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SUMMARY. The traditional definition of a confidence interval requires the coverage probability at any value 
of the parameter to be at least the nominal confidence level. In constructing such intervals for parameters in 
discrete distributions, less conservative behavior results from inverting a single two-sided test than inverting 
two separate one-sided tests of half the nominal level each. We illustrate for a variety of discrete problems, 
including interval estimation of a binomial parameter, the difference and the ratio of two binomial parameters 
for independent samples, and the odds ratio. 
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1. Introduction 

Let T be a discrete statistic with probability mass function 
f(t;0) and cumulative distribution function F(t;0) indexed 
by a parameter 0. Some applications, especially in legal or 
regulatory environments, require interval estimators for 0 to 
guarantee coverage probability of at least 1 -a, for some fixed 
a, for all 0. Such methodology is also useful with small samples 
when one is unwilling to trust the uncertain performance of 
a large-sample approximation. 

The usual approach inverts a family of tests having size at 
most a. For such a test, for each value 0S of 0, let A(00) denote 
the acceptance region for testing Ho: 0 = 0S. Then for each 
value t of T, let C(t) = {0f: t E A(0o)}. This is a confidence 
region with the desired property. For a typical 0S, A(00) does 
not achieve probability of Type I error exactly equal to a 
because of discreteness. Hence, such confidence intervals are 
conservative. The actual coverage probability varies for dif- 
ferent values of 0 but exceeds 1 - a (Neyman, 1935) unless 
one artificially transforms T to a continuous variable using 
supplementary randomization (e.g., Anscombe, 1948; Stevens, 
1950). These confidence intervals and the related significance 
tests are often referred to as exact because they use the true 
null distribution of T rather than an approximation based on 
large-sample normality. However, the actual coverage proba- 
bility is not exact but only guaranteed to be bounded below 
by the nominal confidence level. 

The approach to constructing such an interval commonly 

presented in theory of statistics texts inverts two separate 
one-sided tests each having size at most a/2. For instance, if 
F(t; 0) is a decreasing function of 0 for each t, the interval 
(OL, OU) is defined by the equations 

P(T < to; Ou) = a/2, P(T > to; OL) = a/2, (1) 

where to is the observed value of T. This method is often called 
the tail method. When T is continuous, method (1) yields cov- 
erage probability 1- a at all 0, but when T is discrete, 1- a is 
a lower bound. The latter behavior results from the distribu- 
tion of F(T; 0) being stochastically larger than uniform when 
T is discrete (Casella and Berger, 1990, p. 421). 

This article shows that, for constructing confidence inter- 
vals with discrete distributions, it is usually better to invert 
a single two-sided test than to invert two separate one-sided 
tests. Here, "better" means that intervals tend to be shorter 
and coverage probabilities tend to be closer to the nomi- 
nal level. We first discuss potential disadvantages of the tail 
method. Using particular examples of coverage probability 
graphs, we then illustrate the advantages of basing a confi- 
dence interval on inversion of a two-sided test. We use such 
tests with two-sided P-values that order the sample space (1) 
by null probabilities or (2) by null tail probabilities or (3) by 
a criterion measuring distance from the null, such as a score 
statistic. We show examples with the binomial parameter, the 
difference and the ratio of two binomial parameters for inde- 
pendent samples, and the odds ratio. 

963 
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2. Inverting Two One-Sided Tests Versus Inverting 
a Two-Sided Test 

In constructing a confidence interval by inverting a test, form- 
ing acceptance regions such that 

Poo[TE A(0o)] > 1- 

for all So guarantees that the confidence level is at least the 
nominal level. Inverting the family of tests corresponds to 
forming the confidence region from the set of So for which the 
test's P-value exceeds a. The tail method (1) requires that the 
probability be no greater than a/2 that T falls below A(Oo) 
and no greater than a/2 that T falls above A(0o). The interval 
is then the set of So for which each one-sided P-value exceeds 
a/2. Equivalently, it corresponds to forming the confidence 
region from the set of So for which an overall P-value defined 
as P = 2 x min[P00(T > to),Poo(T < to)] exceeds a (taking 
P = 1.0 if this exceeds 1.0). 

