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Some Remarks on Latent VariableModels
in Categorical Data Analysis
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2Institute of Statistics, RWTH Aachen University, Aachen, Germany

We present an overview of some important and/or interesting contributions to the
latent variable literature for the analysis of multivariate categorical responses,
beginning with Lazarsfeld’s introduction of latent class models. There is by now an
enormous literature on latent variable models for categorical responses, especially
in the context of including random effects in generalized linear mixed models, so
this is necessarily a highly selective overview. Due to space considerations, we
summarize the main ideas, suppressing details. As part of our presentation, we raise
a couple of questions that may suggest future research work.

Keywords Association models; Latent class models; Local independence; Mixture
models; Ordered categorical data; Random effects models; Rasch model.

Mathematics Subject Classification 62H25; 62H20; 62J99.

1. Introduction: The Lazarsfeld Latent Class Model

Latent variable models have by now a very long history. The development of
methods for categorical data lagged behind that for continuous variables, and this is
true also for latent variable methods. For continuous variables, research on methods
such as factor analysis dates to the start of the twentieth century, with significant
contributions by psychologists such as Charles Spearman. For categorical variables,
landmark work was done by the sociologist Paul Lazarsfeld (1901–1976).

In particular, Lazarsfeld (1950a,b) introduced the basic latent class model,
treating a contingency table as a finite mixture of unobserved tables generated under
a conditional independence structure. For a set of categorical response variables
�Y1� Y2� � � � � YT �, the model assumes the existence of a latent categorical variable
Z such that for each possible sequence �a1� � � � � aT � of response values and each
category z of Z,

P�Y1 = a1� � � � � YT = aT �Z = z�

= P�Y1 = a1 �Z = z� · · ·P�YT = aT �Z = z��

Received October 18, 2012; Accepted June 7, 2013
Address correspondence to Alan Agresti, Department of Statistics, University of

Florida, Gainesville, FL 32611-8545, USA; E-mail: aa@stat.ufl.edu

801

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 



802 Agresti and Kateri

The model did not receive much attention in terms of application or further
methodological development until the publication of the text by Lazarsfeld and
Henry (1968). Google Scholar reports that this book has now received more
than 1500 citations. Lazarsfeld and Henry (1968, p. 22) stated that “The defining
characteristic of the latent structure models is the axiom of local independence.” That
is, within a latent class, responses to different Yt are independent. This principle was
invoked by other authors about the same time (e.g., McDonald, 1967).

Lazarsfeld and Henry (1968) considered continuous as well as discrete latent
variables, but the discrete case received the most attention in the years following
publication of their book. More recently, the latent variable literature has commonly
utilized continuous latent variables, and our discussion below will also consider such
models; the unifying aspect of our presentation is its focus on categorical observed
variables.

In reading this classic 1968 book, more than 50 years after its publication, one
is likely to find quite striking the challenge provided by fitting this basic model.
F. Mosteller had apparently suggested to Lazarsfeld the method of finding estimates
by solving “accounting equations” that equate relative frequencies to corresponding
marginal probabilities of various orders. The authors show how to solve these
equations iteratively, using the “determinantal method.” They note that the resulting
estimates approximate the minimum chi-squared estimates that are in Neyman’s
best asymptotically normal (BAN) class of optimal estimates. Anderson (1954)
showed asymptotic properties of such estimators, and he provided an appendix in
their book dealing with their asymptotic properties.

In the context of the 1950s and 1960s, the computational aspects of fitting the
model were daunting. The authors stated (p. 13) that when �Yt� have >2 categories,
the model has so many restrictions that its practical application seems doubtful. In
fact, not long after that it was applied in such cases and also with more than one
latent variable. In an email to the first author of this article on May 15, 2012, Neil
Henry wrote, “While Lazarsfeld was many things, he was not a statistician. The
people he had working on LSA with him were sociology students with mathematical
abilities, but no interest in inferential statistics� � � . The papers, mostly unpublished,
that I inherited in 1960 were full of these accounting equation solution techniques.
Eventually I learned enough history to realize that he had adopted Karl Pearson’s
‘method of moments’ technique of estimation. Maximum likelihood estimation was
impossible (as a practical estimation technique) in the 40s and 50s, of course.”

Not many years later, Goodman (1974) showed how to fit the basic Lazarsfeld
latent class model for the case of a discrete latent variable, using maximum
likelihood (ML). His algorithm was an early application of the EM algorithm,
three years before the classic article by Dempster et al. (1977). The algorithm treats
the data on Z as missing. The E (expectation) step in each iteration calculates
pseudo-counts for the unobserved table using the working conditional distribution
for �Z � Y1� � � � � YT �. The M (maximization) step treats pseudo counts as data and
maximizes the pseudo-likelihood, by fitting the model that treats the responses as
conditionally independent within each category of Z.

