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SUMMARY

The traditional approach to ‘exact’ small-sample interval estimation of the odds ratio for binomial,
Poisson, or multinomial samples uses the conditional distribution to eliminate nuisance parameters. This
approach can be very conservative. For two independent binomial samples, we study an unconditional
approach with overall confidence level guaranteed to equal at least the nominal level. With small samples
this interval tends to be shorter and have coverage probabilities nearer the nominal level.
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1. INTRODUCTION

Table 1 shows results from a recent study of preterm infants. Of infants born between 27 and 32 weeks
gestational age who required mechanical ventilation, the study compared 26 infants with periventricular
leukomalacia (PVL) and 26 with normal development on various characteristics. Table 1 compares the
groups on a neonatal adverse event (oliguria). The sample odds ratio equals 2.08. The researchers test
of whether the true odds ratio θ = 1 reported a P-value from Fisher’s exact test. This paper considers
interval estimation of θ using small-sample confidence intervals that guarantee that the true coverage
probability is at least the nominal level. The standard approach for doing this (Cornfield, 1956) uses
a conditional distribution in order to eliminate a nuisance parameter. It provides the 95% confidence
interval (0.1, 127.3). (The study samples were matched, but since information is not provided to utilize
the matching, as in the source paper we treat samples as independent.)

With small samples a conditional approach has the disadvantage of increasing the discreteness and
hence the conservatism of methods. This is well known for testing H0 : θ = 1, in which Fisher’s exact
test can be very conservative (for example, Suissa and Shuster, 1985 showed comparisons with an
unconditional test). This note discusses an unconditional approach to interval estimation for θ based on
two independent binomial samples. This method also guarantees that the true coverage probability is at
least the nominal level. For Table 1 it provides the 95% interval (0.2, 29.4).

Section 2 summarizes methods of forming confidence intervals for odds ratios. Section 3 introduces
the unconditional approach. Section 4 compares coverage probabilities and lengths between conditional
and unconditional intervals. With small samples, the unconditional interval tends to be shorter and the
coverage probability tends to be closer to the nominal level than for conditional intervals. Section 5
discusses implementation.
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Table 1. Comparison of two infant groups
on an adverse event (Okumura et al., 2001)

Response
Group Yes No
PVL 2 24
Control 1 25

2. CONFIDENCE INTERVALS FOR THE ODDS RATIO

Consider a 2×2 contingency table, based on two independent binomial samples within rows or within
columns or a multinomial sample over the four cells or four independent Poisson samples. Let {ni j } denote
cell counts, with n = ∑

ni j and θ̂ = (n11n22)/(n12n21). Let zα/2 denote the 1 − α/2 standard normal
quantile. The large-sample approach for confidence intervals for θ relies on the asymptotic normality of
log(θ̂). The most popular large-sample 100(1 − α)% interval (Woolf, 1955) exponentiates endpoints of

log(θ̂) ± zα/2

√
n−1

11 + n−1
12 + n−1

21 + n−1
22 .

Adjusted versions of this formula handle zero counts (for example, Gart, 1966 and Agresti, 1999). This
interval inverts the Wald test for the log odds ratio using a standard error derived with the delta method.
Perhaps surprisingly for a Wald method, it works quite well. Alternatively, one could invert the large-
sample likelihood-ratio or score chi-squared tests about θ .

With large-sample methods, at fixed parameter values the coverage probability converges to the
nominal level as n increases. However, for tables such as Table 1, one might feel safer using a small-
sample approach. Construction of an interval guaranteed to achieve at least the nominal level for any
sample size requires dealing with nuisance parameters. For instance, with a multinomial sample one can
parametrize the mass function using θ and a marginal row and a marginal column probability. Historically,
the most popular approach eliminates nuisance parameters by conditioning on their sufficient statistics.
For inference about θ with standard sampling models, one conditions on row and column marginal totals.
The result is the hypergeometric distribution

P(n11 = t |{ni+}, {n+ j }; θ) =
(n1+

t

)(n−n1+
n+1−t

)
θ t

∑
s

(n1+
s

)(n−n1+
n+1−s

)
θ s

,

for max(0, n1+ + n+1 − n) � t � min(n1+, n+1).
With this distribution, Cornfield (1956) constructed a confidence interval by inverting two separate

one-sided exact tests, each of size at most α/2. For observed value tobs for n11, the interval is defined by
values (θL, θU) satisfying

P(n11 � tobs; θU) = α/2, P(n11 � tobs; θL) = α/2. (1)

This confidence interval consists of the collection of θ0 for which the exact P-value exceeds α/2 in testing
H0 : θ = θ0 against each one-sided alternative. The exactness refers to the conditional distribution being
free of nuisance parameters. The actual confidence coefficient, defined as the infimum of the coverage
probabilities for all possible θ , has the nominal level as a lower bound. Since the distribution of n11 is
discrete, for any value θ the coverage probability may actually be much greater than 1 − α (Neyman,
1935).