A disadvantage of the tail method is that, for sufficiently 
small and sufficiently large 0, the lower bound on the cover- 
age probability is actually 1 - a/2 rather than 1 - a. For 
sufficiently small 0, e.g., the interval can never exclude 0 
by falling below it. To illustrate, suppose T has the geo- 
metric distribution f (t; 0) = (1 - 0)0t, t = 0, 1, 2, .... Then 
F(t; 0) = 1 - Ot+' and using (1) yields the tail interval 
((ce/2)1/to, (1 - a/2)1/(to+1)). All 0 between 0 and 1 - /2 
never fall above a confidence interval, and the coverage prob- 
ability exceeds 1 - a/2 over this region. 

To construct a confidence region using a single two-sided 
test, one approach enters the test statistic values t in A(0o) 
in order of their null probabilities, starting with the highest, 
stopping when the total probability is at least 1-ac, i.e., A(00) 
contains the smallest possible number of most likely outcomes 
(under 0 = 0S). This leads to optimality in terms of minimiz- 
ing total length (Sterne, 1954; Crow, 1956). The intervals also 
satisfy a nestedness property, an interval with larger nomi- 
nal confidence level necessarily containing one with a smaller 
nominal level. A slight complication is the lack of a unique 
way of forming A(00) in many cases. In its crudest partition- 
ing of the sample space, it corresponds to using the P-value 

P0o [f(T; 00) < f(to; 00)], (2) 
the sum of null probabilities of outcomes no more likely than 
the observed outcome. The confidence interval is the set of So 
for which 

Poo [f (T; 00) < f (to; 0O)] > a. (3) 

An endpoint Ou (or OL) of this interval then satisfies 

Po, [f (T; 0U) < f (to; Oj)] = a. 

In a related approach, Blaker (2000) defined 

-y(t, 0) = min[Po(T > t), Po(T < t)] 

and suggested forming the confidence interval as the set of 0S 
for which 

P0o [-y(T, o ) < -y(to, 00)] > a. (4) 

This corresponds to using a P-value that equals min[Po0 (T > 
to), Poo (T < to)] plus an attainable probability in the other 
tail that is as close as possible to, but not greater than, 
that one-tailed probability. Blaker showed that such intervals 
also have the nestedness property but may not have length 

optimality. The P-value for this approach is necessarily no 
greater than the P-value for the tail method, which uses 
2 min[Poo (T > to), P0o (T < to)]. Thus, the intervals based on 
(4) have the important advantage of necessarily being con- 
tained in intervals obtained with the tail method. 

A third two-sided approach orders the sample space ac- 
cording to the distance of to from Ho. One forms P-values 
according to a statistic that describes this distance, such as a 
score or likelihood-ratio statistic. To reduce conservativeness, 
it is preferable to use a statistic that tends to be less discrete, 
as discussed in Sections 4 and 5. 

These two-sided approaches usually provide sensible re- 
sults. The confidence regions do not have the tail method 
disadvantage of a lower bound of 1-Qa/2 for the coverage prob- 
ability over part of the parameter space. However, anomalies 
can occur. For instance, a confidence region based on two- 
sided tests is not guaranteed to be an interval because the 
endpoints of the acceptance region need not be monotone in 
So. Casella and Berger (1990, p. 417) and Santner and Duffy 
(1989, p. 37) discussed this in the context of the binomial pa- 
rameter. For the two-sided method (3) based on ordered null 
probabilities, an endpoint from inverting a two-sided test with 
nominal confidence level of 1 - a can be identical to an end- 
point from the tail method with nominal confidence level of 
1-2a. In the geometric case, e.g., because of the monotone de- 
crease in the probabilities, this method yields [al/to, 1]. More 
generally, suppose OL is such that 

POL [ (T; OL) < f(to;OL)] = E f(t; O0) = a- 

t>t,, 

Then OL is the lower endpoint from two-sided approach (3) 
with nominal confidence level 1 - c and the lower endpoint 
using one-sided approach (1) with nominal level 1 - 2a. This 
happens when f(t; 0L) is monotone decreasing in t, the geo- 
metric distribution being an extreme example in which this 
occurs for all 0. 

