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 A proportional odds model with subject-specific effects for
 repeated ordered categorical responses

 BY ALAN AGRESTI

 Department of Statistics, University of Florida, Gainesville, Florida 32611, U.S.A.

 AND JOSEPH B. LANG

 Department of Statistics, University of Iowa, Iowa City, Iowa 52242, U.S.A.

 SUMMARY

 Suppose subjects make repeated responses on the same ordered categorical scale. We
 propose a generalization of the Rasch model that expresses the cumulative logit of the
 response distribution using subject parameters and a proportional odds structure for
 item effects. Parameters in the model describe subject-specific, rather than population-
 averaged, effects. Consistent estimation of the effects requires eliminating the subject
 parameters. We accomplish this by simultaneous fitting of Rasch models, conditional
 on sufficient statistics for those parameters, for the possible binary collapsings of the
 response. The fitting process uses an improved Newton-Raphson algorithm for fitting
 generalized loglinear models by maximum likelihood estimation subject to constraints.
 For the case of two items, we give simple expressions for an effect estimate and its standard
 error, and suggest a test of marginal homogeneity for ordinal matched pairs.

 Some key words: Conditional estimation; Constrained maximum likelihood; Cumulative logit model; Item
 response model; Marginal homogeneity; Matched pairs; Ordinal data; Quasi symmetry; Random effects;
 Rasch model; Square contingency table.

 1. INTRODUCTION

 Suppose N subjects make k repeated responses on the same ordered categorical scale.
 For instance, for k similar questions in a survey, subjects might make responses on a
 scale such as (strongly agree, mildly agree, mildly disagree, strongly disagree). For subject

 i (i = 1, ... , N) and response measurementj (j = 1, . . . , k), let 0hij denote the probability of

 response in category h, for h = 1, . . ., r. For h = 1, . . ., r- 1, let -Yhij = 1 ij +?... + /bhij, and
 consider the cumulative logit model

 log{0yhij/(l - Yhij)} = Ah + ai j (1 1)

 Identifiability requires a constraint on two of the sets of parameters, such as A) =31 = 0.
 Model (1 1) is a proportional odds model, the subject and response effects being

 independent of h. The model holds if, for each i and j, there is an underlying continuous

 response that has a logistic distribution with mean Oj - aki, and the observed response
 falls in category h when the underlying response falls between Ah-l and Ah. Normally
 the 'cutpoints' {Ah} and the {Ta} are incidental parameters, and estimation of {/3_} is
 paramount. In many applications, different subjects may use different cutpoints. For
 instance, for a given value for the underlying response, one subject may regard it as falling
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 528 ALAN AGRESTI AND JOSEPH B. LANG

 into category 'good', while a second subject regards it as 'very good'. Because of this and

 because the response effects {/3j} are of primary interest, we mainly consider the more
 general model

 log hijl(l - -Yhij)} = ahi -j (1.2)

 where we use the constraint /1 = 0.
 For each subject, the distributions for the k responses in these models are stochastically

 ordered according to {/3j}. For r = 2, models (1 1) and (1 2) simplify to the Rasch item-
 response model (Rasch, 1961). To emphasize connections with that model, we refer to

 the k response characteristics as items, and we refer to model (1 -2) as the cumulative
 Rasch model. McCullagh (1977) and Ezzet & Whitehead (1991) discussed the ordinal-

 response case for k = 2, and Samejima (1969), Andersen (1980), Masters (1982), Tutz
 (1990) and Agresti (1993) discussed alternative ordinal item-response models.

 For a given subject i with fixed ai or {O!hi}, we assume that responses on separate items
 are independent. Subject heterogeneity implies that the joint distribution of the responses,
 averaged over subjects, shows positive associations between pairs of items. We also

 assume that responses by different subjects are independent. For the Rasch model, the

 unconditional maximum likelihood estimators of {/3j} are inconsistent as N -X oc because
 of the concomitant increase in the number of subject parameters (Andersen, 1980, p. 244).

 One obtains consistency by calculating conditional maximum likelihood estimates of {/3j},
 given sufficient statistics for {ai}. Tjur (1982) noted that one can obtain the conditional
 estimates by fitting a log linear model to the 2k cross-classification of subjects' responses
 on the k items. Tjur's model is simply the quasi-symmetry model, and the conditional
 maximum likelihood estimates relate to ordinary maximum likelihood estimates of main
 effect parameters for that model.