From properties of the EM algorithm, this method of fitting the model is
computationally simple and stable, and each iteration increases the likelihood.
However, convergence can be very slow. Some of the later literature on such models
instead used a Newton–Raphson algorithm (e.g., Haberman, 1988). Now, some
software packages for fitting such models (e.g., Latent GOLD) use EM at the
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Latent Variable Models for Categorical Data 803

initial stage, then switch to Newton–Raphson to speed convergence. Regardless of
the iterative method, problematic issues are that the log likelihood can have local
maxima (especially as the number of latent classes increases), and as the model
increases in complexity, identifiability becomes an issue.

2. Some Extensions of Latent Class and Latent Variable Models

The impact of Lazarsfeld’s model and of the subsequent text by him with Henry
has been substantial, particularly in the social sciences. The model has been applied
frequently, and many books have been written since theirs about the model and its
generalizations. A popular reference book is Hagenaars and McCutcheon (2002),
and a more recent one is by Collins and Lanza (2010). Much of the methodological
generalization was performed by statisticians having a social science orientation,
such as Leo Goodman and Clifford Clogg. In this section, we’ll give examples of
such generalizations, some of which enter the much more general realms of mixture
modeling and of generalized linear mixed models containing continuous random
effects, for which the literature has exploded in the past quarter century.

2.1. Using Goodman’s Association and Correlation Models

The standard latent class model treats both the observed variables and the latent
variables as nominal scale, not taking into account any ordering that may exist
among the categories. Goodman (1979) proposed a class of association models
that provide structured form for associations between variables, when at least
one of them is ordinal. An example is his uniform association model: for expected
frequencies ��ij� in a two-way contingency table and for sets of equally-spaced
scores �ui� and �vj� for the rows and columns, the model has the loglinear form

log �ij = �+ �Xi + �Yj + 	uivj�

With �ui = i� and �vj = j�, the model implies a common value of local odds ratios,
��ij�i+1�j+1�/��i�j+1�i+1�j� = exp�	�, for pairs of adjacent rows and adjacent columns.
Later work by Goodman and others showed that such association models fit well
when there is an underlying bivariate normal distribution.

With ordinal categorical responses, it seems natural to have ordered latent
classes also, such as by assuming ordinal structure (e.g., uniform association)
between the latent variable and each ordinal response variable. For example, Agresti
and Lang (1993) modeled agreement among many raters evaluating carcinoma
with an exchangeble model having the same 	 between each ordinal variable and
the latent variable. The model parameters describe two components of agreement:
The strength of association between classifications by pairs of raters (governed
by the size of 	), and the degree of heterogeneity among the observers’ marginal
distributions. Strong agreement requires strong association and relatively minor
heterogeneity. For the data analyzed, the model fit well with three latent classes:
The first may reflect cases with rater agreement that carcinoma was present; the
second may reflect strong disagreement, by which some raters thought carcinoma
was present and some thought it was not; the third may reflect cases with rater
agreement that carcinoma was not present.

In later research, Goodman popularized canonical correlation models as an
alternative type of structure that can describe ordinal associations. For them, the
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804 Agresti and Kateri

association term has linear-by-linear structure on the expected frequency scale,
rather than its log. For two-way tables, Gilula (1984) related latent class models to
canonical correlation models.

2.2. Latent Mixture Model for Summarizing Goodness of Fit

For any model, it is nearly always the case that we do not expect it to hold perfectly
in the population of interest. Hence, for categorical data, with sufficiently large n,
traditional goodness-of-fit statistics such as the Pearson and deviance chi-squared
statistics will reject the model with high probability. This is the case even if, in
practical terms, the lack of fit is minor and the model is actually adequate. As a
way of addressing this and developing a measure to reflect model inadquacy, Rudas
et al. (1994) proposed a mixture model. For a model for a contingency table with
true probabilities � (of any fixed dimension), they expressed

� = �1− 
��1 + 
�2�

where �1 are the model-based probabilities and �2 are unconstrained. This always
holds for some values of 
, in a set with upper limit 1. They proposed their index
of lack of fit as the smallest such 
 possible for which this holds. That is, it is the
fraction of the population that cannot be described by the model.

Their approach recognizes the late George Box’s famous quote that “All models
are wrong, but some are useful,” with “useful” meaning that the minimal 
 is very
close to 0. Note that such a mixture model contrasts with the standard latent class
model in which both �1 and �2 satisfy a conditional independence structure. In fact,
many of the innovative uses of latent variable models in the past quarter century
have moved away from the previously unifying concept of local independence to
more general forms of mixtures.

2.3. Latent Mixing of Logistic Regression and Count Data Models

As we’ll discuss later, many applications of latent variable models for categorical
data now involve some sort of mixing of ordinary models such as logistic regression
models. In an early and innovative application of this type, Follman and Lambert
(1989) analyzed the effect of a dosage of poison on the probability of death of
a protozoan of a particular genus. In the application considered, there were two
genuses expected, but they were unobserved. For �i�x� = the probability of death
at log dose level x for genus type i, i = 1� 2, and 
 = the probability a protozoan
belongs to genus type 1, their model is

��x� = 
�1�x�+ �1− 
��2�x�� where logit��i�x� = �i + 	x�

The curve for ��x� is a weighted average of two curves having the same logistic
shapes but different intercepts. For the data they analyzed, the deviance decreased
by 21.3 �df = 2� compared to using a single logistic regression curve. (Perhaps
surprisingly, it decreases by only 1.7 when we instead assume a normal mixture of
curves rather than a binary weighting, an issue we’ll address in a later section.)