Unfortunately, no single method for constructing confidence 
regions with discrete distributions can have optimality simul- 
taneously in length, necessarily yielding an interval, and nest- 
edness (Blaker, 2000). For the cases discussed below, similar 
results occurred from inverting an exact test using method (3) 
with P-value based on ordered null probabilities, method (4) 
with P-value based on two-tail probabilities, or the method 
based on P-value for the score statistic. The latter two meth- 
ods may yield slightly wider intervals than method (3) based 
on ordered null probabilities, but in our experience, they have 
fewer anomalous cases. 

3. Confidence Intervals for a Binomial Parameter 
Let T be a binomial variate for n trials with parameter 7r, 
denoted bin(n,7r). The tail method (1) gives the most com- 
monly cited exact confidence interval, the Clopper-Pearson 
interval (Clopper and Pearson, 1934). The endpoints satisfy 

S ( n ) 7r (l - rL )n-k = a/2 
k=t0 

and 
to 

Z (;:) {r(I 
_ 

lrU)n-k =a/2 
k=O 
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Figure 1. Coverage probabilities for 95% confidence inter- 
vals for a binomial parameter 7r with n = 10. 

except that 7rL = 0 when to = 0 and 7ru = 1 when to = n. 

When to = 0u this confidence interval is [0,'1-S(/2)1n] . The 
actual coverage probability necessarily exceeds 1 - a/2 for o7r 

below 1 - (a/2) 11n and above (a>/2)11n. This is the entire 

parameter space when n < log(i/2)/ log(i.5), e.g., n < 5 for 
ak = .05. 

Stern (1954) proposed method (3) of inverting a single test 
with outcomes ordered by their null probabilities. Blyth and 
Still (1983) and Casella (1986) amended this method slightly 
so that the confidence region cannot contain unconnected in- 
tervals and so natural symmetry and invariance properties are 
satisfied. The Blaker (2000) two-tailed probability approach 
(4) yields similar intervals that, unlike the Blyth-Still-Casella 
intervals, necessarily have the nestedness property with con- 
fidence levels, are contained within the Clopper-Pearson in- 
tervals, and are relatively simple to compute (Blaker's article 

contains short S-plus functions for doing this). The Blyth-Still 
interval is available in StatXact 4 (Cytel, 1999), the software 
having greatest scope for small-sample inference in discrete 
problems. 

Figure 1 illustrates the superiority of forming the confi- 
dence interval by inverting a single two-sided test. It shows 
the actual coverage probabilities of the Clopper-Pearson and 
Blyth-Still intervals for nominal 95% confidence intervals, 
plotted as a function of 7r, when n = 10. Table 1 shows 
the 11 confidence intervals for each method. When n = 10, 
the ratio of expected lengths of the Blyth-Still and Clopper- 
Pearson intervals varies between 0.865 and .954, with a mean 
of 0.935. For comparison, Table 1 also shows the intervals us- 
ing Blaker's (2000) two-sided approach (4) and by inverting 
the exact test using the score statistic. These are similar to 
the Blyth-Still intervals. 

4. Confidence Intervals for Odds Ratio 
When there are nuisance parameters, construction of an in- 
terval is more complicated. For exact inference with contin- 
gency tables, historically, the most popular approach is the 
conditional one that eliminates nuisance parameters by con- 
ditioning on their sufficient statistics. 

For instance, consider inference for the odds ratio 0 in a 
2x2 contingency table. Assuming a multinomial distribution 
for the cell counts {nij} or assuming {rnj} are independent 
Poisson or assuming the rows or the columns are independent 
binomials, conditioning on row and column marginal totals 
yields the hypergeometric distribution 

(nl+ 
n 
n- nl+ ft 

P(nj1 = t I {ni+}, {n+j}; 0) ( l+t (2n+ - t) 

E ( n+1 - s 

For this problem, Cornfield (1956) suggested the tail approach 
(1). This is the most commonly used exact method in practice 
(in fact, it is the only option in StatXact). 