An alternative ‘exact’ conditional confidence interval for θ inverts a single two-sided test instead
of two separate one-sided tests. Sterne (1954) used this approach for interval estimation of a binomial
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parameter, and Baptista and Pike (1977) adapted it to the odds ratio. Their test formed the acceptance
region using ordered null probabilities, with the highest added first. This leads to length optimality.
Another approach inverts a two-sided test using a standard test criterion such as the likelihood-ratio
or score statistic, but using its exact conditional distribution rather than its asymptotic distribution. For
various parameters in 2 × 2 tables, Agresti and Min (2001a), discussed the advantage of basing an
interval on a two-sided family of tests rather than two equal-tailed one-sided tests. For Table 1, for
instance, method (1) gives (0.10, 127.2) whereas inverting the two-sided ‘exact’ conditional score test
gives (0.15, 62.7).

One can also use the conditional distribution for large-sample inference. The likelihood-based interval
is the set of odds ratio values for which twice the conditional log likelihood falls within z2

α/2 of its
maximum (Aitkin et al., 1989, p. 198). Or, one can invert the conditional score test. This interval consists
of odds ratios resulting from expected frequencies having the same margins as the observed counts and
for which the Pearson chi-squared statistic is no greater than z2

α/2 (Cornfield, 1956).

3. UNCONDITIONAL CONFIDENCE INTERVALS FOR ODDS RATIO

In a 2 × 2 table, assume now that yi = ni1 is a binomial variate with parameter πi and index ni =
ni1 + ni2, and y1 and y2 are independent. (The approach below also applies for a single multinomial
sample, after conditioning on the row totals.) Let pi = yi/ni . The product binomial probability mass
function of (y1, y2) is

f (y1, y2; n1, n2, π1, π2) =
(

n1

y1

)
π

y1
1 (1 − π1)

n1−y1

(
n2

y2

)
π

y2
2 (1 − π2)

n2−y2 .

For given θ , π1 is determined by π2 and θ . Thus, one can express this joint mass function as
f (y1, y2; n1, n2, θ, π2). For inference about θ , π2 is a nuisance parameter.

To guarantee an upper bound α for the size, an unconditional test eliminates π2 by maximizing the
P-value over its values. For testing H0 : θ = θ0 with a test statistic T having observed value tobs such that
larger values provide more evidence against H0, the unconditional P-value uses f (y1, y2; n1, n2, θ0, π2)

to calculate

P(θ0) = sup
π2

P[T � tobs; θ0, π2]. (2)

A small-sample unconditional confidence interval inverts a small-sample unconditional test. The
interval is the set of θ0 for which P(θ0) > α. The total number of outcomes of the two types (i.e. the
column totals) is not fixed, so the relevant distribution is less discrete than the hypergeometric. This
provides the potential to reduce conservatism. However, the potential also exists to increase conservatism
by forming the P-value using the worst-case scenario (2) for the nuisance parameter. The method is
invariant to expressing f as f (y1, y2; n1, n2, θ, π2) or f (y1, y2; n1, n2, θ, π1).

For calculating the P-value (2), T can be a standard criterion such as the score or likelihood-ratio
statistic. Results shown in this paper use the score statistic. The score test of H0 : θ = θ0 has statistic of
the form (Miettinen and Nurminen, 1985)

T = [n1(p1 − π̂1(θ0))]2
[

1

n1π̂1(θ0)(1 − π̂1(θ0))
+ 1

n2π̂2(θ0)(1 − π̂2(θ0))

]
,

where π̂i (θ0) denotes the ML estimate of πi under the constraint that

π̂1(θ0)/(1 − π̂1(θ0))

π̂2(θ0)/(1 − π̂2(θ0))
= θ0.
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For Table 1, inverting the unconditional test with score statistic gives 95% confidence interval (0.23, 29.4),
much narrower than the conditional intervals of (0.10, 127.2) and (0.15, 62.7).

