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Summary. In magazine advertisements for new drugs, it is common to see summary tables that
compare the relative frequency of several side-effects for the drug and for a placebo, based on
results from placebo-controlled clinical trials. The paper summarizes ways to conduct a global
test of equality of the population proportions for the drug and the vector of population propor-
tions for the placebo. For multivariate normal responses, the Hotelling T 2-test is a well-known
method for testing equality of a vector of means for two independent samples. The tests in
the paper are analogues of this test for vectors of binary responses. The likelihood ratio tests
can be computationally intensive or have poor asymptotic performance. Simple quadratic forms
comparing the two vectors provide alternative tests. Much better performance results from using
a score-type version with a null-estimated covariance matrix than from the sample covariance
matrix that applies with an ordinary Wald test. For either type of statistic, asymptotic inference is
often inadequate, so we also present alternative, exact permutation tests. Follow-up inferences
are also discussed, and our methods are applied to safety data from a phase II clinical trial.

Keywords: Adverse events; Binary data; χ2-test; Generalized estimating equations; Hotelling
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1. Introduction

Table 1 contains summary results of the type that are often found in news magazines (e.g. Time)
that have full page advertisements promoting a new drug. (In recent years, advertisements of this
type have appeared for drugs such as Lamisil by Novartis Pharmaceuticals, Flonase by Glaxo
Smith Kline, Clarinex by Schering, Pravachol by Bristol-Myers Squibb, Allegra by Aventis and
Botox by Allergan.) Table 1 compares the relative frequency of several undesirable side-effects
for a drug and placebo, based on results from placebo-controlled clinical trials. In the phar-
maceutical industry, such side-effects are often called adverse events, and the studies making
such comparisons of a drug with a placebo are called safety studies.

The data in Table 1 refer to a safety study for an asthma drug, conducted by Schering-Plough
Corp. The adverse events were collected from a double-blind, randomized, phase II clinical trial
in which subjects were randomized to one of three treatments: two levels of an active drug and a
placebo. Each patient was followed over a period of at least 3 months. The adverse events were
reported at scheduled visits to the clinic and were non-solicited reports by the subject to the
investigator. The primary objective of the clinical trial was to assess a subject’s lung functions as
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Table 1. Summary of incidence of several adverse
events in an asthma trial

Adverse event Sample %

Drug Placebo

Upper respiratory or cold 40.4 58.5
Muscoloskeletal pain 12.3 23.1
Throat pain 16.4 10.8
Allergic rhinitis 11.6 10.8
Fatigue 10.3 7.7
Diarrhoea 7.5 10.8
Abdominal pain 9.6 4.6
Joint pain 8.2 3.1
Fever 7.5 4.6
Cough 4.1 10.8
Urinary tract infection 6.2 3.1

Sample size 146 65

a response to a treatment versus placebo. Subsequently, interest also focused on analysing the
evidence of a difference between the occurrence of adverse events in the treated and non-treated
groups.

For simplicity of exposition, in Table 1 we combined the results for the two dosage levels
of the drug and compared the two drug groups combined with the placebo group. (Section 8
mentions straightforward generalizations for multiple groups.) Of the 211 subjects in the study,
146 were in the drug group and 65 in the placebo group. Table 1 lists the adverse events in order
according to their overall frequency in the two groups.

In Table 1, for any given one of the 11 adverse events, a 2 × 2 table compares the counts on the
two possible outcomes for the two groups. We can then use standard inference (e.g. a χ2-test)
to analyse whether the occurrence of that adverse event was significantly different for the two
groups. However, how could we conduct a global test to analyse the evidence of a difference
between the vector of 11 population proportions for the drug and the vector of 11 population
proportions for the placebo? This question was first asked of one of us for similar data from
another company a few years ago. In this paper, we survey strategies for answering the question.

1.1. Literature on safety studies and relevant methods
The analysis of adverse event data in clinical trials is an important part of the development,
pre- and post-market characterization and safety of pharmaceutical products. Despite that fact,
comparative statistical methods for the evaluation of safety outcomes are not as well developed
as those for efficacy (O’Neill, 2002). O’Neill (1988) presented a general summary of statistical
procedures for analysing safety data.

Lin et al. (2001) investigated adverse events in a placebo-controlled clinical study based on
proportional hazards and logistic regression models for repeated binary data. The adverse events
were handled in a univariate manner, as is the case in almost all the literature on safety studies.
A simple way to conduct a global test using the univariate information in Table 1 is with the
Bonferroni approach. If Pj is the P-value for the test for the 2 × 2 table comparing a drug with
a placebo for adverse event j, an overall P-value is 11 minj.Pj/ (or 1.0 if this exceeds 1). This



Safety Studies for Drugs 693

approach is potentially quite conservative, both because of its use of the Bonferroni inequal-
ity and because it ignores potential dependence between separate individual inferences. The
conservativeness is compounded if we use a small sample discrete method for each individual
test (e.g. Fisher’s exact test). Less conservative Bonferroni approaches have been developed,
such as sequential versions (e.g. Holm (1979)). Westfall and Young (1989) proposed a permu-
tation resampling of the vector responses to find the probability (for each component in the
vector) that the minimum P-value of all tests is less than the observed P-value. This gives an
adjusted P-value for each component, following a suggestion by Mantel (1980). Their approach
is implemented by using Monte Carlo generation of random permutations in the SAS procedure
MULTTEST, which reports P-values for all individual tests (e.g. based on the marginal χ2- or
Fisher’s exact tests) adjusted for correlation and discreteness. This approach does not give a
global P-value.