In forming a confidence interval for 0, Baptista and Pike 
(1977) adapted the approach (3) of inverting a single test 
based on ordered null probabilities. Table 2 shows this and 
the tail interval when n = 20 and each marginal count is 10. 
Figure 2 plots coverage probabilities for log(0) for the two 
approaches. Again, inverting a single test gives much better 

Table 1 
Nominal 95% confidence intervals for a binomial proportion with t successes in n = 10 trials 

Clopper-Pearson Blyth-Still Blaker Score-test 
interval interval interval interval 

t Lower Upper Lower Upper Lower Upper Lower Upper 

0 0.000 0.308 0.000 0.267 0.000 0.283 0.000 0.300 
1 0.002 0.445 0.005 0.444 0.005 0.444 0.005 0.450 
2 0.025 0.556 0.037 0.556 0.037 0.556 0.037 0.550 
3 0.067 0.652 0.087 0.619 0.087 0.619 0.087 0.619 
4 0.122 0.738 0.150 0.733 0.150 0.717 0.150 0.700 
5 0.187 0.813 0.222 0.778 0.222 0.778 0.222 0.778 

Note: Blyth-Still intervals obtained using StatXact. For count 6 < t < 10, limits equal (1- Ou, 1- OL) 
for limits given for 10 - t. 
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Table 2 
Nominal 95% confidence intervals for odds ratio with count n~l 

when each row and column marginal total is 10 

Cornfield Invert two-sided Invert two-sided Mid-P adapted 
conditional interval conditional test conditional score test Cornfield 

t Lower Upper Lower Upper Lower Upper Lower Upper 

0 0.000 0.090 0.000 0.069 0.000 0.066 0.000 0.064 
1 0.0003 0.309 0.0005 0.296 0.0005 0.290 0.0005 0.235 
2 0.004 0.764 0.006 0.676 0.006 0.669 0.006 0.600 
3 0.018 1.683 0.025 1.480 0.025 1.494 0.024 1.340 
4 0.052 3.605 0.069 3.380 0.063 3.449 0.068 2.870 
5 0.126 7.942 0.158 6.350 0.157 6.350 0.160 6.253 

Note: For count 6 < nll < 10, limits equal (/9u, V/OL) for limits given for 10 - nr1. 

results. For log(O) between zero and four, we computed the ex- 
pected lengths for the two methods, conditional on 0 < n1l < 
10 (with ni+ = n+i = 10) so the interval width is finite. On 
the log scale, their ratio varies between 0.894 and 0.905, with 
a mean of 0.899. Similar results occur by inverting the test 
using the exact conditional distribution but with the score 
statistic (Cornfield, 1956) or inverting the test using Blaker's 
two-tailed P-value. Table 2 also shows the score-based inter- 
vals. 

A related problem is constructing a confidence interval for 
an odds ratio that is assumed constant in a set of 2 x 2 ta- 
bles. Gart (1970) described the tail interval of form (1). For 
computing and software, see Mehta, Patel, and Gray (1985), 
Vollset, Hirji, and Elashoff (1991), and StatXact. For exam- 
ples of the advantage of instead inverting a single two-sided 
test, see Kim and Agresti (1995), who used approach (3) 
with ordered null probabilities. When possibly many points 
in the sample space have the same value of the test statis- 
tic, they showed one can reduce the conservativeness by using 
the null probability to form a finer partitioning within fixed 
values of the test statistic. For instance, to illustrate the tail 
method, Gart gave a 95% confidence interval of (0.05, 1.16) 
for a 2 x 2 x 18 table. Inverting the two-sided test, the Kim 
and Agresti interval yields (0.06, 1.14), and it reduces further 
to (0.09, 0.99) with a more finely partitioned P-value. 

5. Confidence Intervals for Difference of Proportions 

Next consider the difference of proportions for two indepen- 
dent binomial samples, where X1 is bin(nl, I7r), X2 is bin(n2, 
12), and *i = Xi/ni. The joint probability mass function can 
be expressed in terms of 0 = ir -7r2 and a nuisance parameter 
such as 7rI or 7r2 or (7rl + 7r2)/2, e.g., 

f(xl, x2; ni, n2, ,7r2) = (fl)(a + 7r2)x(1-l0-2)nl-x 

X - (1-72)n2-X2 

The conditional approach for eliminating the nuisance pa- 
rameter 7r2 does not apply here since the canonical param- 
eter is the difference of logits rather than the difference of 
proportions. One can eliminate ir2 using the unconditional 
approach of maximizing the P-value over its possible values. 