 Models (1 1) and (1 2) do not have reduced sufficient statistics, so the standard con-

 ditional approach is unavailable. For k = 2, McCullagh (1977) suggested an ingenious

 approach for obtaining consistency, using two weighted-average estimators of /2- -1
 The purpose of our note is to show a way to obtain consistent estimators of {f3j} for
 arbitrary fixed k and r. We eliminate subject parameters by fitting the Rasch model
 using conditional maximum likelihood simultaneously for all binary collapsings of the

 response. This process corresponds,to fitting a generalized quasi-symmetry model. We
 present a Newton-Raphson algorithm for fitting the generalized model, using maximum

 likelihood subject to constraints. For k = 2, a naive approach yields an appealling

 closed-form expression for an effect estimate and provides a simple way to test marginal
 homogeneity for ordinal matched pairs.

 2. A CORRESPONDING GENERALIZED QUASI-SYMMETRY MODEL

 For fixed h, the cumulative Rasch model (1 2) is the ordinary Rasch model for a
 collapsing of the response into ( < h, > h). Thus, when model (1 2) holds, one can consist-

 ently estimate {f,3} using conditional maximum likelihood estimators for the Rasch model
 applied to the collapsed scale, for any h. Such estimates are inefficient, more so as r
 increases. A referee has pointed out that for k = 2 and an item effect near zero, an

 optimum selection of cutpoints for r categories can provide relative efficiency on the
 order of 1 - I/r2 compared with r = oc. Thus, for a large number of categories, the
 estimates from a binary collapsing could be about 75%/ as efficient as ones based on the
 full scale. We will present a more efficient approach for which estimates utilize the full
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 scale. This approach also has the robustness benefit of providing protection against a
 lop-sided distribution of response probabilities in a single binary collapsing.

 Consider a (r - 1) x 2k contingency table, in which the hth 2k table cross-classifies
 responses for the hth binary collapsing of the scale, h = 1, . . . , r - 1. Each subject occurs
 in each 2k table, so this table contains N(r - 1) observations. We refer to this table that

 simultaneously displays the r - 1 collapsings as the collapsed table. For collapsing h, let

 n(h; h1,. ... Ihk) denote the number of subjects making collapsed response hj to item j,
 where 1 < h < r-1, 1<hj < 2, for j = 1, ..., k. Let m(h; h, I ..., hk) = En(h; h,.., hk).
 We will estimate {d3>} simultaneously using all collapsings, by fitting the model

 log m(h;hl, . ..,hk)= p,- 3jI(hj = 1) + 8(h; hl,...,h k) (2.1)

 to the collapsed table. Here, I denotes the indicator function and, for each h, 6(h; h1,... , hk)
 is permutation invariant in (h1,... ,hk). For fixed h, model (2- 1) is the ordinary quasi-

 symmetry model for a 2k table. The generalized quasi-symmetry model (2 1) is derived

 using a direct extension of the arguments given by Tjur (1982) relating the binary Rasch
 model to the quasi-symmetry model. The extension is straightforward, so we simply
 outline the main ideas.

 For fixed h in the cumulative Rasch model, consider the probability of obtaining a
 particular sequence of collapsed responses. Suppose one eliminates the subject parameter

 by integrating this probability with respect to an unspecified distribution Fh (a). This
 leads to the likelihood used in a nonparametric marginal maximum likelihood solution

 for the binary model. Tjur noted that an extended version of this likelihood is equivalent
 to the likelihood for the quasi-symmetry model, apart from a term that occurs from

 assuming Poisson rather than multinomial sampling. Using Tjur's argument for each h
 and comparing the quasi-symmetry models for the various values of h, one observes

 structure (2 1).
 For each fixed h, Tjur noted that the Poisson likelihood for model (2 1) can be

 decomposed as the product of a function of {A3>} and a function of the other parameters,
 such that the function of {A3>} is the conditional likelihood function for the Rasch model

 for that collapsed response. Thus, maximum likelihood estimates of {/3j} and the second
 derivatives of the log likelihood with respect to them are identical, for that fixed h, for
 (2 1) and the conditional Rasch model. The issue of estimating {B3>} in the cumulative
 Rasch model is not straightforward, however, when one considers the generalized model

 (2 1) simultaneously for all h; that is, for the full, rather than collapsed, response scale.

 Suppose we assume a multinomial or independent Poisson sampling model for cell counts
 in the original rk cross classification of responses for the k items. Counts {n(h; h1, ... , hk)}
 from different 2k sections of the collapsed table do not follow such a sampling scheme, since
 the same subjects occur in each section.