A few years later, Lambert (1992) proposed a mixture model for count response
variables. Her zero-inflated Poisson (ZIP) regression model is useful in applications
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Latent Variable Models for Categorical Data 805

in which some observations must be zero and others are zero just by chance
(e.g., number of times went to a gym in the past week; some people will never go,
whereas some weeks those who are members of a gym will fail to go). This can
be regarded as a latent class model in which one class consists of the necessarily
0 responses and the other class consists of those subjects whose observations follow
a standard parametric distribution such as the Poisson. This type of approach is
quite useful in other settings in statistical modeling to allow for two (or more) types
of subjects in a sample. A direct generalization of the ZIP model to deal with the
overdispersion commonly enountered with count data is the zero-inflated negative
binomial model (Greene, 1994). Another generalization deals with repeated measures
of zero-inflated data (Min and Agresti, 2005).

2.4. Item Response Models

Our discussion so far has focused on models with discrete latent classes. However,
since Lazarsfeld’s original proposal of the latent class model, many latent variable
models for categorical responses have used continuous latent variables. A large and
early-to-develop literature of this type dealt with applications in which subjects had
unobserved latent traits, such as their “ability” for the performance on an exam.

For a set of items, let yit denote the response of subject i on item t. An important
application is a set of questions on an exam, in which yit = 1 denotes a correct
response on question t. For a binary response, Rasch (1961) proposed a model
having the form

logit�P�Yit = 1 � ui� = ui + 	t�

In the context of a set of questions on an exam, ui is a latent ability measure
for subject i. Rasch treated �ui� as fixed effects. To estimate �	t�, he used the
Fisherian approach of eliminating �ui� using conditional ML. He assumed the local
independence structure by which, conditional on ui, the T responses by subject i are
independent.

Since Rasch’s landmark work, a huge literature has evolved on such item
response models (also referred to as latent trait models). It is increasingly common
to treat ui as an unobserved latent variable (a “random effect”) rather than as a
fixed effect. As discussed later, most such models assume normality for the random
effect, but some authors have taken other approaches. For example, Tjur (1982)
averaged over ui in a nonparametric manner in obtaining a marginal distribution
for estimating �	t�. He showed that the Rasch model for T items implies a model
for the observed 2T table that afficionados of contingency table modeling will
recognize as the quasi-symmetry (QS) model (e.g., Agresti, 2013, Sec. 11.7.1), which
is a model that takes the complete symmetry structure for the T items but then
permits marginal distributions to differ. In fact, he showed that ML estimates of �	t�
for the QS model are identical to conditional ML estimates of �	t� for the Rasch
model. Analogous results apply for nonparametric treatment of random effects in
extensions of the Rasch model for ordered categories and corresponding ordinal QS
loglinear models (e.g., Agresti, 1993).

In an alternative nonparametric approach, Lindsay et al. (1991) assumed that
ui can take a finite number q of ordered numerical values,

P�U = ak� = 
k� k = 1� � � � � q�
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806 Agresti and Kateri

for unknown q, �ak� and �
k�. For this Rasch mixture model, we might expect to get
an increasingly precise estimate of the actual mixture distribution, using more and
more mass points �ak�, as the sample size n increases. However, Lindsay et al. (1991)
showed that the likelihood function increases in q but reaches a maximum when
q = �T + 1�/2. Regardless of the sample size, the fitted discrete mixture distribution
need not give a good representation of the actual one. Note also that such a
model differs from the ordinary latent class model, since it assumes structure for
P�Yit = 1 � ui�, whereas the ordinary latent class model assumes no structure for
P�Yt = yt �Z = z�.

In the 1980s, other research was more in the vein of extending ordinary factor
analysis to categorical responses. Examples are Bartholomew’s (1980) development
of factor analysis for categorical data and his 1984 work on latent variable models
for ordered categorical data. These and earlier work such as by Christoffersen (1975)
and Muthén (1978) were influential in psychometrics and education. For a recent
survey of such work, see Bartholomew et al. (2011).

2.5. Generalized Linear Mixed Models

In most applications, such as those addressed by item response theory, it is more
realistic to assume a continuous latent variable than a discrete one. Using a discrete
latent variable, such as Lindsay et al. (1991) suggested, provides merely a rough
approximation for this more realistic structure. Although these days it seems quite
natural to insert into a generalized linear model a set of random effects having a
normal distribution or some other continuous distribution, it took some time for
such an approach to catch on. Pierce and Sands (1975) may have been the first to
propose using logistic regression with a random intercept term that was assumed
to be normally distributed, in an unpublished technical report. According to Pierce
(2011 oral communication with first author), the article received a lukewarm
reception from referees of a major journal and the authors never bothered to revise
and resubmit, but this paper has received numerous citations since then.