For instance, with a direction-sensitive statistic T for testing 
Ho: 0 = So, one-sided P-values for Ha: 0 > 0S and Ha: 0 < 00 
are 

PU(00) = SUP12P[T > to; 0o, 72], 

PL(00) = SUP12P[T < to; 00, 7r2], (5) 

where the supremum is taken over the permissible 7r2 for the 
fixed 0o. 

For the tail method, the confidence interval satisfies OL = 

sup{fo: Pu(0o) > a/2} and Ou = inf{Oo: PL(OO) > a/2}. 
Santner and Snell (1980) proposed this interval using T = 

- fr2- Soms (1989a,b) discussed and programmed their in- 
terval and one inverting the Wald statistic. StatXact 4 pro- 
vides the Santner and Snell interval. Santner and Snell (1980) 
also discussed the approach of inverting tests based on ordered 
null probabilities. They noted that it usually gave shorter in- 

Coverage Probability 

1.0 

.96- , , , , 

.94 - 
Correld tail method 

- - - invert 2-sided test 

.92 

-4 -2 0 2 4 loge 

Figure 2. Coverage probabilities for 95% confidence in- 
tervals for 7r - 7r2 based on independent binomials, with 
ni = n2 = 10. 
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Table 3 
Nominal 95% confidence intervals for difference of proportions with 
binomial outcomes x1 and x2 in ni = n2 = 10 independent trials 

Santner-Snell Chan-Zhang Invert two-sided 
Interval Interval Score test 

x1 X2 Lower Upper Lower Upper Lower Upper 

5 0 0.014 0.829 0.118 0.813 0.132 0.778 
5 1 -0.089 0.764 -0.020 0.741 -0.001 0.700 
5 2 -0.188 0.695 -0.146 0.671 -0.142 0.646 
5 3 -0.283 0.620 -0.256 0.601 -0.249 0.560 
5 4 -0.373 0.542 -0.369 0.539 -0.349 0.507 
5 5 -0.459 0.459 -0.456 0.456 -0.419 0.419 
2 0 -0.283 0.620 -0.129 0.556 -0.132 0.525 
2 1 -0.373 0.542 -0.280 0.464 -0.265 0.441 
2 2 -0.459 0.459 -0.386 0.386 -0.377 0.377 
2 3 -0.542 0.373 -0.490 0.309 -0.455 0.296 
2 4 -0.620 0.283 -0.585 0.229 -0.551 0.224 

tervals and was preferable but was computationally infeasible 
(in 1980) except for very small ni. 

Chan and Zhang (1999) showed that conservativeness of 
the Santner and Snell tail method was exacerbated by the se- 
vere discreteness of T = l- *2 for small samples. For that 
application of the tail method, each sample with the same 
value of f1r - *2 has the same interval (for the given sam- 
ple sizes). Chan and Zhang showed that better performance 
results from using a less discrete statistic, such as the score 
statistic (Mee, 1984; Miettinen and Nurminen, 1985) 

*1)/rl - 2)1- 00 

V2r1 (1 - Fr) /nl + i2 (1 - T2) /n2 

where Trl and Tr2 denote the maximum likelihood estimates 
of ir and ir2 subject to 7r -7r2 = So. However, Chan and 
Zhang (1999) used only the tail method for this statistic. Bet- 
ter performance yet results from using the score statistic with 

a single two-sided test, in which the P-value compares ITI to 
Itol. 

Table 3 shows some intervals for the Santner-Snell and 
Chan-Zhang tail methods and for the two-sided inversion us- 
ing the score statistic for various (X1, X2) values with ni = 

n2 = 10. Similar improvements occurred from inverting a sin- 
gle likelihood-ratio test. In implementing the two-sided inver- 
sion, first we adapt the bisection method used in a FORTRAN 
program by Chan and Zhang (1999) to search for the lower 
and upper limits. Because of the theoretical possibility that 
disjoint intervals may exist, we supplement results from the 
bisection method with an intensive random search over the 
parameter space complement to that part represented by the 
bisection-based interval. This random search applies relatively 
greater weight to parameter points near those at the boundary 
obtained with the bisection method in order to enhance the 
chance of finding additionally needed points. In the rare cases 

x2=.3 xI -xc2=O.2 

Coverage Probablity Coverage Probability 

1.0 1.0 

.96~~~~~~~~~~~~~~~~~9 

.94 .94 
941 - invert 1-sided scoretstsI invert l-sided scoretestsl 

I.. invert 2-si dad score test .... invert 2-sided score test 

.92 - .92 - 

0 .2 .4 .6 .8 1 .2 .4 6 .8 

Figure 3. Coverage probabilities for 95% confidence intervals for 7r -7r2 based on independent binomials, with no = n2= 10. 
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x2=.3 xcI -2=0.2 