 To obtain consistent estimators of {/3O} and of standard errors, one can maximize the
 Poisson or multinomial likelihood for the cell counts in the original rk table subject to
 the constraint that model (2 1) holds for the collapsed (r - 1) x 2k table. Denote the cell
 counts in the original rk table by the column vector n, and their expected frequencies by
 ,u. Model (2- 1) has generalized log linear form

 log Au = X/3, ident (,) = 0, (2.2)

 where ident (,u) = 0 denotes a multinomial identifiability constraint 1'(,u - n) = 0 used
 for multinomial sampling. The (r - 1 )2k x rk matrix A, when applied to ,ut forms
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 {m(h; h1,... , hk) }. To fit models of this form, it is very awkward to re-parameterize the cell
 probabilities in the multinomial likelihood in terms of the model parameters. An alterna-

 tive and simpler method, particularly for large k, utilizes Lagrange's method of undeter-

 mined multipliers. We next present an improved algorithm for this method, developed in
 an unpublished Ph.D. dissertation at the University of Florida by J. Lang.

 3. AN ALGORITHM FOR FITTING GENERALIZED LOG LINEAR MODELS

 In Lagrange's method of undetermined multipliers, one views the model (2 2) as inducing

 constraints on cell probabilities, and one maximizes the kernel of the multinomial log
 likelihood, l(,u; n) = n' log ,, subject to those constraints. The algorithm we present is a
 modification of one given by Haber (1985). Our algorithm uses an iterative scheme
 involving matrices that are simpler to invert, and it uses a re-parameterization from ,u to

 = log ,u to avoid interim out-of-range values during the iterative process.

 Let U denote a full column rank matrix such that the space spanned by its columns is the
 orthogonal complement of the space spanned by the columns of X. Haber outlined a

 method for computing U. For 1(; n) = n's, we express the parameter space for (2 2) as

 {(: U'logAel = 0, ident(() = 0} = h() = 0, ident(() = 0}.

 Let 0 = vec((, A), where A is a vector of undetermined multipliers that has as many
 elements as the rank of U. We solve for ( by solving for 0 in the likelihood equations

 g(^) = ( n)/e+ {Oh(()'/n} ) = (n -e + H( )A) =0, (3.1)

 where

 H(s) = Oh(()'/O1 - diag (el)A'diag (Ael)-1U

 with diag (z) denoting a diagonal matrix with the elements of z on the main diagonal. Lang

 showed that the dominant part of Og(0)/O0' is

 G(O) = dia (el(/) H(())
 "' k~ H(s) 0}

 Specifically,

 N-1 ag(o) = N-1G(0) + o( () 0)
 00'

 where o(l) represents a sequence that converges to zero as N - oc.
 To solve the likelihood equations, we used the modified Newton-Raphson iterative

 scheme

 0(t+1) = o(t) - {G(0(t))}Jlg(0(t)) (t = 0,1,2, ...), (3 2)
 with (jO) = log (n + 8) for some small ? > 0 and A(?) = 0. The advantage of using G(0) is the
 simplicity of its inverse, which is
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 where D = diag (e4) and H = H(s). Using the delta method, we derived the asymptotic

 covariance matrices of the fitted values /2 - ee and of 3 = (X'X)>X' log Aft. Under
 multinomial sampling,

 EA = D - (,uu)/N-H(H- D- H)-1H'-

 Ep = (X'X)-1X' diag (A,A)-1AEAA' diag (AIA)-1X(X'X)-l.

 One can check the quality of fit for a generalized log linear model using an ordinary
 goodness-of-fit test that compares observed and fitted counts in the original table. For
 the generalized quasi-symmetry model (2 1), the residual degrees of freedom equal

 (r - 1)2k - r(k + 1) + 2. Lack of fit suggests that the cumulative Rasch model may be
 inappropriate. To analyze local lack of fit, one can define an adjusted residual for cell i by

 ei = (ni -/A2i)/ASE(ni -i),

 where ASE denotes estimated asymptotic standard error. By the delta method, the estimated

 asymptotic covariance matrix of (n - a) can be shown to equal

 H( )H(() diag (1Au)-1H(^)J-1H(^)'.

 This is available as a by-product of the iterative scheme (3 2), and yields the estimated
 asymptotic standard errors needed for the adjusted residuals.