Pocock et al. (1987) combined score tests for each individual component to construct a global
test for multivariate binary data, extending results from O’Brien (1984). Their test is a special
case of more general tests that were proposed by Lefkopoulou and Ryan (1993) that assume that
outcomes are uniformly more likely for one group than for another and assume an independence
or exchangeable correlation structure among them. Zhang et al. (1997) summarized this and
related multiple-test approaches for analysing multiple end points in clinical trials with quanti-
tative response variables. For instance, Lehmacher et al. (1991) described test procedures that
allow, after rejection of the global null hypothesis at level α, a stepwise analysis of differences
in subsets of all adverse events or even single adverse events while still maintaining an overall
experimentwise error rate of α. More recently, Mehrotra and Heyse (2004) addressed multi-
plicity by using a less conservative approach of controlling a false discovery rate rather than an
experimentwise error rate. In quite a different vein, Berry and Berry (2004) used a three-level
hierarchical mixed model to obtain for each adverse event a Bayesian posterior probability that
the rate is higher for the treatment. Mehrotra and Heyse (2004) and Berry and Berry (2004)
analysed a data set in which only the marginal results are known for the adverse events, so it is
not possible to conduct a multivariate analysis.

1.2. The multivariate approaches of this paper
In this paper, we shall consider test statistics that treat the data in a multivariate manner.
Chuang-Stein and Mohberg (1993) proposed a related approach, with a multivariate Wald
statistic. In Table 1, each group (drug, placebo) has 211 = 2048 possible response sequences,
according to the (yes, no) outcome for the response on each adverse outcome. The percentages
in Table 1 refer to the 11 one-dimensional marginal distributions of the 211 contingency table for
each group that shows the counts of the possible response sequences. We compare the marginal
distributions for the two groups, while using the information in their joint distributions, and we
also compare the joint distributions.

For multivariate normal responses, the Hotelling T 2-test is a well-known method for testing
equality of a vector of means for two independent samples. (In the two-sample context, it is also
called the Mahalanobis test.) We discuss analogues of this test for vectors of binary responses.
Section 2 presents a likelihood ratio test comparing the marginal distributions with marginal
logit modelling. The test is computationally intensive when each vector has a large number of
elements. Section 3 presents a simpler Wald test and a related score-type test. Section 4 discusses
tests comparing the joint distributions for the two groups. The emphasis is on permutation tests,
since asymptotic tests are not justified even with relatively few side-effects. Section 5 presents
analyses based on simpler models, such as random-effects models, that provide structure for the
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association between the responses for different adverse events. Section 6 considers the adequacy
of the large sample methods when the data are sparse and makes recommendations. Meth-
ods of each section are illustrated for the asthma data of the phase II clinical trial. Section 7
describes possible follow-up analyses, and Section 8 briefly discusses extensions to multicategory
responses and comparisons of several groups, for which the tests proposed are multivariate ver-
sions of likelihood ratio and Pearson tests of independence.

2. Using marginal models for multivariate binomial vectors

For concreteness, in formulating models we refer to Table 1, which has a binary explanatory
variable (group) and a multivariate binary response vector. We denote the group by i = 1 for
the drug and i = 2 for the placebo and we denote the number of binary variables that consti-
tute the multivariate response by c .c=11 for Table 1). We assume an independent multinomial
distribution for the counts in each subtable of size 2c, with sample size n1 for group 1 and
n2 for group 2. For a randomly selected subject assigned x = i, let (yi1, . . . , yic) denote the
c responses, where yij =1 or yij =0 according to whether side-effect j is present or absent. Let
πi.j/=P.yij =1/. Then {.πi.j/, 1−πi.j//, j =1, . . . , c} are the c one-way marginal distributions
for the 2c cross-classification of responses when x= i.

2.1. Simultaneous marginal homogeneity model
This section considers the null hypothesis of equality of the two vectors of binomial parameters
(π1.1/, . . . , π1.c/) and (π2.1/, . . . , π2.c/), i.e., for each side-effect j,

π1.j/=π2.j/, j =1, 2, . . . , c: .1/

We refer to this as the simultaneous marginal homogeneity (SMH) hypothesis for the two multi-
variate distributions. This hypothesis corresponds to the marginal logit model

log
{

πi.j/

1−πi.j/

}
=βj, i=1, 2, j =1, . . . , c: .2/

More generally, this and other models that we consider can incorporate explanatory variables
in addition to the group.

Model (2) is simple. However, maximum likelihood (ML) fitting is computationally imprac-
tical for large c. The models apply to c marginal distributions of the 2c-table for each group,
yet the product multinomial likelihood refers to the multinomial probabilities within those two
tables. Note that we cannot fit the model by using only the marginal information in a table
such as Table 1; we need the two 2c joint distributions to incorporate the correlations between
responses on different adverse events. See Agresti (2002), pages 464–466, for a brief review of
ML methods for fitting marginal logit models.

