/L). In fact, it can be considerably different.
This is not surprising when one realizes that the 95% region
of highest density for a random variable X is not the inverse
of the 95% region of highest density for 1/X.

For example, consider the case of uniform prior densities
when n1 = n2 = 10. When x1 = 1 and x2 = 5, the sample odds
ratio = 1/9 and the Bayes’ 95% HPD confidence interval for
the true odds ratio is (0.0006, 0.82); when x1 = 5 and x2 = 1,
the odds ratio = 9 and the Bayes’ 95% HPD CI is (0.17,
38.23), which is very different from (1/0.82, 1/0.0006). By
contrast, the 95% tail CIs for the odds ratios when n1 = n2 =
10 with uniform priors are (0.017, 1.10) when x1 = 1 and x2 =
5 and (0.91, 57.93) when x1 = 5 and x2 = 1. In another
example, for tables with sample odds ratio equal to 0, the
HPD interval with diffuse priors is typically of the form (0,
U), but when rows are interchanged so that the sample odds
ratio = ∞, the HPD interval has a finite upper bound.

HPD invariance to group labeling does occur on the log
scale for the odds ratio and relative risk, for which the relevant
parameter is a difference (i.e., log odds ratio = difference of
log odds and log relative risk = difference of log probabilities).
For example, when x1 = 1 and x2 = 5 with n1 = n2 = 10, the
Bayes’ 95% HPD CI for the log odds ratio is (−3.94, 0.19), and
when x1 = 5 and x2 = 1, it is (−0.19, 3.94). The corresponding
intervals for the odds ratio are (0.019, 1.21) and (0.82, 51.43),
but of course, although these match appropriately, they are
not HPD intervals on that scale.

As a referee suggested to us, the HPD method is one that
first requires a firm commitment to a “preferred” scale of mea-
surement. For the odds ratio, these invariance considerations
suggest the log scale. However, users interpret the magnitude
of the odds ratio on its original scale rather than the log scale,
and the lack of invariance when constructing HPD intervals
on the original scale is to us a compelling reason not to use
the HPD approach for this measure.

Likewise, although the HPD approach is invariant for the
difference of proportions and the log relative risk, the HPD
interval formed directly for the relative risk is not invariant,
as may not be HPD intervals formed for measures derived
from the difference of proportions such as the number needed
to treat (NNT). Thus, we used the tail method for these
measures as well. The tail-method approach is invariant on

any scale. A disadvantage is that it is longer than the HPD
interval.

In the evaluations reported below, the only case for which
we used the HPD interval was for the difference of propor-
tions when the sample measure takes its boundary values of
+1 and −1 (i.e., when x1 = n1 and x2 = 0 or when x1 = 0 and
x2 = n2). We observed that the posterior density is monotone
in such cases with the Jeffreys prior or more diffuse priors, and
close to monotone for priors that are more informative than
the Jeffreys prior. With the Jeffreys prior the CI then has the
form (L, 1) or (−1, U). With a monotone posterior, exclud-
ing both upper and lower tails of the posterior distribution
with the tail method seems inappropriate. We did conduct
numerical evaluations of the HPD interval for the log odds
ratio, but results are not shown in the tables discussed be-
low. The coverage probabilities tended to be slightly worse,
on the average, than the tail intervals (in terms of the criteria
reported in those tables). When considered on the odds ratio
scale, they were shorter than the tail-method CIs in only a
slight majority of the cases considered.

With beta prior distributions, the computations for the tail
interval are not difficult. Let Fω(t) denote the cumulative
distribution function for the posterior distribution of a generic
measure of association ω. Then,

Fω(t) =

∫ ∫
St

f(p1 |x1)f(p2 |x2) dp1 dp2,

where St = {(p1, p2) : ω ≤ t, 0 < p1, p2 < 1}. The tail CI
(L, U) satisfies Fω(L) = α/2 and Fω(U) = 1 − α/2. For nu-
merical evaluations we used the free software R, combining the
R function “integrate” to perform the numerical integration
which yields Fω (using the integral expressions in Hashemi
et al., 1997) and the R function “optim” to perform
the Nelder–Mead algorithm. That algorithm minimizes the
function

G(L,U) = |Fω(U) − (1 − α/2) | + |Fω(L) − α/2 |

with respect to L and U. We used simple Monte Carlo to ob-
tain the starting values for L and U for this iterative method,
by randomly generating 100,000 values from the posterior dis-
tribution and choosing the 100(α/2)% and 100(1 − α/2)%
percentiles.

