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Abstract. This article surveys Bayesian methods for categorical data analysis, with
primary emphasis on contingency table analysis. Early innovations were proposed
by Good (1953, 1956, 1965) for smoothing proportions in contingency tables and
by Lindley (1964) for inference about odds ratios. These approaches primarily
used conjugate beta and Dirichlet priors. Altham (1969, 1971) presented Bayesian
analogs of small-sample frequentist tests for 2×2 tables using such priors. An
alternative approach using normal priors for logits received considerable attention
in the 1970s by Leonard and others (e.g., Leonard 1972). Adopted usually in a
hierarchical form, the logit-normal approach allows greater flexibility and scope
for generalization. The 1970s also saw considerable interest in loglinear modeling.
The advent of modern computational methods since the mid-1980s has led to a
growing literature on fully Bayesian analyses with models for categorical data,
with main emphasis on generalized linear models such as logistic regression for
binary and multi-category response variables.
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1. Introduction

1.1. A brief history up to 1965

The purpose of this article is to survey Bayesian methods for analyzing categorical
data. The starting place is the landmark work by Bayes (1763) and by Laplace (1774)
on estimating a binomial parameter. They both used a uniform prior distribution for
the binomial parameter. Dale (1999) and Stigler (1986, pp. 100–136) summarized
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this work, Stigler (1982) discussed what Bayes implied by his use of a uniform
prior, and Hald (1998) discussed later developments.

For contingency tables, the sample proportions are ordinary maximum like-
lihood (ML) estimators of multinomial cell probabilities. When data are sparse,
these can have undesirable features. For instance, for a cell with a sampling zero,
0.0 is usually an unappealing estimate. Early applications of Bayesian methods to
contingency tables involved smoothing cell counts to improve estimation of cell
probabilities with small samples.

Much of this appeared in various works by I.J. Good. Good (1953) used a
uniform prior distribution over several categories in estimating the population pro-
portions of animals of various species. Good (1956) used log-normal and gamma
priors in estimating association factors in contingency tables. For a particular cell,
the association factor is defined to be the probability of that cell divided by its
probability assuming independence (i.e., the product of the marginal probabilities).
Good’s (1965) monograph summarized the use of Bayesian methods for estimating
multinomial probabilities in contingency tables, using a Dirichlet prior distribution.
Good also was innovative in his early use of hierarchical and empirical Bayesian
approaches. His interest in this area apparently evolved out of his service as the
main statistical assistant in 1941 to Alan Turing on intelligence issues during World
War II (e.g., see Good 1980).

In an influential article, Lindley (1964) focused on estimating summary mea-
sures of association in contingency tables. For instance, using a Dirichlet prior
distribution for the multinomial probabilities, he found the posterior distribution of
contrasts of log probabilities, such as the log odds ratio. Early critics of the Bayesian
approach included R. A. Fisher. For instance, in his book Statistical Methods and
Scientific Inference in 1956, Fisher challenged the use of a uniform prior for the
binomial parameter, noting that uniform priors on other scales would lead to differ-
ent results. (Interestingly, Fisher was the first to use the term “Bayesian,” starting
in 1950. See Fienberg (2005) for a detailed discussion of the evolution of the term.
Fienberg notes that the modern growth of Bayesian methods followed the popular-
ization in the 1950s of the term “Bayesian” by, in particular, L.J. Savage, I.J. Good,
H. Raiffa and R. Schlaifer.)

1.2. Outline of this article

Leonard and Hsu (1994) selectively reviewed the growth of Bayesian approaches to
categorical data analysis since the groundbreaking work by Good and by Lindley.
Much of this review focused on research in the 1970s by Leonard that evolved
naturally out of Lindley (1964). An encyclopedia article by Albert (2004) focused
on more recent developments, such as model selection issues. Of the many books
published in recent years on the Bayesian approach, the most complete coverage of
categorical data analysis is the chapter of O’Hagan and Forster (2004) on discrete
data models and the text by Congdon (2005).

The purpose of our article is to provide a somewhat broader overview, in terms of
covering a much wider variety of topics than these published surveys. We do this by
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organizing the sections according to the structure of the categorical data. Section 2
begins with estimation of binomial and multinomial parameters, continuing into
estimation of cell probabilities in contingency tables and related parameters for
loglinear models (Sect. 3). Section 4 discusses Bayesian analogs of some classical
confidence intervals and significance tests. Section 5 deals with extensions to the
regression modeling of categorical response variables. Computational aspects are
discussed briefly in Sect. 6.

2. Estimating binomial and multinomial parameters

2.1. Prior distributions for a binomial parameter

Let y denote a binomial random variable for n trials and parameter π, and let
p = y/n. The conjugate prior density for π is the beta density, which is proportional
to πα−1(1 − π)β−1 for some choice of parameters α > 0 and β > 0. It has
E(π) = α/(α + β). The posterior density h(π|y) of π is proportional to

h(π|y) ∝ [πy(1 − π)n−y][πα−1(1 − π)β−1] = πy+α−1(1 − π)n−y+β−1,

for 0 < π < 1 and is also beta. Specifically,

– π has the beta distribution with parameters α∗ = y + α and β∗ = n − y + β.
Equivalently, this is the distribution of

(
y+α

n−y+β

)
F

1 +
(

y+α
n−y+β

)
F

where F is a F random variable with df1 = 2(y + α) and df2 = 2(n − y + β).
– (n−y+β

y+α ) π
1−π has the F distribution with df1 = 2(y+α) and df2 = 2(n−y+β).