To maximize the product multinomial likelihood subject to the SMH constraint, one approach
iteratively uses Lagrange’s method of undetermined multipliers together with the Newton–
Raphson method (Aitchison and Silvey, 1958; Haber, 1985). We used an algorithm based on
refinements of this method (Lang and Agresti, 1994; Lang, 2004), in which the matrix inverted
in the Newton–Raphson step has simpler form. Let π denote the vector (with 2 × 2c elements) of
the two sets of multinomial probabilities. Among the classes of models to which this algorithm
applies are the linear model having the matrix form

Aπ=Xβ .3/

and generalized log-linear models of form
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C log.Aπ/=Xβ:

In this context, the matrix A applied to π forms the relevant marginal probabilities, and β is the
vector of the c model parameters. For logit model (2), C applied to the log-marginal-probabilities
forms the marginal logits for the models. An R function (mph.fit) for the algorithm applied to
such classes of models is available from Professor J. B. Lang (Statistics Department, University
of Iowa; e-mail jblang@stat.uiowa.edu; details at www.stat.uiowa.edu/∼jblang).
The algorithm becomes more computationally demanding as c increases, but we could use it
with c=11 for the example of this paper.

2.2. Testing simultaneous marginal homogeneity
After fitting model (2), likelihood-based methods can test the SMH hypothesis. With large sam-
ples, we could use a likelihood ratio or Pearson statistic testing the goodness of fit of logit model
(2). Such statistics compare the fit of this model with the saturated model

log
{

πi.j/

1−πi.j/

}
=βij, i=1, 2, j =1, . . . , c: .4/

The SMH hypothesis (1) corresponds to H0 :β1j =β2j, j =1, . . . , c, in this model.
The likelihood ratio statistic G2 equals −2 times the logarithm of the ratio of the maximized

likelihoods for models (2) and (4). The Pearson statistic compares the 2 × 2c observed and fitted
counts for model (2), using X2 = Σ (observed−fitted)2/fitted. These two statistics have large
sample χ2-distributions with degrees of freedom df= c, the difference in parameter dimension-
ality of the two models. For these statistics, the resulting null distribution does not assume any
particular structure for the joint distribution.

2.3. Drug safety example
In the first step towards a safety analysis, investigators in the phase II trial sought an overall
evaluation of the safety profile of the asthma drug. The goodness-of-fit tests of model (2) yield
likelihood ratio statistic G2 = 16:1 and Pearson statistic X2 = 14:2, each with df = 11. Neither
statistic shows much evidence against the SMH null hypothesis (P =0:14 and P =0:22) for the
asthma data. This is valuable information to determine whether proceeding to a larger trial is
justified from a safety point of view. It is also relevant for an interim analysis of large, expensive
phase III trials, in which an independent data monitoring committee monitors safety and gives
recommendations based on their statistical safety analysis. In a different context, the result of
such a test might be part of the statistical presentation to federal drug agencies to help to justify
a drug approval application.

The joint tables for the asthma data are sparse, having 211 observations in 2 × 211 = 4096
cells, so conclusions based on these tests are tentative. The reliability of asymptotics in such
cases will be addressed further in Section 6.

3. Wald and score-type tests of simultaneous marginal homogeneity

As c increases, likelihood-based approaches become computationally more difficult. For
instance, we could not use the R function that was mentioned earlier for a data set with c > 11
variables. Alternative strategies are needed that can also handle large c. The simplest approach
to testing SMH is to form a test statistic using solely the marginal sample proportions and their
variances and covariances.
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In group i, let π̂i.j/ denote the sample proportion of subjects who report side-effect j. Let
d = .d1, . . . , dc/

′ with dj = π̂1.j/ − π̂2.j/, j = 1, . . . , c. Appendix A gives the formula for the
covariance matrix of d. Let Σ̂ denote the sample version of this matrix. Then, a Wald statistic
for testing the null hypothesis of SMH is

W =d′Σ̂−1
d:

This also has an asymptotic null χ2-distribution with df= c and was used by Chuang-Stein and
Mohberg (1993) for comparing adverse events.

In the univariate case (c=1), the Wald statistic is not as reliable a method for comparing two
proportions as the Pearson statistic is. For instance, its nominal size tends not to be as close to
the actual size. Thus, for any c we prefer an alternative statistic that uses the pooled estimate
of the variance and covariance. Appendix A also shows this matrix, which applies under the
null hypothesis. Denote the pooled estimate of Σ by Σ̂0. Let W0 = d′Σ̂−1

0 d. When c = 1, this
is the Pearson χ2-statistic, which is the score test. We recommend it over W because of the
poor performance in general of Wald inference for proportion data. We shall refer to W0 as a
‘score-type’ test, since a full score test for this hypothesis requires estimating the covariances
solely under SMH, which is considerably more complex.