Computations with the logit-normal prior are somewhat
more complex, because the posterior distribution of p itself
involves an integral. We used the R function “integrate” with
an R function modified based on one subroutine of the FORTRAN
code QUADPACK (Piessens et al., 1983) to perform the numerical
integration to calculate Fω(t). We then used the R function
“optimize” to minimize |Fω(U) − (1 − α/2)| and |Fω(L) −
α/2| separately to determine U and L.

4. Evaluations of Coverage Probabilities
With both the beta and logit-normal priors, we restricted our
attention to cases in which the prior distributions of p1 and
p2 are the same. We considered various cases, including beta
priors with a = b = 0.5, 1, 1.5, 2.0 and logit-normal priors with
σ = 1.0, 1.5, 2.0, 3.0. These give priors for each probability
that are symmetric about 0.5, either U-shaped or uniform (or
roughly so in the logit-normal case) or bell-shaped. Such prior
specification would not be appropriate when one has strong
prior belief that the pi are both near 0 or near 1, or when
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there is prior belief that one parameter is larger than the
other. However, as mentioned above, our goal was to find a
“default” CI that performs well in a wide variety of cases, so
we felt that the prior should be symmetric in the identification
of “success” and “failure.”

In the summary of results below, we mainly emphasize
the beta priors, as similar results occurred with logit-normal
priors.

4.1 Difference of Proportions
For the difference of proportions, p1 − p2, we now discuss the
performance of the Bayesian tail CI (suitably modified at the
boundary), based on independent beta priors. Denote an in-
terval based on priors with ai = bi = a by Ia(n1, x1; n2, x2),
or Ia for short. Our discussion refers mainly to the 0.95 confi-
dence level, but the evaluations also studied the 0.99 level. Let
Ca(n1, p1; n2, p2), or Ca for short, denote the true coverage
probability of a nominal 95% CI Ia . We investigated whether
there is a value of a for which |Ca(n1, p1; n2, p2) − 0.95|
tends to be small for most (p1, p2), even with small n1 and n2,
with Ca rarely very far (say 0.02) below 0.95.

We explored the performance of Ia for various combina-
tions of p1 and p2 and for various fixed (n1, n2) combinations.
Table 1 summarizes some characteristics in small-sample cases
(n1, n2) = (10, 10), (20, 20), (30, 30), (30, 10), in an average
sense based on taking (p1, p2) uniform from the unit square.
It tabulates the average coverage probability, the average dis-
tance between the actual coverage probability and the nom-
inal level of 0.95, and the proportion of the parameter space
for which the coverage probability is less than 0.93. Aver-
age interval lengths are not reported, as they were similar for
the various intervals considered, although naturally longer for
the more diffuse priors. By virtue of the uniform averaging,
the interval I1 (i.e., uniform prior) matches the nominal cov-
erage probability. However, the Jeffreys prior also does well
in this sense, and it tends to be better than the uniform prior
in terms of distance of actual coverage probability from the
nominal level and the incidence of low coverage probabilities.
The more informative priors have much poorer performance
in terms of these other criteria.

Table 1
Summary of performance of tail 95% confidence intervals for
p1 − p2 using beta(a, a) priors, averaging with respect to a

uniform distribution for (p1, p2)

Prior parameter a

Characteristic ni 0.5 1 1.5 2 Score

Coverage 10 0.946 0.950 0.939 0.919 0.954
20 0.947 0.950 0.944 0.932 0.949
30 0.948 0.950 0.946 0.937 0.949

30, 10 0.948 0.950 0.939 0.923 0.955

Distance 10 0.012 0.017 0.035 0.060 0.012
20 0.006 0.010 0.021 0.037 0.007
30 0.004 0.007 0.015 0.027 0.004

30, 10 0.008 0.012 0.028 0.047 0.008

Cov. prob. < 0.93 10 0.089 0.120 0.233 0.308 0.016
20 0.020 0.065 0.169 0.259 0.008
30 0.007 0.037 0.131 0.223 0.001

30, 10 0.021 0.088 0.221 0.312 0.005

Table 2
Summary of performance of tail 95% confidence intervals for
p1 − p2 using beta(a, a) priors, averaging with respect to (p1,

p2) uniform over the region |p1 − p2| < 0.1

Prior parameter a

Characteristic ni 0.5 1 1.5 2 Score

Coverage 10 0.950 0.969 0.978 0.984 0.958
20 0.948 0.961 0.969 0.974 0.954
30 0.948 0.958 0.964 0.969 0.952