Pierce and Sands used Gauss–Hermite quadrature to integrate out the random
effects in order to approximate the likelihood function. This is still a practical
and effective approach for generalized linear mixed models (GLMM) with simple
random effects structure. In a later highly influential article, Breslow and Clayton
(1993) developed penalized quasi-likelihood (PQL) as a simple alternative to
Gauss–Hermite quadrature for more complex random effects structure for which
quadrature is impractical. However, PQL can be highly biased for a categorical
response with large variance component (Lin, 1997), and literature since then has
focused on other approaches. Ways of efficiently fitting such models is still a
relevant research topic, as models with more complex random effects structure are
proposed (e.g., multilevel models). Zipunnikov and Booth (submitted) suggested
that higher-order Laplace approximations work better in practice than some
methods that, in theory, produce ML but may be very slow to do so (such as Monte
Carlo EM). The Bayes approach with diffuse priors is also used to approximate ML
(e.g., with MCMC), but it is still unclear how well this works in models having a
large number of parameters and a large number of random effects.

Another still relevant question for current research concerns the importance of
the choice of distribution assumed for random effects in such models. In the GLMM
context, perhaps the most important extension of the basic latent class structure

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 



Latent Variable Models for Categorical Data 807

of conditional independence within levels of an unobserved variable, let yit denote
observation t in cluster i, t = 1� � � � � Ti, with random effects ui for cluster i. For
�it = E�Yit � ui�, a GLMM has the form

g��it� = xT
it� + zTitui

for a link function g�·� and fixed effects �. Typically such models make the
assumption that ui ∼ N�0��� for unknown “variance components.” Alternative
assumptions for the random effects include a nonparametric approach (e.g., Aitkin,
1999) and a mixture of normal distributions (Molenberghs et al., 2010).

The ordinary multivariate normal assumption has the advantage of natural
use in multivariate cases (e.g., because of the variety of possible correlation
structures) and for multilevel models. But what if we assume normality and the
actual distribution is quite different? Most literature shows relatively little effect
in bias and efficiency of model parameter estimates in using an incorrect random
effects distribution (e.g., Neuhaus et al., 1992). In addition, the accuracy of the
predicted random effects does not seem to be much affected by such violations
(McCulloch and Neuhaus, 2011); different distributions can yield quite different
predicted values (that resemble in distribution the assumed shape) but have similar
MSE performance in how close they fall to the actual random effects. However,
when var�ui� depends on covariates, between-cluster effects may be quite sensitive
to misspecification of the distribution of ui (Heagerty and Zeger, 2000). One reason
for this is the implied diminution of marginal effects relative to conditional effects,
the diminution being greater for cases with larger variance for the random effects.

There is at least one case where misspecification of shape can be relevant.
Agresti et al. (2004) found a significant efficiency loss for estimating parameters
in the logistic random intercept model when normality is assumed for a random
intercept but the true distribution is a two-point mixture. This is especially true
when var�ui� and T are large. Such binary latent variables with large variance are
natural in applications in which a population has extreme polarization, such as
modeling responses to several items dealing with opinions about whether abortion
should be legal in various situations.

2.6. Latent Transition Analysis

Latent class analysis does not handle dynamic latent variables that change
systematically over time. Discrete dynamic latent variables are mostly analyzed by
Markov models that predict the probability of movement between the categories
of the latent variable between successive time points. Latent transition analysis is
an extension of latent class analysis in a longitudinal framework that allows the
modeling of more complex situations, involving static and dynamic latent variables,
for which their stage-sequential change is investigated (Graham et al., 1991; Collins
and Wugalter, 1992).

For details and references about latent transition models, see Collins and Lanza
(2010). For an overview and a comparative study of latent class models, Markov
models, latent Markov models, and latent transition analysis applied for modelling
a stage-sequential development; see Kaplan (2008). Cho et al. (2010) proposed a
latent transition analysis model with a mixture Rasch model as the measurement
model that permits within-class variability on the latent variable.
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808 Agresti and Kateri

3. Standard Categorical-Response Models Generated
by Latent Variable Models

Many standard models for categorical response variables can be motivated by latent
variable models. This is useful to know, even if in a particular application we are
not explicitly accounting for latent variables.

Examples are models for binary data such as the probit model and the logistic
regression model. Early uses of such models were in dose–response studies, for
which a tolerance distribution relates to an unobserved latent variable. Specifically, in
dose–response studies, a tolerance distribution with cumulative distribution function
(cdf) F for the dosage x that induces a “success” response implies the model

G−1���x� = �+ 	x

for standardized cdf G corresponding to F . That is, G−1 becomes the link function
for the model. The choice G = � (standard normal) gives the probit model (Bliss,
1935), whereas G = standard logistic gives the logit link (Berkson, 1944). Related
latent variable models that can induce such binary regression models are the
threshold model and the utility model; see Agresti (2013, Sec. 7.1.1) for details.