For the data that are summarized in Table 1, W0 =19:9 with df =11 (P =0:047). The evidence
against the null hypothesis is somewhat stronger than with the likelihood-based statistics. Of
course, there is no guarantee that W0 performs well for large c or with small n1 and n2. Also,
Appendix A shows that when n1 �=n2 it uses an additional assumption about the second-order
marginal distributions. To obtain some feed-back on the validity of the asymptotic P-value,
we could construct a P-value by using the bootstrap, repeatedly taking multinomial samples of
sizes n1 and n2 from the two groups. The multinomial probabilities for the bootstrap are the
fitted distribution for the SMH model (2). The bootstrap test P-value is the proportion of gen-
erated resamples for which W0 is at least as large as the sample value. Using 100000 bootstrap
resamples, the bootstrap P-value for the observed value of W0 =19:9 was 0.045, compared with
0.047 from the asymptotic χ2-distribution.

When the models are expanded to include explanatory variables, the most straightforward
way to obtain parameter estimates in marginal models is the quasi-likelihood approach based
on generalized estimating equations (GEEs; Liang and Zeger (1986)). This approach is summa-
rized in Appendix B. Even without explanatory variables, the GEE approach is computationally
much simpler than ML for tables with large c. With the binary predictor of group and an unstruc-
tured working correlation matrix for the joint distribution of the variables, this corresponds to
iterating the weighted least squares approach of Koch et al. (1977) (see Miller et al. (1993)). The
GEE methods are not likelihood based. Thus, tests of hypotheses such as SMH naturally use
Wald tests rather than likelihood ratio tests. There has been some work on constructing score-
type tests for the GEE approach (e.g. Rotnitzky and Jewell (1990)) which also use empirical
covariance estimates to adjust for a misspecified correlation structure.

For the asthma data, the GEE approach assuming an exchangeable correlation structure
among the adverse events gives a Wald statistic of 21.7, with df = 11 (P-value 0.03). Simi-
lar results occurred for the Wald statistic by using other working correlation structures. When
applied to the linear model using the identity link function, GEEs compute the empirical covari-
ance of the marginal sample proportions rather than the marginal sample logits. Then, the Wald
statistic that is obtained with this approach is the statistic W that was introduced above, which
equals 21.1. However, the empirically based standard errors for the GEE approach tend to
underestimate the true standard errors (e.g. Firth (1993)), and this is supported by a study
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that we conducted that is reported below in Section 6. So, we treat the P-value of 0.03 for this
approach with some scepticism.

We do not believe that GEEs with Wald tests are as reliable as the test using the score-type
statistic W0 or the likelihood ratio test of the previous section. This is studied further in Section
6. Its advantages are versatility and readily available software.

4. Tests of identical joint distributions

In some cases, it may be of interest to test the null hypothesis that the entire 2c joint distributions
are identical for the two groups, i.e., for all possible response sequences (a1, . . . , ac),

P.y11 =a1, . . . , y1c =ac/=P.y21 =a1, . . . , y2c =ac/:

When the null hypothesis is supposed to represent ‘no effect’, for instance with subjects making
the same response whether they take a drug or placebo, then this is a more complete description
than SMH of no effect. Although this hypothesis of identical joint distributions (IJDs) is nar-
rower than SMH, in a way it is actually more nearly analogous to the Hotelling approach for
normally distributed data. That test assumes a common covariance matrix for the two groups,
and hence identical multivariate normal distributions.

The fitted null joint distribution results simply from finding joint sample proportions for
the table collapsed over the group, and the fitted counts are these proportions multiplied by
the respective sample sizes in the two groups. The likelihood ratio test, which has test statistic
G2 =2Σ observed log(observed/fitted), has residual df=2c −1. The df-value results from com-
paring an alternative hypothesis with two independent sets of 2c −1 multinomial probabilities
with a null hypothesis with a single set. Although computationally simple, using a χ2-distribu-
tion for this or the related Pearson X2-statistic is not sensible for even moderate-sized c, because
of extreme sparseness and the very large df-value. For instance, for the asthma data on which
Table 1 is based, G2 =118:6 and X2 =31:9, but these have df=2047.

Instead, we recommend conducting tests of the IJDs hypothesis using the exact permutation
distribution under this null structure of exchangeability of distributions. For the sample subjects,
consider all .n1 +n2/!=n1! n2! ways of partitioning the sample into n1 subjects for group 1 and
n2 subjects for group 2. For a chosen test statistic, the P-value is the proportion of these parti-
tions for which the statistic is at least as large as the observed value. This P-value is calculated
under the exchangeability assumption for the two groups in terms of their joint distribution,
which is the null hypothesis that was mentioned above. With large n1 or n2, this permutation
approach can be computationally intensive even with a simple test statistic. We can then select
a random sample of the possible partitions. For instance, with 5 million random partitions and
a true P-value of 0.05, the estimated P-value has a standard error of 0.0001, which is more than
sufficient for nearly all purposes.

Even with the modest sample sizes (n1 = 146 and n2 = 65) of the asthma drug safety study,
the permutation analysis entails the order of 1073 different partitions of the 211 subjects into
two groups of these sizes. Thus, we took a random sample of 5 million partitions. Using the
permutation distribution, G2 = 118:6 has P-value 0.14 and X2 = 31:9 has P-value 0.29. These
P-values provide very similar results to those for the asymptotic tests of the SMH hypothesis
using these two statistics.