30, 10 0.949 0.962 0.967 0.971 0.954

Distance 10 0.015 0.019 0.028 0.034 0.016
20 0.009 0.012 0.019 0.024 0.008
30 0.005 0.008 0.014 0.019 0.005

30, 10 0.010 0.012 0.018 0.021 0.007

Cov. prob. < 0.93 10 0.093 0 0 0 0.037
20 0.011 0 0 0 0
30 0.004 0 0 0 0

30, 10 0.007 0.003 0.003 0.002 0.010

Similar results occurred under other averaging with respect
to beta priors with a = b. The intervals I0.5 and I1 have
similar performance, better than the more informative pri-
ors in terms of having average coverage probability near the
nominal level and a small proportion of low coverage prob-
abilities. Averaging performance over the unit square with
respect to relatively diffuse priors can mask poor behavior in
certain regions, and in practice certain pairings (e.g., |p1 − p2|
small) are often more common or more important than others.
Table 2 shows results for a somewhat different averaging, tak-
ing (p1, p2) uniform over the region |p1 − p2| < 0.1. This may
be more realistic in giving more weight to similar parameter
values. In this case the more informative priors tend to be
overly conservative. Similar results (not shown here) were ob-
tained using averaging with respect to beta priors that tended
to give similar pi values, such as using beta(3, 12) priors for
each pi , for which the prior mean is 0.2 and standard deviation
is 0.1.

Besides studying these summary expectations, we plotted
Ca as a function of p1 for various fixed values of p2 and of
p1 − p2. Figure 1 illustrates, plotting C0.5 and C1 as a func-
tion of p1 when p2 = 0.1 and 0.5, for the case n1 = n2 =
20. Performance of these intervals is adequate except for I1

when the parameters are far apart. Not surprisingly, coverage
probabilities tended to be very low for I2 when the true pa-
rameter values were far apart. For small samples, using such
informative priors can significantly reduce the chance that
the interval contains certain parameter values (see Carlin and
Louis, 2000, p. 98–103, for a discussion of this in the single
binomial parameter case).

Tables 1 and 2 also summarize performance of a good fre-
quentist method for interval estimation of the difference of
proportions, namely the interval based on inverting the score
test (Mee, 1984). The 95% confidence interval consists of the
set of ∆ values for which |z| ≤ 1.96 with

z =
(π̂1 − π̂2) − ∆√

π̃1(1 − π̃1)/n1 + π̃2(1 − π̃2)/n2

,
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Figure 1. Coverage probabilities for nominal 95% confidence intervals for p1 − p2 plotted as function of p1 when p2 = 0.1
and 0.5, using independent beta(0.5, 0.5) or beta(1, 1) priors for each pi , with n1 = n2 = 20.

where π̃1 and π̃2 denote the maximum likelihood estimates of
π1 and π2 under the constraint π1 − π2 = ∆. (A slightly more
conservative version, discussed by Miettinen and Nurminen,
1985 and Nurminen, 1986, has variance that differs by a fac-
tor of (n1 + n2)/(n1 + n2 − 1).) Based on our evaluations
here and in another project, this method performs well in a
broad variety of conditions, even with small samples. Here,
we found that it performs at least as well as the Bayesian
intervals (and usually better) in terms of the prevalence of
undercoverage probabilities when the sample sizes are small.
It does, however, tend to be wider than the Bayesian intervals.

Similar results were obtained with logit-normal priors as
with the beta priors. The intervals based on diffuse priors
similar in shape to Jeffreys prior (σ = 2 and 3) performed
considerably better than more informative priors (σ = 1 or
1.5). Using higher σ was more advantageous as p1 and p2 were
potentially more different. Generally, considering a wide va-
riety of cases, the Bayesian intervals based on logit-normal
priors did not tend to perform as well as the score interval in
terms of the proportion of cases in which the actual coverage
probability was unacceptably low. Based on all the evalua-
tions we conducted about the difference of proportions, our
preference is to use the Jeffreys prior as a default prior.

4.2 Odds Ratio and Relative Risk
For the odds ratio using beta priors, the interval performed
much better using the Jeffreys prior than the other beta pri-
ors. Table 3 shows some illustrative results, focusing on the
case n1 = n2 = 20 and averaging with respect to various in-
dependent beta priors. In this case, the interval I1 can have
poor performance when the parameters may be far apart (as
illustrated by results for the averaging with a = 0.5). The I0.5

interval was the only one that had overall coverage proportion
close to the nominal level for each case.