Standard models for ordinal response variables also result from latent variable
models, as shown by Anderson and Philips (1981). Suppose the underlying response
y∗ has mean relating to explanatory variables by E�y∗� = �Tx, and the random
errors come from a distribution having standardized cdf G. Suppose also that there
are thresholds (cutpoints) −� = �0 < �1 < · · · < �c = � such that the observed
ordinal response y falls in category j of c outcome categories if �j−1 < y∗ ≤ �j . Then,

P�y ≤ j � x� = P�y∗ ≤ �j � x� = G��j − �Tx��

This implies that the model for y is G−1�P�y ≤ j � x� = �j − �Tx. That is, the
appropriate link function is the inverse of the standardized cdf for the errors for the
latent variable model. So, the cumulative logit model with the same effects for each
cumulative probability (i.e., the model with the so-called proportional odds property)
applies when G is logistic, and the cumulative probit applies when G is normal. That
is, the cumulative logit (probit) model fits well when an ordinary linear regression
model holds for an underlying logistic (normal) response.

This derivation suggests that such models are designed to detect shifts in
location (center), not dispersion (spread), at different settings of the explanatory
variables. In fact, the standard ordinal models that have the same effect parameters
for each cumulative probability imply that the conditional distributions of y at
different settings of explanatory variables are stochastically ordered. When this
is badly violated, simple models such as the proportional odds version of the
cumulative logit model tend not to fit well.

4. Brief Summary of Other Latent Variable Modeling

Since the seminal book by Lazarsfeld and Henry, the literature on latent class
and latent variable modeling for categorical variables has continually expanded at
a rapid rate, both for new methodological developments and for applications of
models. Here we’ll briefly mention some other advances of each type and mention
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Latent Variable Models for Categorical Data 809

some useful software. In each subsection, we’ll first list articles dealing with latent
classes and then articles dealing with latent variables.

4.1. Methodological

• Clogg (1981) proposed latent structure models for the analysis of mobility
tables and examined their relationship to some earlier mobility models. He
introduced the quasi-latent structure and noted that this new model is similar
to the “mover-stayer” model, but differs from it by positing two latent classes
of movers instead of a single one.

• de Leeuw and van der Heijden (1991) presented correspondence analysis and
latent class models and discussed their relationship. They pointed out that
Good (1965) seems to have been the first to express the correspondence
analysis model as a latent class model.

• Vermunt (2003) proposed multilevel latent class models, relaxing the
assumption of local independence, and he also considered complex sampling
designs.

• Vermunt et al. (2008) proposed the use of latent class analysis for the multiple
imputation of incomplete categorical data, as an alternative to loglinear
analysis. The uncertainty about the unknown model parameters is reflected
in the imputations by a nonparametric bootstrap procedure.

• Formann (1992) proposed a linear logistic latent class analysis for
polytomous responses that is a Rasch-type model but constrains the
unknown class sizes and the latent response probabilities. Fitting is again
achieved by the EM algorithm.

• Anderson and Vermunt (2000) noted that the Goodman association model
arises when the observed �Yt� are conditionally independent given a latent Z
that is conditionally normal (given observed variables).

• Gueorguieva and Agresti (2001) proposed a probit model for joint modeling
of clustered binary and continuous responses, based on underlying joint
normality.

• The text by Skrondal and Rabe-Hesketh (2004) presented many models
having greater complexity than we’ve had space to discuss in this article.
Skrondal and Rabe-Hesketh (2007) provided a survey of latent variable
modelling, including an extended literature review.

4.2. Applications

A large variety of latent class and latent variable model applications appear in
quite diverse fields. However, they are quite common for applications in the social
sciences, education, and psychology, such as described in Rost and Langeheine
(1997). Some more recent applications follow.

• DeSantis et al. (2008) developed a penalized latent class model for correlated
high-dimensional ordinal data and applied it in a study of schwannoma, a
peripheral nerve sheath tumor, that included 3 clinical subtypes, 7 binary, and
16 ordinal histological measures.

• Reboussin and Ialongo (2010) modeled drug use among students who
suffer from attention deficit hyperactivity disorder (ADHD), using (1) a
longitudinal latent transition model with latent classes for stages of marijuana
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810 Agresti and Kateri

use that describes probability of transitioning between stages, and (2) a cross-
sectional latent class model that constructs ADHD subtypes and describes
the influence of subtypes on transition rates.

• Moustaki and Steele (2005), in a demographic application, explored women’s
fertility preferences and family planning behavior in Bangladesh. They
proposed a latent variable model with continuous latent variables for
manifest variables that are a mixture of categorical and survival outcomes,
possibly censored. Covariate effects, both on the manifest and the latent
variables, are incorporated into the model.

• Lin et al. (2008), in an aging study, modeled repeated transitions between
independence and disability states of daily living using multivariate latent
variables. A state-specific latent variable represents an individual’s tendency
to remain in a state, and accounts for correlation among repeated sojourns
in the same state. Correlation among sojourns across states is accounted for
by correlation between different latent variables.