Coverage Probablity Coverage Probability 

1.0 1.0 - 

.98 ~~~~~~~~~~~~~~~~.98 

.96 :: :.. ..96 

.94 .94 
1 I- invert 1-sded score tests invert 1-sided score tests 

{[ * invrt 2-si dod score test [.. invrt 2-sied score test 

.92 - .92 - 
.2 .4 .6 .8 1 I ~ ~ ~ ~ ~ ~ ~~~~~I I I I,~ I 2 4 I 8 1 .2 .4 .6 .8 1 

Figure 4. Coverage probabilities for 95% confidence intervals for 7i -r2 based on independent binomials, with ni = 20, 
n2 = 10. 

that this process determines the existence of disjoint intervals, 
we use the interval for wri - 72 from the lowest lower bound 
to the highest upper bound. Testing of our algorithm showed 
accuracy to the fourth decimal place. As a check, in cases 
studied, we obtained confidence limits for all possible sam- 
ple outcomes with the given sample sizes and evaluated and 
plotted coverage probability curves to analyze whether the 
nominal confidence level uniformly provided a lower bound; 
we did not observe any violations. 

Figure 3 illustrates performance, plotting the coverage 
probability for the Chan-Zhang tail method and the two- 
sided score test approach as a function of 7r. The first panel 
in Figure 3 holds 72 = 0.3 fixed and the second panel holds 
71 - 72 = 0. 2 fixed. When i - 2= 0.2, the ratio of expected 
length varies between 0.937 and 0.948, with a mean of 0.945, 
as Wi varies between 0.2 and 1. Even greater differences in 
coverage probability curves can occur with unbalanced sam- 
ple sizes. Figure 4 illustrates this, making the same compar- 
isons but with ni = 20 and n2 = 10. Both methods tend to 
be very conservative when both parameters are near zero or 
one. 

An alternative way to invert unconditional tests uses the 
Berger and Boos (1994) method of eliminating the nuisance 
parameter. That method takes the supremum in (5) over a 
high confidence region (e.g., 99.9%) for the nuisance param- 
eter and adjusts the P-value (e.g., by adding 0.001) so that 
the overall nominal size is not exceeded. StatXact has the op- 
tion of adapting the Santner-Snell interval in this manner. We 
considered it for the two-sided score interval, but this did not 
provide improved performance over the score interval based 
on taking the supremum over the entire space for the nuisance 
parameter. Likewise, Chan and Zhang (1999) noted that us- 
ing this sort of restricted search over values of the nuisance 
parameter did not improve performance of the interval based 
on the tail method with score tests. 

Interestingly, Coe and Tamhane (1993) and Santner and 
Yamagami (1993) also dealt with the problem of interval esti- 
mation of Wi - w2 with a generalized version of approach (3) 
based on ordered null probabilities. Surprisingly, their meth- 
ods have not received much attention in the subsequent lit- 
erature or in statistical practice. These methods also provide 
intervals with better coverage properties than the Santner and 
Snell (1980) or Chan and Zhang (1999) tail-method intervals. 
The Coe-Tamhane and Santner-Yamagami methods used dif- 
ferent approaches in constructing the acceptance regions. The 
result is that the Coe-Tamhane intervals tend to be shorter for 
small to moderate IP1 - P2 whereas the Santner-Yamagami 
intervals tend to be shorter for large IP1 -P2 . Lee, Serachi- 
topol, and Brown (1997) evaluated these and other intervals 
for Wi - W2 and showed that, over a broad range of cases, the 
Coe-Tamhane interval had the best performance. Coe (1998) 
provided a SAS macro for the Coe-Tamhane approach. 