Likewise, we could generate a P-value under the IJDs hypothesis for a statistic that is designed
to detect a particular characteristic for which the two distributions differ. An example is the
score-type statistic of the previous section for comparing the marginal proportions. Under the
permutation distribution, W0 =19:9 has P-value equal to 0.041.
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5. Tests imbedded in a model for the joint distributions

The main questions of interest for the asthma data refer to the marginal probabilities for the
11 adverse events, for the drug and placebo. The actual form of that joint distribution may be
regarded as a nuisance, or at best of secondary interest. Thus, the analyses that are considered in
Sections 2 and 3 dealt directly with the marginal distributions and made no attempt to describe
the joint distribution of the responses. Alternatively, we can compare the marginal distributions
or the joint distributions of the responses while assuming a model for the joint distribution. It
is easiest to do this by considering a model for which the SMH hypothesis of Sections 2 and 3
is equivalent to the IJDs hypothesis of Section 4.

This section shows ways to compare the margins while modelling the joint distribution. It
also mentions ways potentially to increase the power by considering simpler structure for the
marginal inhomogeneity.

5.1. Using random effects to model the dependence
The best-known way to induce an association between the c responses is by using random
effects. Let πs.i/.j/ denote the probability of side-effect j for subject s who is in group i. A
logistic–normal random intercept analogue of model (4) is

log
{

πs.i/.j/

1−πs.i/.j/

}
=us.i/ +βij, i=1, 2, j =1, . . . , c, .5/

where the subject-specific random effects {us.i/} are independent from an N.0, σ/ distribution.
Under this structure, SMH and IJDs correspond to the simpler model

log
{

πs.i/.j/

1−πs.i/.j/

}
=us.i/ +βj, i=1, 2, j =1, . . . , c: .6/

Since this random-effects model implies a common, non-negative association between pairs
of adverse events, it is inappropriate if there is reason to expect negative association between
certain pairs of side-effects or associations that vary dramatically in strength.

Assuming this model form, we can test SMH (and IJDs) by the likelihood ratio test compar-
ing models (6) and (5). Again, it has df= c. For Table 1, the likelihood ratio statistic equals 22.1
(df =11; P-value 0.023).

5.2. Marginal models with simultaneous model for joint distribution
When many adverse events are measured, it may be that certain associations are negative. Then,
there are alternative ways to model the joint distribution. For instance, we could use a log-linear
model. This does not require assuming an exchangeability structure for the joint distribution,
unless we assume a quasi-symmetric form of log-linear model (which is implied by a random-
effects model). The model for the two joint distributions can be specified simultaneously with
one for the marginal distributions. We can fit log-linear models simultaneously with compatible
marginal models by using methods that were described in Fitzmaurice and Laird (1993) and
in Lang and Agresti (1994). Lang’s R function that was mentioned above can fit such models.
With this approach, however, results of tests of SMH will be similar to results for tests that use
a saturated structure for the joint distribution. In standard log-linear models for the joint distri-
bution, the marginal and joint model parameters are orthogonal. In particular, if the marginal
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Table 2. Summary of methods for comparing adverse event incidence for drug and placebo groups by
testing SMH or IJDs

Method Results

1. Marginal models
(a) Likelihood ratio test of SMH (e.g. using Lang’s Likelihood ratio statistic 16.1, df =11, P =0:14

R software mph.fit)
(b) Score-type test of SMH† (quadratic form using W0 =19:9, df =11, P =0:05

differences and a null covariance matrix)
(c) GEE (Wald) test of SMH (quadratic form using W =21:1, df =11, P =0:03

differences and the covariance matrix)

2. Joint models
(a) Permutation test of IJDs† Likelihood ratio statistic 118.6, P =0:14
(b) Likelihood ratio test of SMH and IJDs for random Likelihood ratio statistic 22.1, df =11, P =0:02

-effects models

†Preferred method for sparse data.

model of SMH holds, the ML estimator of the marginal model parameters is consistent even if
the model for the joint distribution is incorrect.

5.3. Structure for the marginal inhomogeneity
Table 2 summarizes the types of analyses that we have applied to the asthma data. Except for
the permutation tests, the P-values are based on asymptotics. Since the complete 2 ×211 table
corresponding to Table 1 is sparse, conclusions based on tests having df = 11 must be made
cautiously. The asymptotics may not hold well, as we shall discuss in Section 6. More reliable
and informative tests use a model-based comparison of the SMH model with a model that pro-
vides some structure for the nature of the marginal inhomogeneity. Using a narrower alternative
hypothesis provides the potential for increased power and also focuses attention on estimating
whatever effects may exist.

One special case of the saturated model (4) that has SMH as a further special case is the logit
model

log
{

πi.j/

1−πi.j/

}
=α I.i=1/+βj, i=1, 2, j =1, . . . , c: .7/

Here, I.·/ is an indicator function, and the model permits a shift difference α between the groups
for each variable. SMH is the special case α=0. We could use an analogous structure in random-
effects model (5). Such alternatives are worthy of attention, for instance, if we expect that each
adverse event may be more likely for the drug than for the placebo.

For Table 1, model (7) has ML fit statistics G2 = 12:6 and X2 = 8:9, with df = 10, and α̂=
−0:354 has se = 0:178. It provides slight evidence of improvement over the SMH model (2),
with the change in G2 equal to 3.5 (df=1; P-value 0.06).