4.3. Software, and Internet Resources

• MLLSA software: This is the first latent class program written by C. Clogg
(1977).

• Latent GOLD software: Written by J. Vermunt and J. Magidson and marketed
by Statistical Innovations, this software fits a wide variety of mixture models,
including latent class models, nonparametric mixtures of logistic regression
models, Rasch mixture models, zero-inflated models, multilevel models, and
models with continuous latent variables.

• TWOMISS software: This program, by Albanese and Knott (1992), fits one-
or two- factor logit-probit latent variable models to binary data when
observations may be missing.

• In R: The LCA package performs a latent class analysis with k classes. Latent
transition analysis (LTA) can be performed by the package LTA. Estimation
can use ML (applying the EM algorithm) or Bayesian methods (applying
MCMC methods). The package poLCA deals with the estimation of latent
class models and latent class regression models for polytomous outcome
variables, using EM and Newton–Raphson algorithms for ML estimation.
FlexMix provides a general framework for finite mixture models and latent
class regression (Leisch, 2004). It uses the EM algorithm and provides the
E-step and all data handling, while the M-step can be supplied by the
user to easily define new models. Existing drivers implement mixtures of
standard linear models, generalized linear models and model-based clustering.
Furthermore, mmlcr is appropriate for mixed-mode latent class regression
models, for which the manifest variables can be of mixed types, including
longitudinal or single response, normal or censored-normal or categorical or
Poisson. The function lmer (linear mixed effects in R) in the R package Matrix
can be used to fit generalized linear mixed models. See also the lme4 package
and the function glmmML in the glmmML package. These use adaptive
Gauss–Hermite quadrature. The function glmmPQL in the MASS library can
fit GLMMs using penalized quasi-likelihood. The R package MCMCglmm can
fit them with Markov Chain Monte Carlo methods.

• Useful websites dealing with various aspects of latent variable modeling for
categorical variables include:
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www.people.vcu.edu/˜nhenry/LSA50.htm (Neil Henry reminiscences)
statisticalinnovations.com/products/aboutlc.html (Latent GOLD)
www.stata.com/meeting/2nasug/lclass.pdf (Stata)
www.msu.edu/˜chunghw/downloads.html R: LCA, LTA and LCPA
userwww.service.emory.edu/˜dlinzer/poLCA/ (R: poLCA)
cran.r-project.org/web/packages/flexmix/index.html (R: flexmix)
www.stat.rutgers.edu/home/buyske/software.html (R: mmlcr)
cran.r-project.org/web/packages/lme4/vignettes/Theory.pdf (R: lme4)
support.sas.com/kb/30/623.html (SAS)
www.statmodel.com (Mplus)
spitswww.uvt.nl/˜vermunt (LEM et al.)
www.john-uebersax.com/stat (overview)
faculty.chass.ncsu.edu/garson/PA765/latclass.htm (overview)

5. Summary and Future Challenges

Latent variable models have a long and substantial history for categorical data
analysis, of which we’ve been able to discuss only a few highlights in this article.
Many of the methods most commonly used by statisticians for categorical data
analysis have latent variable justifications.

In the future, research for latent variable modeling is likely to be driven by the
same challenges that statisticians face in an increasing number of applications. In
particular, how does one deal with large data sets with huge numbers of variables?
The Follman and Lambert (1989) model mentioned in Sec. 2.3 is a good example of
a simplistic starting point. Suppose a population consists of a mixture of two genetic
types, but instead of merely observing a single predictor such as dosage of a drug
we’ve observed a very large number of predictors, of which very few may be related
to the response of interest. The challenge is compounded for the Bayesian approach,
in which it often unclear how to choose priors to yield an “objective Bayes” analysis
when the number of parameters is huge.

As we apply latent variable models as researchers or as methodologists or as
practitioners, however, we should not forget the dangers of reification—acting as
if an assumed latent variable truly measures the characteristic of interest (Gould,
1981). Their use, especially in initial research studies of a particular question, is
tentative in nature, and often valuable merely for suggesting models to use in
follow-up studies. Related to this, anyone who has conducted research with latent
variable models realizes the potential for misuses as methodologists with limited
understanding of them apply them in practice. So, besides the research challenge
of developing methods for ever more complex settings such as “big data,” there
is the more mundane challenge of teaching and explaining the methods and their
limitations to decrease the frequency of such misuses.

References

Agresti, A. (1993). Computing conditional maximum likelihood estimates for generalized
Rasch models using simple loglinear models with diagonal parameters. Scand. J. Statist.
20:63–71.

Agresti, A. (2013). Categorical Data Analysis. 3rd ed. New York: Wiley.
Agresti, A., Lang, J. (1993). Quasi-symmetric latent class models, with application to rater

agreement. Biometrics 49:131–139.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 



812 Agresti and Kateri

Agresti, A., Caffo, B., Ohman-Strickland, P. (2004). Examples in which misspecification of a
random effects distribution reduces efficiency, and possible remedies. Comput. Statist.
Data An. 47:639–653.