6. Confidence Intervals for Other Parameters 
Similar results occur for other parameters in discrete data 
problems. For instance, the discussion of the previous section 
on the difference of two binomial parameters also applies to 
their ratio, the relative risk 0 = 71 /12. Again, an uncon- 
ditional approach can eliminate the nuisance parameter in 
the test to be inverted. We illustrate by inverting tests us- 
ing the score statistic (Koopman, 1984; Miettinen and Nur- 
minen, 1985), which has good performance for large-sample 
confidence intervals (Gart and Nam, 1988). Figure 5 com- 
pares coverage probabilities of 95% confidence intervals based 
on the tail method and based on inverting a single two-sided 
score test when ni = n2 = 10. One panel refers to r2 = 0.3 
and the other to 0 = 2. When 0 = 2, the ratio of expected 
widths on the log scale, conditional on xi > 0 and x2 > 0, 
varies between 0.801 and 0.864, with a mean of 0.833, as Wi 

varies between zero and one. 
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Figure 5. Coverage probabilities for 95% confidence intervals for 71 /X2 based on independent binomials, with ni = n2 = 10. 

Another case analyzed with the tail method in most the- 
ory of statistics textbooks is the Poisson parameter. The tail 
method yields an interval specified with chi-squared percent- 
age points (Garwood, 1936), but a plot in Casella and Berger 
(1990, p. 422) illustrates its conservativeness. Crow and Gard- 
ner (1959), Walton (1970), Casella and Robert (1989), Blaker 
(2000), and Kabaila and Byrne (2001) discussed improved in- 
tervals based on two-sided tests. 

A class of parameters that includes the odds ratio is the set 
of parameters for logistic regression models. Cox (1970, p. 48) 
applied the tail method, using the conditional distribution to 
eliminate other parameters. Inverting a two-sided test has the 
benefits illustrated above for the odds ratio. 

For independent binomial samples, we used the uncondi- 
tional approach to obtain confidence intervals for the differ- 
ence or ratio of proportions. In principle, one can also apply 
the unconditional approach to the odds ratio and more gen- 
erally to logistic regression parameters even though the con- 
ditional approach is available. An open question is whether 
the unconditional two-sided approach may provide improve- 
ment over the conditional two-sided approach in some cases. 
The potential for improvement exists because of a reduction 
in discreteness. This is the case for testing equality of two 
independent binomials (e.g., Suissa and Shuster, 1985). How- 
ever, there is also the potential for increased conservativism 
because of the approach of eliminating the nuisance param- 
eter by taking a supremum of P-values (with respect to the 
nuisance parameter) instead of conditioning it out. Our pre- 
liminary study of this, for the odds ratio, suggests that the un- 
conditional approach tends to provide intervals with coverage 
probabilities nearer the nominal levels. This will be addressed 
in detail in a future article. 

7. A Limitation of the Two-Sided Approach 
The past four sections showed examples of advantages of bas- 
ing confidence intervals on two-sided tests. While the main 

theme of this article is recommending this over the tail me- 
thod, a referee has suggested a qualification. In many studies, 
the goal is to show that a new treatment is better than a 
standard one. Such studies often use one-sided tests. Inter- 
val estimation is consistent with the test when the interval is 
based on inverting two one-sided tests (e.g., a 95% interval 
is then consistent with the result of the one-sided test with 
nominal size 0.025). Also, in some noninferiority trials, it is 
a regulatory requirement to use a confidence interval for the 
difference of proportions and compare one bound to a pre- 
specified value. Again, using an interval based on inverting 
one-sided tests guarantees that the size of an implicit one- 
sided test does not exceed the nominal size. 

A related comment is that users often are particularly inter- 
ested in one of the bounds (say, the lower one) and interpret 
95% intervals as imparting 97.5% confidence that the param- 
eter falls above that bound. This inference is not appropriate 
with intervals based on inverting a two-sided test. Of course, 
in discrete cases, 97.5% is a lower bound and the actual con- 
fidence may be considerably higher than one prefers. 

For such goals, one can argue in favor of simply calculating 
a one-sided confidence bound instead of a confidence interval. 
This may be a psychological barrier for many statisticians 
because most statistical texts discuss one-sided tests but few 
discuss one-sided confidence bounds. 