Similar results occurred for the relative risk. Table 4 shows
an analogous table for it. Coverage probabilities tended to be
closer to the nominal level and tended to have fewer cases of

Table 3
Summary of performance of tail 95% confidence intervals for
odds ratio when n1 = n2 = 20 using independent beta(a, a)

priors for p1 and p2, averaging with respect to beta priors with
a = b = 0.5, 1, 2, and a = 3, b = 12

Prior parameter aAveraging
Characteristic a, b 0.5 1 1.5 2 Score

Coverage 0.5 0.949 0.878 0.792 0.717 0.959
1 0.951 0.951 0.931 0.899 0.953
2 0.946 0.955 0.955 0.950 0.950

3, 12 0.947 0.961 0.965 0.965 0.954

Distance 0.5 0.028 0.086 0.170 0.245 0.014
1 0.011 0.012 0.033 0.066 0.008
2 0.007 0.006 0.010 0.017 0.005

3, 12 0.009 0.012 0.018 0.023 0.006

Cov. prob. 0.5 0.032 0.234 0.443 0.565 0.041
< 0.93 1 0.014 0.048 0.185 0.318 0.012

2 0.009 0.002 0.031 0.110 0.001
3, 12 0.019 0.001 0.018 0.051 0.001

unacceptably low coverages for I0.5 than I1. For the odds ratio
and the relative risk, as with the difference of proportions, the
more informative priors tend to be quite conservative when
the actual parameters are close, as shown by results averaged
with respect to the beta prior with a = 3 and b = 12.

Tables 3 and 4 also show results of forming the frequentist
CI based on inverting the score test. See Cornfield (1956) and
Miettinen and Nurminen (1985) for the score interval for the
odds ratio and Koopman (1984), Miettinen and Nurminen
(1985), and Nurminen (1986) for the score interval for the
relative risk. This method tends to perform uniformly well
in a wide variety of cases. It tends to be better than the
Bayesian intervals in terms of closeness of the actual coverage
probability to the nominal level. It also tends to be better
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Table 4
Summary of performance of tail 95% confidence intervals for
relative risk when n1 = n2 = 20 using independent beta(a, a)
priors for p1 and p2, averaging with respect to beta priors with

a = b = 0.5, 1, 2 and a = 3, b = 12

Prior parameter aAveraging
Characteristic a, b 0.5 1 1.5 2 Score

Coverage 0.5 0.950 0.912 0.863 0.818 0.954
1 0.950 0.951 0.939 0.919 0.951
2 0.947 0.953 0.953 0.950 0.950

3, 12 0.946 0.960 0.969 0.975 0.949

Distance 0.5 0.020 0.053 0.103 0.151 0.012
1 0.009 0.009 0.025 0.048 0.006
2 0.006 0.004 0.009 0.016 0.004

3, 12 0.006 0.010 0.019 0.025 0.005

Cov. prob. 0.5 0.041 0.139 0.314 0.422 0.049
< 0.93 1 0.019 0.037 0.147 0.263 0.014

2 0.010 0.002 0.037 0.109 0.001
3, 12 0.019 0 0 0 0.005

than the informative Bayesian intervals in terms of how often
the actual coverage probability is unacceptably low.

With logit-normal priors, again the intervals based on dif-
fuse priors similar in shape to Jeffreys prior (σ = 2 and 3)
performed considerably better than more informative priors
(σ = 1 or 1.5). The case that encountered the least behavior
of very low coverage probabilities was σ = 2. Its performance
was similar to that of the score interval, but the score inter-
val tended to have actual coverage probability closer to the
nominal level.

5. Using Priors with Correlated Probabilities
The above evaluations used independent priors for the two
probabilities. In practice, it may sometimes be sensible to
treat these parameters as dependent, a priori. For instance,
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Figure 2. Coverage probabilities for nominal 95% confidence intervals for p1 − p2 plotted as function of p1 when p2 = 0.1
and 0.5, using bivariate normal prior with correlation 0.5 and σ = 2 or 3, when n1 = n2 = 20.

with little prior information one might be content subjectively
to treat each pi as uniform. However, if one were told that
p1 = 0.05, then conditionally in many applications this would
induce the subjective belief that p2 is also close to 0.