 4. EXAMPLE

 Table 1 is taken from the 1989 General Social Survey, conducted by the National
 Opinion Research Center at the University of Chicago. Subjects in the sample were
 asked their opinion on (1) early teens, age 14-16, having sex relations before marriage,
 (2) a man and a woman having sex relations before marriage, (3) a married person having
 sexual relations with someone other than the marriage partner. The response categories
 were 'always wrong', 'almost always wrong', 'wrong only sometimes', 'not wrong at all'.

 For these -data, the generalized quasi-symmetry model (2.1) corresponding to the
 cumulative Rasch model has likelihood-ratio goodness-of-fit statistic equal to 13 6 and
 Pearson statistic equal to 10 8, based on 10 degrees of freedom. Table 1 contains many
 zeros and small counts, so these summary statistics are crude indices of lack of fit.

 Fitted values are also shown in Table 1. The adjusted residuals showed no systematic
 pattern of lack of fit, and only four of them exceeded 2 0, with none exceeding 3 0. The

 estimates of {f,3}, scaled so that 31 = 0, are 32 = 4 353 (ASE= 0.339) and /3 = -0 548
 (ASE= =0194), for which 32- /3 = 4 901 (ASE= 0 347). Responses regarding teen sex
 and extra-marital sex tended to be much more conservative than those regarding pre-
 marital adult sex.

 5. A SIMPLE MEASURE OF MARGINAL HETEROGENEITY FOR ORDINAL MATCHED PAIRS

 In the case of k = 2 items, a simple estimate of /3 = 32 - 31 results from the naive
 approach of treating different strata of the collapsed table as independent samples. The
 estimate obtained by fitting the quasi-symmetry model with homogeneous main effect
 terms to the (r - 1) x (2 x 2) collapsed table is identical to the estimate obtained for the
 2 X 2 further collapsing of this table, collapsed over the cutpoint dimension. But this

 estimate is simply the log of the ratio of the two discordant counts in that table. In
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 Table 1. Opinions about teenage sex, premarital sex, and extramarital sex, with fitted

 values for proportional odds Rasch model in parentheses

 Teen Premarital Extramarital sex

 sex sex 1 2 3 4

 1 1 140 (140) 1 (1.4) 0 (0 0) 0 (0 0)

 2 30 (304) 3 (3 1) 1 (08) 0 (00)

 3 66 (661) 4 (41) 2 (1.6) 0 (00)

 4 83 (831) 15 (155) 10 (79) 1 (3.8)*

 2 1 3 (1 4) 1 (0 5) 0 (00) 0 (00)

 2 3 (30) 1 (1) 1 (08) 0 (00)

 3 15 (146) 8 (79) 0 (00) 0 (00)

 4 23 (224) 8 (79) 7 (54) 0 (00)

 3 1 1 (09) 0 (00) 0 (00) 0 (00)
 2 0 (00) 0 (08) 0 (00) 0 (02)

 3 3 (35) 2 (24) 3 (3) 1 (1.1)
 4 13 (15-3) 4 (4 8) 6 (6 0) 0 (0 5)*

 4 1 0 (00) 0 (00) 0 (00) 0 (00)
 2 0 (00) 0 (1 1) 0(00) 0(0 1)

 3 0 (00) 0 (00) 1 (1 0) 0 (00)

 4 7 (4.9)* 2 (1-4) 2 (1.3)* 4 (4)

 * Adjusted residual exceeds 2 0.
 Data from 1989 General Social Survey, with categories I = always wrong, 2 = almost always wrong,
 3 = wrong only sometimes, 4 = not wrong.

 terms of the cell counts {n11} of the original r x r table, this estimate has the appealling form

 3 = log [{Z(j- i)n11} { (i-j)n1}] . (5.1)

 Assuming the model holds, this is also a consistent estimator of /3.
 This estimator is related to one of McCullagh (1977), i.e. his A*, with identical weights

 Wj. A standard error for /3 that assumes independent strata is inappropriate, but it is simple
 to derive a proper one. Treating {n11} in the original r x r table as a multinomial sample, the
 estimated asymptotic variance is

 VW/) E -)n /{j (j j-i)ne>}+ (i j)2V (i-jna (5 2
 i<i < > >

 The ratio /{J() } 1/2 is an approximately normally distributed statistic for testing that
 /3 = 0. This is a simple way to test marginal homogeneity in square ordinal tables when
 one expects the cumulative Rasch model to be approximately true. More generally, it is
 a reasonable statistic for ordinal matched-pairs data whenever we expect one response to
 be approximately a location shift of the other one. In our experience, the naive estimator
 (5 1) is quite adequate for a quick and simple analysis. It has little efficiency loss compared
 to the maximum likelihood one described in ?4, in the sense that its estimated standard
 error is usually only slightly larger.