In the spirit of this model, we could form a simple statistic to summarize results across adverse
events that would build power for an alternative by which the probability tends to be higher for
one of the groups. For instance, for each subject we could count the total number of adverse
events and compare the means for the two groups, using either asymptotic normality of the
sample means or assuming a distribution such as the negative binomial distribution or using a
nonparametric comparison.
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For Table 1, about 80% of the subjects had no more than two adverse events, and the maxi-
mum was six. The drug and placebo groups had sample means of 1.34 and 1.48, with standard
deviations of 1.33 and 1.34. The two-sample t-test has a two-sided P-value of 0.50. This is
also the P-value for the likelihood ratio test comparing negative binomial models with separate
means and equal means. The ‘exact’ Wilcoxon test comparing the two distributions using a
conditional test for the 2 × 7 table cross-classifying the group with the number of adverse events
(i.e. conditional on the total number of observations for each adverse event total) had a P-value
of 0.44 (using StatXact or procedure NPAR1WAY in SAS). The large P-value here partly reflects
the substantial discreteness for this conditional test.

Such approaches have the potential for building power, by focusing the effect on a single
parameter and single degree of freedom. This can be helpful; for instance, O’Neill (1998) pointed
out that pre-market safety databases are often not sufficiently large to have much power for
detecting significance for a particular adverse event. However, in practice, adverse events are
probably not often uniformly more likely with a drug than a placebo. In Table 1, the sample
proportion is higher for the placebo than for the drug in four of the 11 cases, including the
case with the largest difference, so it is no surprise that the P-values that are reported in this
subsection are not particularly small.

6. Checks of asymptotic tests, and recommendations

A limitation of the ML modelling approach is potential problems due to sparseness of the data.
Sparseness can occur in the 2 × 2c contingency table if it has many possible adverse events (i.e.
large c), or small sample sizes or additional predictors that expand the table even further. In
particular, large sample χ2-tests are more trustworthy when based on small df-values than large
df-values.

6.1. Asymptotics for score and Wald statistics
When the asymptotics are questionable for the χ2-tests that are presented in this paper, it is
sensible to use the permutation distribution of the statistic of interest. However, one should
realize that the distribution is computed under the IJDs condition, as discussed in Section 4.
When we are merely interested in testing SMH, the IJDs condition is narrower than the null
hypothesis of interest.

To check the adequacy of the large sample asymptotics, we conducted a simulation study. We
used two null joint distributions: the SMH fit and the IJD fit, for the sample distribution that
generated Table 1. We used two values of c: c =11, and c =5 with the first five side-effects. We
used sample sizes n1 = n2 =50 and n1 = n2 =100. Since some studies use two or three times as
many subjects for the drug as for the placebo, we also considered the unbalanced case (n1 =100
and n2 =50), as well as the actual sample sizes for Table 1 (n1 =146 and n2 =65).

The theoretical asymptotic distribution for W0 holds under IJDs, but not under solely SMH,
because the covariance matrix assumes second-order homogeneity as well (unless n1 = n2).
Nevertheless, we found that, overall, W0 performs well for both IJDs and SMH although the
data are quite sparse for some choices of c and (n1, n2). However, results for the ordinary Wald
statistic W were poor. For instance, consider SMH with c = 11 and .n1, n2/ = .146, 65/. The
simulated mean for W was 13.4 and the variance was 46.7 (compared with nominal χ2-values of
11 and 22) and, for nominal tail proportion values of 0.10, 0.05 and 0.01, the actual proportions
in the tails were 0.23, 0.15 and 0.07. By contrast, for the score statistic W0, the simulated mean
was 10.9, the variance was 21.6 and the tail proportions were 0.097, 0.047 and 0.009. For this
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Fig. 1. Estimated probability density functions of the Wald statistic W (– – –) and score-type statistic W0
.. . . . . . ./ under the assumption of (a) SMH and (b) IJDs ( , reference χ2-density with dfD11)

case, Fig. 1 shows the simulated density functions of W and W0 under SMH and IJDs relative
to the χ2-distribution with df =11.

The tests that compare the c marginal distributions have df= c, unless we add further structure
such as in model (7). For such tests and estimation of corresponding parameters, the sparse-
ness seems to be relevant in terms of the marginal totals of the two possible outcomes for each
adverse event, for each group. The marginal models do not have reduced sufficient statistics,
but on the basis of what applies to χ2-statistics in the univariate case it seems sensible to inspect
the expected frequencies for the c separate 2 ×2 marginal tables comparing the two groups on
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the binary response. For the sample sizes that were used in the simulation study, for the cases
in which the asymptotics performed poorest, the minimum expected frequency was less than 3
and many of the 4c expected frequencies were below 5. It is unrealistic to expect a simple sample
size guideline to cover all cases well, but a tentative suggestion is to be cautious when using this
test when many marginal expected frequencies are smaller than 5.