Aitkin, M. (1999). A general maximum likelihood analysis of variance components in
generalized linear models. Biometrics 55:218–234.

Albanese, M. T., Knott, M. (1992). TWOMISS: a computer program for fitting a one- or
two-factor logit-probit latent variable model to binary data when observations may be
missing. Technical Report, Statistics Department, London School of Economics and
Political Science.

Anderson, J. A., Philips, P. R. (1981). Regression, discrimination, and measurement models
for ordered categorical variables. Appl. Statist. 30:22–31.

Anderson, C. J., Vermunt, J. K. (2000). Log-multiplicative models as latent variable models
for nominal and/or ordinal data. Sociol. Methodol. 30:81–121.

Anderson, T. W. (1954). On estimation of parameters in latent structure analysis.
Psychometrika 19:1–10.

Bartholomew, D. J. (1980). Factor analysis for categorical data. J. Roy. Stat. Soc. B 42:
293–321.

Bartholomew, D., Knott, M., Moustaki, I. (2011). Latent Variable Models and Factor Analysis:
A Unified Approach. 3rd ed. New York: Wiley, Ch. 4–6.

Berkson, J. (1944). Application of the logistic function to bio-assay. J. Amer. Statist. Assoc.
39:357–365.

Bliss, C. I. (1935). The calculation of the dosage-mortality curve. Ann. Appl. Biol. 22:134–167.
Breslow, N., Clayton, D. G. (1993). Approximate inference in generalized linear mixed

models. J. Amer. Statist. Assoc. 88:9–25.
Cho, S.-J., Cohen, A. S., Kim, S.-H., Bottge, B. (2010). Latent transition analysis with a

mixture item response theory measurement model. Appl. Psychol. Measure. 34:483–504.
Christofferson, A. (1975). Factor analysis of dichotomized variables. Psychometrika 40:5–32.
Clogg, C. C. (1981). Latent structure models of mobility. Amer. J. Sociol. 86:836–868.
Collins, L. M., Lanza, S. T. (2010). Latent Class and Latent Transition Analysis. Hoboken,

NJ: Wiley.
Collins, L. M., Wugalter, S. E. (1992). Latent class models for stage-sequential dynamic

latent variables. Multivariate Behavi. Rese. 27:131–137.
de Leeuw, J., van der Heijden, P. G. M. (1991). Reduced rank models for contingency tables.

Biometrika 78:229–232.
Dempster, A. P., Laird, N. M., Rubin, D. B. 1977. Maximum likelihood from incomplete

data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39:1–38.
DeSantis, S. M., Houseman, E. A., Coull, B. A., Stemmer-Rachamimov, A., Betensky, R. A.

(2008). A penalized latent class model for ordinal data. Biostatistics 9:249–262.
Follman, D. A., Lambert, D. (1989). Generalizing logistic regression by nonparametric

mixing. J. Amer. Statist. Assoc. 84:295–300.
Formann, A. K. (1992). Linear logistic latent class analysis for polytomous data. J. Amer.

Statist. Assoc. 87:476–486.
Gilula, Z. (1979). Singular value decomposition of probability matrices: Probabilistic aspects

of latent dichotomous variables. Biometrika 66:339–344.
Gilula, Z. (1984). On some similarities between canonical correlation models and latent class

models for two-way contingency tables. Biometrika 71:523–529.
Good, I. J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods.

Cambridge, MA: MIT Press.
Goodman, L. A. (1974). Exploratory latent structure analysis using both identifiable and

unidentifiable models. Biometrika 61:215–231.
Goodman, L. A. (1979). Simple models for the analysis of association in cross-classifications

having ordered categories. J. Amer. Statist. Assoc. 74:537–552.
Gould, S. J. (1981). The Mismeasure of Man. New York: W. W. Norton & Company.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 



Latent Variable Models for Categorical Data 813

Graham, J. W., Collins, L. M., Wugalter, S. E. Chung, N. J., Hansen, N. B. (1991). Modeling
transitions in latent stage-sequential processes: a substance use prevention example.
J. Consult. Clin. Psychol. 59:48–57.

Greene, W. H. (1994). Accounting for excess zeros and sample selection in Poisson and
negative binomial regression models. Technical report.

Gueorguieva, R., Agresti, A. (2001). A correlated probit model for joint modeling of
clustered binary and continuous responses. J. Amer. Statist. Assoc. 96:1102–1112.

Haberman, S. J. (1988). A stabilized Newton-Raphson algorithm for log-linear models for
frequency tables derived by indirect observation. Sociolog. Methodol. 18:193–211.

Hagenaars, J., McCutcheon, A., eds. (2002). Applied Latent Class Analysis. New York:
Cambridge University Press.

Heagerty, P. J., Zeger, S. L. (2000). Marginalized multilevel models and likelihood inference.
Statist. Sci. 15:1–19.

Kaplan, D. (2008). An overview of Markov chain methods for the study of stage-sequential
developmental processes. Develop. Psychol. 44:457–467.