We also considered CIs constructed using dependent pri-
ors, focusing mainly on bivariate normal priors for the log-
its. Results were consistent with independent priors, in the
sense that more diffuse priors provided more protection over
a broader range of parameter values. As one would expect,
the greater the positive correlation in the prior, the poorer
the coverage probabilities tended to be when the parameters
were actually quite different. If one uses a bivariate logit-
normal prior with a moderate correlation, we recommend tak-
ing a large value of σ (around 3) for a default value if one
wants good coverage protection over a relatively broad range.
To illustrate, Figure 2 shows coverage probabilities for the
95% tail interval for p1 − p2 when n1 = n2 = 20, plotted
as a function of p1 when p2 = 0.1 and 0.5, using a bivari-
ate logit-normal prior distribution with correlation 0.5 and
σ = 2 or 3. These correlated priors gave sufficient smooth-
ing for the sample sizes considered that the posterior den-
sity was not monotone, so we used the tail interval for all
cases.

When p1 and p2 are truly close, one would expect benefits
to using positively correlated priors with relatively small σ.
Table 5 investigates this. It considers the performance of a
bivariate logit-normal prior with correlation 0.5 and σ = 1,
2, 3, for constructing 95% CIs for p1 − p2, when results are
averaged with respect to (p1, p2) being uniform over the re-
gion |p1 − p2| < 0.1. For σ = 1, the coverage probabilities
tend to be too high. However, the interval has the benefit of
shorter average length compared to using larger σ or the score
interval. These are also reported in Table 5.

Howard (1998) suggested an alternative correlated prior.
He amended the independent beta priors and used prior den-
sity function proportional to

e−(1/2)u2
pa−1

1 (1 − p1)
b−1pc−1

2 (1 − p2)
d−1,
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Table 5
Summary of performance of tail 95% confidence intervals for
p1 − p2 using bivariate normal prior for logits with correlation
0.5 and σ = 1, 2, 3, averaging with respect to (p1, p2) uniform

over the region |p1 − p2| < 0.1

Standard deviation σ

Characteristic n 1 2 3 Score

Coverage 10 0.994 0.972 0.953 0.958
20 0.985 0.961 0.947 0.954

30, 10 0.986 0.965 0.950 0.954

Distance 10 0.044 0.022 0.015 0.016
20 0.035 0.012 0.010 0.008

30, 10 0.036 0.015 0.012 0.007

Length 10 0.535 0.613 0.630 0.707
20 0.423 0.462 0.470 0.506

30, 10 0.460 0.513 0.523 0.565

Cov. prob. < 0.93 10 0 0 0.046 0.063
20 0 0.006 0.026 0

30, 10 0.003 0.007 0.011 0.009

where

u =
1

σ
log

(
p1(1 − p2)

p2(1 − p1)

)
.

Howard suggested using σ = 1 for a standard form of this
prior. However, this is a relatively strong dependence. For the
amendment of the Jeffreys priors (a = b = c = d = 0.5) the
correlation is 0.84 when σ = 1, 0.59 when σ = 2, and 0.41
when σ = 3. By contrast, a correlation of 0.5 in a bivariate
logit-normal prior corresponds to a correlation between the
binomial parameters of 0.49 when σ = 1, 0.47 when σ = 2,
and 0.45 when σ = 3.

As with the bivariate logit-normal prior, coverages with
Howard’s prior can be highly dependent on the choice of σ
for the parameter values that are relatively far apart, with
small σ appropriate only when the parameter values are rel-
atively close. We considered σ = 1, 2, and 3 in evaluations
of coverage probabilities. Overall, for the adapted Jeffreys
prior (a = b = c = d = 0.5), σ = 3 performed best in
terms of protecting against overly low coverage probabilities.
The case σ = 3 gave similar results as the bivariate logit-
normal prior with correlation 0.5 and σ = 3. The logit-normal
approach did slightly better when the proportions were highly
divergent (e.g., 0.1 and 0.9).

For the prior to be less informative, Howard suggested tak-
ing a = b = c = d equal to some small ε close to 0 (positive
values ensure a proper posterior). However, the correlation
between the proportions is then very strong. Our evaluations
with this prior showed more cases of relatively low coverage
probabilities.

Overall, neither correlated prior gave coverage performance
uniformly as good as that provided by the score CI. An al-
ternative way of inducing dependence is to use a hierarchical
prior, but we did not consider that. Also, we have not consid-
ered the possibility of using matching priors (e.g., Rousseau,
2000). We decided to put main emphasis on the method (beta
priors) that receives primary attention in the current texts

and research literature on Bayesian inference. In addition,
the model with beta priors is most transparent to applied
statisticians.