 In the matched-pairs case, the test of fit we suggested for the log linear model
 corresponding to the cumulative Rasch model is simply a test that the r - 1 collapsed

 tables of true probabilities all have the same ratio of discordant probabilities. In
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 practice, one would conduct this (r - 2) degree-of-freedom test or at least examine the r - 1
 separate sample ratios before pooling them to form a summary index such as (5 1).

 6. ALTERNATIVE FITTING APPROACHES AND ALTERNATIVE MODELS

 An alternative approach to fitting cumulative Rasch models is parametric marginal

 maximum likelihood. One treats the subject parameters as random effects, and assumes
 some distribution for them. One integrates the likelihood with respect to that distribution
 to obtain a marginal likelihood free of the subject nuisance parameter. Ezzet & Whitehead
 (1991) used numerical integration to obtain marginal maximum likelihood fits for a

 random effects model of form (1 1) for k = 2, assuming normally distributed subject

 effects. Harville & Mee (1984) and Jansen (1990) discussed related models.

 We noted in ? 2 that the generalized quasi-symmetry model (2- 1) has structure motivated
 by an extension of a nonparametric marginal likelihood approach. One can obtain a more
 detailed marginal structure by using that approach with all possible combinations of cut-

 points for the binary collapsings. Let m(cl, ... ., Ck; hl, .. ., hk) denote the expected number
 of subjects making collapsed response hj to item j, when the cutpoint follows category
 cj (j = 1,. .. ,k). The log linear model resulting from using this approach with the
 cumulative Rasch model (1 2) is a generalized quasi-symmetry model

 10gM(Cl, * Ck; hl,.* * hk) = - 3j I (hj =01 + *1c, * Ck; hl,.. * A)i (6.1)

 where the final term is permutation invariant for like permutations of (hl,...,hk) and
 (Cl, * , Ck).

 When k = 2, model (6- 1) has a simple logit representation that also follows directly from

 model form (1 -2). Let (Yil, Yi2) denote the responses for subject i, and let

 L f=lgP(Y11 > a,i ~2 -< b )
 Lab = logtp(y <a, vY2 > b)f

 By independence of repeated responses for a given subject, the cumulative Rasch model
 (1 2) satisfies

 Lab = logit (7bi2) - logit (Yail) = (abi - aai) - (32 -/3)7

 so that

 Lab + Lba = 2(131 - /32), (6 2)

 for all a < b. The same relationship holds for the r2 joint distributions averaged over sub-
 jects. In fact, when k = 2, equation (6 2) characterizes the joint distribution corresponding
 to model (1 -2). One can estimate the item effect by maximizing the multinomial likelihood
 for the r2 observed table subject to constraint (6 2) holding for all r(r - 1)/2 combinations
 of a and b. The special case with identical item effects, that is, Lab + Lba = 0 for all a < b, is
 the complete symmetry model.

 An alternative way to formulate subject-specific models for ordinal responses uses a

 model structure for which sufficient statistics exist for subject parameters. Agresti (1993)
 used the adjacent-categories logit in place of the cumulative logit in models (1 1) and
 (1 2), and obtained conditional maximum likelihood estimates by fitting a corresponding
 log linear model containing diagonal parameters.

 A proportional odds model of somewhat different form from the one discussed in this

 paper utilizes 'population-averaged' effects for marginal distributions (Agresti, 1989).
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 The model is

 logit (-Yh.j) = Ah 3 (6*3)

 where -yh.j denotes the probability of response < h on item j for a randomly selected
 subject, that is, Yhij averaged over the population of interest. This model refers to item
 distributions for an overall population, whereas the cumulative Rasch model applies to

 any set of subjects for whom item effects are identical. For Table 1, the estimates for
 model (6 3) are (0, 2 103, -0335), with estimated standard errors of (0, 0114, 0104).

 We obtained these results by maximizing the multinomial likelihood for Table 1, subject
 to the constraint (6 3). These estimates are considerably different from the subject-specific
 estimates. As in the binary case, e.g. Neuhaus, Kalbfleisch & Hauck (1991), subject
 heterogeneity causes subject-specific effects to exceed population-averaged effects.
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