6.2. Summary recommendations
Refer to the summary of models and tests in Table 2. Overall, we have the following recom-
mendations. To test the IJD hypothesis, use the likelihood ratio or Pearson statistic based on
the fitted values for that hypothesis, but use the permutation distribution (randomly sampled,
if necessary) to obtain the P-value. To test the SMH hypothesis, use the score-type statistic
W0. We recommend W0 over the likelihood ratio or Pearson statistic merely because we could
conduct simulations to evaluate its asymptotic performance; this is computationally difficult
for the ML-based statistics for testing SMH. When some marginal expected frequencies are
small to moderate, we can seek corroboration by checking whether similar results apply with
a bootstrap for W0 under the fitted SMH distribution (when it is computationally feasible to
obtain that fitted distribution). If results differ in a practical sense, or if many of the marginal
expected frequencies are less than about 5, it is safer to use a permutation test of IJDs instead.
When c =1, the SMH and IJDs methods are identical, and the likelihood ratio and score-type
statistics simplify to the ordinary likelihood ratio and Pearson statistics for testing independence
in a 2 × 2 table.

7. Follow-up comparisons

We presented multivariate methods to assess the evidence of a global difference for two vectors
of proportions. When the null hypotheses of SMH or IJDs are rejected, investigators are nat-
urally interested in which specific adverse events or sets of adverse events actually caused the
difference. For any given adverse event, a 2 × 2 table compares the counts on the two possible

Table 3. Follow-up inference for estimating differences of incidence of several adverse events
in an asthma trial

Adverse event Sample proportion z-statistic Adjusted Bonferroni score
P-value confidence interval

Drug Placebo

Upper respiratory or cold 0.404 0.585 −2.43 0.124 (−0.375, 0.030)
Muscoloskeletal pain 0.123 0.231 −1.98 0.391 (−0.293, 0.042)
Throat pain 0.164 0.108 1.07 0.952 (−0.113, 0.186)
Allergic rhinitis 0.116 0.108 0.18 1.000 (−0.157, 0.130)
Fatigue 0.103 0.077 0.59 1.000 (−0.130, 0.137)
Diarrhoea 0.075 0.108 −0.78 1.000 (−0.194, 0.079)
Abdominal pain 0.096 0.046 1.23 0.937 (−0.094, 0.152)
Joint pain 0.082 0.031 1.39 0.890 (−0.084, 0.147)
Fever 0.075 0.046 0.79 1.000 (−0.113, 0.126)
Cough 0.041 0.108 −1.86 0.635 (−0.226, 0.034)
Urinary tract infection 0.062 0.031 0.93 0.997 (−0.103, 0.120)

Sample size 146 65
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outcomes for the two groups. Table 3 shows the signed square root of the Pearson statistic,
which is the z-statistic for comparing two independent proportions by using the standard error
based on pooling the two samples. Of the 11 z-statistics, only one has absolute value larger
than 2, with one other close to 2. The Westfall and Young (1989) adjusted P-values are also
shown.

More informatively, we could form simultaneous confidence intervals for a summary mea-
sure comparing the drug with the placebo for each adverse event. Table 3 illustrates by showing
Bonferroni confidence intervals for the difference of proportions based on inverting the score
test (Mee, 1984). This method tends to have actual confidence level nearer the nominal level
than the usual Wald interval. Each of these intervals shown in Table 3 has nominal confidence
coefficient of 0.99545, so asymptotically the nominal overall level is at least 0.95.

For such follow-up comparisons, it is possible for all to be non-significant, for the significant
comparisons to be in a single direction (e.g. always a higher proportion for the drug) or mixed.
In the last case, what can we say about the overall safety advantages of one treatment over the
other? We could weight the evidence that is provided by the different adverse events, especially
if some are regarded as more important than others. Let wj denote a non-negative weight that
is associated with adverse event j. For w = .w1, w2, . . . , wc/

′, w′d is a weighted average of the
differences. The global score-type statistic W0 then generalizes to the weighted version

W̃0 = .w′d/2=.w′Σ̂0w/,

with df=1. For instance, investigators considered adverse events 1 and 4 in Table 1 to be more
important for the asthma drug. Assigning twice as much weight to these two adverse events,
we obtain W̃0 = 1:32 (P-value 0.25). Such summaries also have the advantage that was men-
tioned in Section 5.2 of potentially building power from concentrating the effect on a single
degree of freedom. Here, this approach did not result in a small P-value, as the placebo had
a higher proportion for the first adverse event but the drug did for the fourth adverse event.

We could also incorporate weights in the score statistic itself, without planning to form
a weighted summary. We weight the influence of difference j using the weighted difference
d̃j = wjdj. The global score-type statistic W0 then generalizes to the weighted version
W̃0 = d̃′ ˆ̃Σ

−1
0 d̃. It incorporates prior belief about the seriousness of adverse events and the mag-

nitude of their differences between the drug and placebo. Or, as in Berry and Berry (2004), we
could take into account the body system, for instance by using weights for adverse events in
a common body system that are inversely proportional to the number of adverse events in it.
Here, ˆ̃Σ0 is constructed from Σ̂0 by simply multiplying the jth diagonal element by w2

j and the
.j, k/th off-diagonal element by wjwk. The ordinary score-type statistic W0 is the special case
with identical {wj}, and this statistic likewise has an asymptotic χ2 null distribution with df= c.
If the greater differences between the drug and placebo occur with adverse events considered
more serious, this statistic may show greater significance than the ordinary score-type statistic.