Lambert, D. (1992). Zero-inflated Poisson regression, with an application to defects in
manufacturing. Technometrics 34:1–14.

Lazarsfeld, P. F. (1950a). The logical and mathematical foundation of latent structure
analysis. In: Stouffer, S. A., Guttmann, L., Suchman, E. A., Lazarsfeld, P. F., Star,
S. A., Clausen, J. A., eds. Studies in Social Psychology in World War II, Vol. IV,
Measurement and Prediction. Princeton, NJ: University Press, Ch. 10, pp. 342–412.

Lazarsfeld, P. F. (1950b). The interpretation and computation of some latent structures.
In: Stouffer, S. A., Guttmann, L., Suchman, E. A., Lazarsfeld, P. F., Star, S. A.,
Clausen, J. A., eds. Studies in Social Psychology in World War II, vol. IV, Measurement
and Prediction. Princeton, NJ: Princeton University Press, Ch. 11, pp. 413–472.

Lazarsfeld, P. F., Henry, N. W. (1968). Latent Structure Analysis. Boston: Houghton Mifflin.
Leisch, F. (2004). FlexMix: A general framework for finite mixture models and latent class

regression in R. J. Statist. Software 11:1–18.
Lin, H., Guo, Z., Peduzzi, P. N., Gill, T. M., Allore, H. G. (2008). A semiparametric

transition model with latent traits for longitudinal multistate data. Biometrics 64:1032–
1042.

Lin, X. (1997). Variance component testing in generalized linear models with random effects.
Biometrika 84:309–326.

Lindsay, B., Clogg, C., Grego, J. (1991). Semi-parametric estimation in the Rasch model and
related exponential response models, including a simple latent class model for item
analysis. J. Amer. Statist. Assoc. 86:96–107.

McCulloch, C. E., Neuhaus, J. M. (2011). Prediction of random effects in linear and
generalized linear models under model misspecification. Biometrics 67:270–279.

McDonald, R. P. (1967). Nonlinear Factor Analysis. Psychometric Monograph 15. Bowling
Green, OH: Psychometric Society.

Min, Y., Agresti, A. (2005). Random effects models for repeated measures of zero-inflated
count data. Statist. Modell. 5:1–19.

Molenberghs, G., Verbeke, G., Demetrio, C. G. B., Vieira, A. M. C. (2010). A family of
generalized linear models for repeated measures with normal and conjugate random
effects. Statist. Sci. 25:325–347.

Moustaki, I., Steele, F. (2005). Latent variable models for mixed categorical and survival
responses, with an application to fertility preferences and family planning in
Bangladesh. Statist. Modell 5:327–342.

Muthén, B. O. (1978). Contributions to factor analysis of dichotomous variables.
Psychometrika 43:551–560.

Neuhaus, J. M., Hauck, W. W., Kalbfleisch, J. D. (1992). The effects of mixture distribution
misspecification when fitting mixed-effects logistic models. Biometrika 79:755–762.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 



814 Agresti and Kateri

Pierce, D. A., Sands, B. R. (1975). Extra-Bernoulli variation in regression of binary data.
Technical Report, Statistics Dept., Oregon State University.

Rasch, G. (1961). On general laws and the meaning of measurement in psychology. In:
Neyman, J., ed. Proc. 4th Berkeley Symposium on Mathematics, Statistics, and Probability,
Berkeley, CA: University of California Press, Vol. 4, pp. 321–333.

Reboussin, B. A., Ialongo, N. S. (2010). Latent transition models with latent class predictors:
attention deficity hyperactivity disorder subtypes and high school marijuana use.
J. Roy. Statist. Soc. A 173:145–164.

Rost, J., Langeheine, R., eds. (1997). Applications of Latent Trait and Latent Class Models in
the Social Sciences. Munster, New York, Munchen, Berlin: Waxmann.

Rudas, T., Clogg, C. C., Lindsay, B. G. (1994). A new index of fit based on mixture methods
for the analysis of contingency tables. J. Roy. Statist. Soc. B 56:23–639.

Skrondal, A., Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel,
Longitudinal, and Structural Equation Models. Boca Raton, FL: Chapman & Hall/CRC.

Skrondal, A., Rabe-Hesketh, S. (2007). Latent variable modelling: a survey. Scand. J. Statist.
34:712–745.

Tjur, T. (1982). A connection between Rasch’s item analysis model and a multiplicative
Poisson model. Scand. J. Statist. 9:23–30.

Vermunt, J. K. (2003). Multilevel latent class models. Sociol. Methodol. 33:213–239.
Vermunt, J. K., van Ginkel, J. R., van der Ark, L. A., Sijtsma, K. (2008). Multiple

imputation of incomplete categorical data using latent class analysis. Sociol. Methodol.
38:369–397.

Zipunnikov, V., Booth, J. Closed form GLM cumulants and GLMM fitting with a SQUAR-
EM-LA2 algorithm. Submitted.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
Fl

or
id

a]
 a

t 1
0:

06
 2

8 
Ja

nu
ar

y 
20

14
 