Let L(θ, π2) = log f (y1, y2; n1, n2, θ, π2). Alternatively, in (2) one could use the profile log
likelihood L(θ0, π̂2(θ0)) = supπ2

log[ f (y1, y2; n1, n2, θ0, π2)], which occurs in the likelihood-ratio
statistic,

T = −2[L(θ0, π̂2(θ0)) − L(θ̂ , p2)].
Or, one could adapt the Sterne (1954) approach of using ordered null probabilities to this unconditional
setting, letting T = − log f (y1, y2; n1, n2, θ, π2), in which case (2) corresponds to

P(θ0) = sup
π2

P[ f (Y1, Y2; n1, n2, θ0, π2) � f (y1, y2; n1, n2, θ0, π2)].

Note this differs from the profile likelihood approach, which moves the sup inside P and applies it to
both f terms in this expression in evaluating possible samples.

4. COMPARISONS OF COVERAGE PROBABILITIES AND LENGTHS

We studied coverage probabilities and expected lengths of small-sample conditional and unconditional
confidence intervals for the odds ratio for various n with independent binomial samples. This section
briefly summarizes results. More detailed comparisons are available in a technical report (Agresti and
Min, 2001b).

For n1 = n2 = 10, Figures 1 and 2 show coverage probabilities for three methods with nominal
level 0.95: the conditional ‘exact’ intervals (1) based on inverting two one-sided tests (i.e. the Cornfield
tail interval) and (2) based on a single two-sided ‘exact’ score test, and (3) the unconditional small-sample
interval based on the score test. The figures plot the coverage probability as a function of π1: Figure 1
when π2 = 0.1, 0.3, and 0.5, and Figure 2 when θ = 1.0, 2.0, and 4.0. (The two conditional approaches
have identical coverage probability in the θ = 1.0 graph.) The unconditional approach tends to give
results closer to the nominal level. Similar results occurred for (n1, n2) = (10, 20), (20, 20), and (30, 30),
although the difference between unconditional and conditional methods becomes less pronounced as {ni }
increases.

For the sample sizes considered, the unconditional interval is almost always contained in the Cornfield
conditional interval and is usually contained in the two-sided conditional interval. The unconditional
interval tends to be shorter than the latter except when y1 and y2 are near the middle of their range,
in which case the lengths tend to be similar. In such cases the discreteness with the conditional approach
is less severe. The unconditional interval tended to be consistently shorter when either yi was near the
boundary, especially when yi � 1 or yi � ni − 1.

We also conducted an evaluation using randomly sampled (π1, π2) pairs over the unit square,
comparing expected lengths (conditional on no count equaling 0) and coverage probabilities when
n1 = n2 = 10, 20, or 30. Similar results occurred. The one situation in which the conditional two-
sided method yielded smaller coverage probability and slightly narrower intervals was when the true log
odds ratio is extremely large in absolute value. For instance, with π2 = 0.1, this happens for many π1
values above 0.6, especially when sample sizes increase and become more unbalanced. In practice, more
important are relatively small true effects. For (π1, π2) pairs sampled randomly over 0.5 < θ < 2.0,
the unconditional approach fares very well. For instance, the proportion of parameter pairs for which
the actual coverage probability of nominal 95% intervals exceeds 0.96 is 1.00 for the two conditional
methods, but for the unconditional approach it is 0.34 when n1 = n2 = 10, 0.21 when n1 = n2 = 20, and
0.16 when n1 = n2 = 30.
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Fig. 1. Coverage probabilities for 95% confidence intervals for odds ratio, when n1 = n2 = 10.
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Fig. 2. Coverage probabilities for 95% confidence intervals for odds ratio, when n1 = n2 = 10.

5. IMPLEMENTING THE UNCONDITIONAL METHOD

In implementing the unconditional method, we used the Cornfield conditional interval limits (1)
as starting values. For the upper limit θU of the Cornfield interval, suppose P(θU) = supπ2

P[T �
tobs; θU, π2] < α. Then we iteratively decreased θ from θU with a fine grid search until finding θ0 for
which P(θ0) = α. Likewise we iteratively searched from the lower limit of Cornfield’s interval until
finding θ0 for which P(θ0) = α. For any particular θ we evaluated P(θ) by calculating P[T � tobs; θ, π2]
both for a fine grid search of π2 values and for a separate large random selection of π2 values. It is
possible, though seems quite rare, that the set of θ0 for which P(θ0) > α is not a connected interval. Thus,
we supplemented this initial interval determination by an intensive random search of parameter points
corresponding to θ outside the working limits. The final interval is the set of θ0 from the smallest to the
largest values satisfying P(θ0) > α.
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A disadvantage of the unconditional approach is that calculations are complex. There is no assurance
that an algorithm such as just described produces the correct interval. After generating the intervals for all
possible samples with the given n1 and n2, we tested results by randomly generating 100 000(π1, π2) pairs
in the unit square. At each (π1, π2) we calculated the coverage probability of the unconditional intervals.
For the examples we considered, the actual probability was never less than the nominal level.