8. Summary and Recommendations 
In summary, discreteness has the effect of making exact confi- 
dence intervals more conservative than desired. We make the 
following recommendations for reducing the effects of that dis- 
creteness. First, apart from the caveat of the previous section, 
invert a two-sided test rather than two one-sided tests (the tail 
method). Second, in that test, use a test statistic that allevi- 
ates the discreteness (e.g., for comparing two proportions, use 
the score statistic rather than *r - *2). Third, when appro- 
priate, use an unconditional rather than conditional method 
of eliminating nuisance parameters. 
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A fourth recommendation is relevant if one is willing to 
relax slightly the requirement that the actual coverage prob- 
ability have the nominal level as a lower bound at every pa- 
rameter value. We then recommend inverting a two-sided ex- 
act test but using the mid P-value. The mid P-value has 
form P(T > to) + (1/2)P(T = t0), which is the expected 
value of the Stevens (1950) randomized P-value P(T > to) + 
U x P(T = t0), where U is a uniform(0, 1) random variable, 
which achieves the nominal size. The mid P-value has null ex- 
pected value of 0.5, and the sum of the two one-sided mid P- 
values equals 1.0. Evaluations for a variety of problems (e.g., 
Mehta and Walsh, 1992; Newcombe, 1998a) have shown that, 
although this method no longer guarantees coverage probabil- 
ities of at least the nominal level, it still tends to be somewhat 
conservative, although necessarily less so than using the ordi- 
nary P-value. An advantage over ordinary asymptotic meth- 
ods is that it uses the exact distribution and provides an es- 
sentially exact method for moderate sample size since the dif- 
ference between the mid P-value and ordinary exact P-value 
diminishes as the sample size increases and the discreteness 
in the tails diminishes. This recommendation is particularly 
relevant for the conditional approach, which has greater dis- 
creteness than the unconditional approach. Table 2 shows the 
confidence interval for the odds ratio that StatXact reports 
using the mid P adjustment of the Cornfield interval, which 
is a conditional one. Comparing this to the ordinary Cornfield 
interval in this table illustrates the shortening of intervals that 
can occur with the mid P method. 

Related to this last point, we emphasize in closing that, 
except for the last paragraph, this article has discussed only 
confidence interval methods that attain at least the nominal 
confidence level. More generally, for three types of situations 
in which a statistician might select a method, we believe the 
preferred method differs. One situation is that dealt with in 
this article, in which one needs to guarantee a lower bound 
on the coverage probability. A second situation, more impor- 
tant for most statistical practice, is when one wants the actual 
coverage probability to be close to the nominal level but not 
necessarily to have it as a lower bound. A third situation is 
that of teaching basic statistical methods in a classroom or of 
consulting environment, for which one may be willing to sac- 
rifice quality of performance somewhat in favor of simplicity. 

For most statistical practice (i.e., situation two), for inter- 
val estimation of a proportion or a difference or ratio of pro- 
portions, the inversion of the asymptotic score test seems a 
good choice (e.g., Gart and Nam, 1988; Newcombe, 1998a,b). 
This tends to have an actual level fluctuating around the nom- 
inal level; if one prefers that level to be a bit more conserva- 
tive, mid P adaptations of exact methods work well. For situ- 
ations that require a bound on the error (i.e., situation one), 
basing conservative intervals on inverting the exact score test 
or the test using Blaker's (2000) two-tailed P-value has rea- 
sonable performance. For teaching (i.e., situation three), the 
Wald-type interval of point estimate plus and minus a normal- 
score multiple of a standard error is simplest. Unfortunately, 
this can perform poorly, but simple adjustments sometimes 
result in much improved performance, e.g., see Agresti and 
Caffo (2000). 
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REISUMEI 

La definition traditionnelle d'un intervalle de confiance re- 
quiert de la probability de recouvrement de toute valeur du 
parametre d'etre au mois gale au niveau de confiance nomi- 
nal. Pour des parametres de distributions discretes, on adopte 
un comportement moins conservatif en construisant de tels 
intervalles a partir d'une famille de tests bilateraux plut6t 
qu'a partir de deux families de tests unilateraux spares dont 
le niveau est la moitie du niveau nominal. Nous illustrons 
cela avec un certain nombre de problems discrets incluant 
l'estimation par intervalle d'un parametre de binomiale, la 
difference et le rapport de deux parametres de binomiales 
a partir d'echantillons independents, ainsi que le rapport de 
chances. 
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