6. Discussion
Why would a frequentist consider using a Bayesian CI? One
reason might be to have some of the benefits that a Bayesian
approach can have for small sample sizes, such as shrink-
age relative to simple Wald intervals that use the maxi-
mum likelihood point estimate as the center of the interval.
Ordinary frequentist methods that perform relatively well,
such as the score interval and adjusted Wald intervals that
add pseudo observations to the sample before forming ordi-
nary Wald intervals (e.g., Agresti and Caffo, 2000), use such
shrinkage.

The results of this article suggest that if one uses a Bayesian
approach but worries about frequentist performance, specif-
ically maintaining good coverage performance over the en-
tire parameter space, it is best to use quite diffuse priors.
Even uniform priors are often too informative. Our recom-
mendation, in agreement with Brown et al. (2001) in the sin-
gle binomial case, is to use independent Jeffreys priors for
the binomial parameters. On the other hand, if a Bayesian
is unconcerned about coverage probabilities deteriorating as
parameter values move farther away from the region in which
the prior density places most of its mass, then there are ben-
efits in expected length to using more informative priors, as
Table 5 illustrated. If one prefers the frequentist paradigm,
it seems adequate to use the ordinary score CI. It per-
formed well for all cases considered in this article—including
the three parameters, different sample sizes, and different
confidence levels.

The conclusion that it is “safest” to use a diffuse prior will
not surprise most readers. What did surprise us was how much
the coverage probabilities could vary according to the choice
of the prior, even for moderate sample sizes such as n1 = n2 =
30. An implication is that careful selection of prior distribu-
tions is crucial in the much more complex, often hierarchical,
models to which the Bayesian methods are being routinely
applied these days.

For a concrete example of how results for actual data can
depend strongly on the prior, we consider an interesting ex-
ample from a clinical trial discussed by Begg (1990). For an
urn-sampling method to allocate patients to treatments, the
11 patients allocated to the experimental treatment were all
successes and the only patient allocated to the control treat-
ment was a failure. That is, the table has rows (11, 0) and
(0, 1). The 95% tail CI was (1.16, 218.4) for the beta(2, 2)
prior, (1.71, 4677.2) for the uniform prior, and (3.28, 1.36 ×
106) for the Jeffreys prior. By contrast, the score interval
is (4.49, ∞).

It would be of interest to extend the present investiga-
tion to consider analogous CIs for stratified 2 × 2 tables
such as occur with meta analyses (e.g., Warn, Thompson, and
Spiegelhalter, 2002). While a relatively informative prior may
be fine for representing the subjective beliefs of a researcher, it
may result in poor performance in terms of ordinary frequen-
tist criteria (for instance, if the researcher’s prior beliefs are
incorrect and the true proportions are actually far apart).
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Many Bayesians may consider such criteria irrelevant, but it
is worthy of attention to those who traditionally take a fre-
quentist approach but find the Bayesian approach appealing
for certain types of modeling. In addition, regardless of one’s
philosophical approach, for standard models for categorical
data such as logistic regression and log-linear models we be-
lieve it is inappropriate to form HPD CIs on the odds ratio
scale. The lack of invariance is severe rather than a minor
inconvenience.

At the start of the article, we mentioned that Bayesian in-
terval estimation does not seem to be used much in practice
with these parameters. If one does want to use the Bayesian
tail intervals with independent beta priors, it is quite sim-
ple. From the simple expression of the posterior distribution
of the binomial probability or the odds in terms of an F or
beta random variable, one can quickly simulate the poste-
rior distributions of the three measures considered in this
article by simulating values from the F or beta distribu-
tion. Thus, it is simple to simulate reasonable approximations
for the endpoints of CIs for the “tail method,” for instance
forming the 95% CI by the values between the simulated
2.5 percentile and 97.5 percentile of the appropriate posterior
distribution.

Finding more precise intervals or HPD intervals re-
quires better approximations. We have constructed func-
tions using the free software R for the tail intervals for the
three parameters discussed in this article, using indepen-
dent beta priors. These R functions are available at http://

www.stat.ufl.edu/∼aa/cda/R/bayes/index.html.
Of course, one could also use general-purpose Bayesian soft-

ware such as BUGS. For simulation, however, it is adequate to
use the direct approach mentioned above, and for these sim-
ple cases numerical integration very quickly gives excellent
accuracy.
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