8. Extensions

The methods of this paper extend in obvious ways to several groups. To test SMH with g groups
and c variables, we can extend the score-type statistic W0 by forming a vector d of c.g − 1/

differences of proportions, comparing a given proportion for each group with the correspond-
ing proportion for an arbitrary base-line group. The variances and covariances of the differences
are estimated by using estimates {π̂.j/} and {π̂.j, k/} based on pooling the g samples.

The methods also extend in obvious ways to multicategory responses. For comparing g groups
simultaneously on c variables, with rj categories for variable j, the basic likelihood ratio and
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score-type sorts of tests have df= .g −1/.Σj rj − c/. For a single variable, these simplify to the
likelihood ratio and Pearson χ2-tests of homogeneity (or, equivalently, independence) in a two-
way g × r contingency table. With even moderate g and c, asymptotic methods are suspect. A
sensible strategy for testing is a permutation test for the various allocations of the subjects to
the g groups, computing a relevant sample statistic for each (e.g. the extended W0-statistic for
testing SMH). With covariates, the permutation test is still feasible by using a random sample
of the possible permutations, even when some covariates are continuous.

In another context, the SMH hypothesis is a special case of a hypothesis that was studied by
Agresti and Liu (1999) in considering survey data in which each subject can pick any number of
outcomes for a multiple-category response. See also Loughin and Scherer (1998) for a bootstrap
approach for such data. For a related permutation analysis, see Berry and Mielke (2003).

As is generally true, we have seen that different tests and different test statistics for a given
hypothesis can lead to quite different P-values. For the asthma data, there was no uniformity
relative to the often sacred 0.05-level in terms of whether hypotheses should be rejected. This
points out the importance of giving careful thought ahead of time to which is the relevant
hypothesis to test (i.e. SMH or IJDs) and which statistic we prefer to summarize the effect. It
also points out the ultimate advantage of focusing on the size of the effects rather than mere sta-
tistical significance. Confidence intervals based on different methods (e.g. Wald, likelihood ratio
or score) can appear relatively similar in practical terms even when P-values of corresponding
tests diverge somewhat.
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Appendix A: Covariance matrices for Wald and score statistics

Let d= .d1, . . . , dc/
′ with dj = π̂1.j/− π̂2.j/, j =1, . . . , c. The vector of differences d has covariance matrix

with elements

var.dj/=π1.j/{1−π1.j/}=n1 +π2.j/{1−π2.j/}=n2,

cov.dj , dk/= cov{π̂1.j/, π̂1.k/}+ cov{π̂2.j/, π̂2.k/}
={P.y1j =1, y1k =1/−P.y1j =1/P.y1k =1/}=n1

+{P.y2j =1, y2k =1/−P.y2j =1/P.y2k =1/}=n2:

Under the null hypothesis, the variance is estimated by

π̂.j/{1− π̂.j/}
(

1
n1

+ 1
n2

)
,

where the pooled estimate

π̂.j/={n1 π̂1.j/+n2 π̂2.j/}=.n1 +n2/:

Under the additional assumption that the two groups have the same second-order marginal distributions,
the covariance is estimated by

{π̂.j, k/− π̂.j/ π̂.k/}
(

1
n1

+ 1
n2

)
,
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where π̂.j, k/ denotes the sample proportion of cases that had both side-effects j and k, after the two sam-
ples have been pooled. When n1 =n2, this estimate is identical to the estimate using only pooled first-order
marginal distributions, and we do not need the extra assumption.

Appendix B: A non-technical summary of the generalized estimating equation
approach

The GEE approach is a multivariate version of quasi-likelihood, meaning that it specifies only the first
two moments rather than a full distribution (Liang and Zeger, 1986). The model applies to the mean of
the marginal distribution for each component yij of the multivariate response (such as model (2)). The
method assumes a variance function corresponding to the distribution that it is natural to assume for
yij marginally (such as the binomial distribution) and uses a working guess for the correlation structure
among {yi1, . . . , yic}. It does this without assuming a particular multivariate distribution. The estimates
are solutions of GEEs. These resemble likelihood equations but are not, since a complete multivariate
distribution is not specified (in the univariate case they are likelihood equations under the additional
assumptions that the distribution is the member of the exponential family that has the assumed variance
function).

The GEE estimates of model parameters are valid even if we misspecify the covariance structure, i.e.,
when the marginal model is correct, then the GEE model parameter estimators are consistent. Standard
errors result from a ‘sandwich matrix’ adjustment that the GEE method makes using the empirical depen-
dence that the data exhibit. The naı̈ve standard errors based on the working correlation assumption are
updated by using the information that the data provide about the actual dependence structure to yield
robust standard errors that are more appropriate than those based on the guessed working correlation.
In theory, choosing the working correlation wisely can pay benefits of improved efficiency of estimation.
However, Liang and Zeger (1986) noted that estimators based on treating the responses as independent
in the working correlation structure can have surprisingly good efficiency when the actual correlation is
weak to moderate.

The GEE approach is appealing because of its computational simplicity, but it has limitations. Since
it does not completely specify the joint distribution, there is no likelihood function, and likelihood-based
methods are not available. In addition, unless the sample size is quite large, the empirically based standard
errors tend to underestimate the true standard errors (Firth, 1993).
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