A criticism of the unconditional approach, vocally made by Fisher about Barnard’s small-sample
test of π1 = π2, is that its sample space includes outcome totals very different from observed ones
and potential probabilities very different from those suggested by the data. An alternative inversion of
unconditional tests uses the Berger and Boos (1994) method of eliminating the nuisance parameter. It takes
the supremum in (2) over a high confidence region (for example, 99.9%) for π2 and adjusts the P-value
(for example, by adding 0.001) so the overall nominal size is not exceeded. In a sense this addresses the
criticism by restricting attention to nuisance parameter values supported by the data. We also implemented
this approach for the unconditional score interval. However, it was similar and not consistently better or
consistently poorer than the score interval based on taking the supremum over all possible π2 values.

6. COMMENTS AND CHALLENGES FOR EXTENSIONS

For interval estimation of the odds ratio with independent binomial samples, several options now can
ensure the true confidence level is at least the nominal one. These include Cornfield’s 1956 conditional
interval based on (1), conditional intervals inverting various two-sided tests such as score or likelihood-
ratio tests using the hypergeometric distribution, and unconditional intervals using the same test statistics
but with the product binomial distribution. Our research indicates that with small samples, inversion of
a two-sided unconditional test tends to give narrower intervals than conditional methods, with actual
coverage probability nearer the nominal level. The improvement increases as the discreteness does, that
is, as sample sizes decrease and as the true probabilities both approach 0 or 1.

Fisher’s criticism of the unconditional approach is part of a considerable debate over the years about
ways of testing whether θ = 1. See Sprott (2000, Section 6.4.4) for a recent cogent support of Fisher’s
arguments. The same arguments apply to interval estimation. Note, though, that a general approach to
interval estimation is not possible with the conditional method, since it does not apply with non-canonical
parameters. Thus, the unconditional approach is the basis of small-sample interval estimation for other
parameters in 2 × 2 contingency tables, such as the difference of proportions and the relative risk (see, for
example, Coe and Tamhane, 1993 and Agresti and Min (2001a). It seems surprising that the unconditional
approach is not used with the odds ratio. Recently, however, Troendle and Frank (2001) proposed an
unconditional interval by inverting a test using the sample odds ratio itself as test statistic. This also shows
improvement over conditional intervals. We believe it more appropriate to use the likelihood-ratio or score
test statistic; two samples with the same odds ratio could provide quite different evidence about whether
a particular θ is plausible for the true value. See Chan and Zhang (1999) for related remarks about the
difference of proportions.

The unconditional approach becomes computationally more difficult to implement as {ni } increases.
As this happens, though, there is less need for it, since the conditional approach suffers less from
discreteness. A challenging research problem is comparing asymptotic behavior of unconditional and
conditional methods. In how broad a sense are these methods asymptotically equivalent to each other and
to ordinary likelihood-based large-sample methods?

A more challenging computational problem yet is to extend the unconditional method to interval
estimation of a common odds ratio for stratified 2×2 tables. With K strata of independent binomials with
n observations per binomial, the number of possible samples is on the order of n2K ; with a grid search
of g values for each of the K nuisance parameters, the probabilities of these samples must be evaluated
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for gK combinations of nuisance parameter values, which is itself problematic with a suitably large value
for g. Simultaneously, to invert the unconditional test one must evaluate these probabilities with tests over
a space of θ values. Currently, this extension requires special methods to be feasible, such as a way to
determine iteratively a guess for the nuisance parameter combination that yields the supremum P-value.
Rather than dealing with this supremum, a rougher approximation calculates P(θ0) at the ML estimates
of the binomial parameters within the K strata under the constraint that the K odds ratios equal θ0.
This eliminates the search over the nuisance parameters but still requires enumerating all the possible
samples and their product binomial probabilities. Although this uses binomial distributions rather than
large-sample normality, the guarantee no longer holds that the true coverage probability is bounded below
by the nominal level. The extension to stratified tables is an interesting research problem, but probably
less important in practice since the discreteness issue with the conditional approach diminishes greatly
as K increases.
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