The mean of the beta posterior distribution for π is a weighted average of the sample
proportion and the mean of the prior distribution,

E(π|y) = α∗/(α∗ + β∗) = (y + α)/(n + α + β)
= w(y/n) + (1 − w)[α/(α + β)],

where w = n/(n + α + β). The variance of the posterior distribution equals

Var(π|y) = α∗β∗/(α∗ + β∗)2(α∗ + β∗ + 1),

which is approximately
√

p(1 − p)/n for large n.
The ML estimator p = y/n results from α = β = 0, which is improper.

It corresponds to a uniform prior over the real line for the log odds, logit(π) =
log[π/(1−π)]. Haldane (1948) proposed this, arguing it was reasonable for genetics
applications in which one expects log(π) to be roughly uniform for π close to 0
(e.g., according to Haldane, “If we are trying to estimate a mutation rate, ... we
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might perhaps guess that such a rate would be about as likely to lie between 10−5

and 10−6 as between 10−6 and 10−7.”) The posterior distribution in that case is
improper if y = 0 or n. See Novick (1969) for related arguments supporting this
prior. The discussion of that paper by W. Perks summarizes criticisms that he,
Jeffreys, and others had about that choice.

For the uniform prior distribution (α = β = 1), the posterior distribution has
the same shape as the binomial likelihood function. It has mean

E(π|y) = (y + 1)/(n + 2),

suggested by Laplace (1774). Geisser (1984) advocated the uniform prior for pre-
dictive inference, and discussants of his paper gave arguments for other priors.
Other than the uniform, the most popular prior for binomial inference is the Jef-
freys prior, partly because of its invariance to the scale of measurement for the
parameter. This is proportional to the square root of the determinant of the Fisher
information matrix for the parameters of interest. In the binomial case, this prior is
the beta with α = β = 0.5.

Bernardo and Ramón (1998) presented an informative survey article about
Bernardo’s reference analysis approach (Bernardo 1979), which optimizes a lim-
iting entropy distance criterion. This attempts to derive non-subjective posterior
distributions that satisfy certain natural criteria such as invariance, consistent fre-
quentist performance (e.g., large-sample coverage probability of confidence inter-
vals close to the nominal level), and admissibility. The intention is that even for
small sample sizes the information provided by the data should dominate the prior
information. The specification of the reference prior is often computationally com-
plex, but for the binomial parameter it is the Jeffreys prior (Bernardo and Smith
1994, p. 315).

An alternative two-parameter approach specifies a normal prior for logit(π). Al-
though used occasionally in the 1960s (e.g., Cornfield 1966), this was first strongly
promoted by T. Leonard, in work instigated by D. Lindley (e.g., Leonard 1972). This
distribution for π is called the logistic-normal. With a N(0, σ2) prior distribution
for logit(π), the prior density function for π is

f(π) =
1√

2(3.14)σ2
exp

{
− 1

2σ2

(
log

π

1 − π

)2} 1
π(1 − π)

, 0 < π < 1.

On the probability (π) scale this density is symmetric, being unimodal when σ2 ≤ 2
and bimodal when σ2 > 2, but always tapering off toward 0 as π approaches 0 or
1. It is mound-shaped for σ = 1, roughly uniform except near the boundaries when
σ ≈ 1.5, and with more pronounced peaks for the modes when σ = 2. The peaks for
the modes get closer to 0 and 1 as σ increases further, and the curve has essentially
a U-shaped appearance when σ = 3 that is similar to the beta(0.5, 0.5) prior. With
the logistic-normal prior, the posterior density function for π is not tractable, as an
integral for the normalizing constant needs to be numerically evaluated.

Beta and logistic-normal priors sometimes do not provide sufficient flexibility.
Chen and Novick (1984) introduced a generalized three-parameter beta distribution.
Among various properties, it can more flexibly account for heavy tails or skewness.
The resulting posterior distribution is a four-parameter type of beta.
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2.2. Bayesian inference about a binomial parameter

Walters (1985) used the uniform prior and its implied posterior distribution in con-
structing a confidence interval for a binomial parameter (in Bayesian terminology,
a “credible region”). He noted how the bounds were contained in the Clopper and
Pearson classical ‘exact’confidence bounds based on inverting two frequentist one-
sided binomial tests (e.g., the lower bound πL of a 95% Clopper-Pearson interval
satisfies .025 = P (Y ≥ y|πL)). Brown, Cai, and DasGupta (2001, 2002) showed
that the posterior distribution generated by the Jeffreys prior yields a confidence
interval for π with better performance in terms of average (across π) coverage prob-
ability and expected length. It approximates the small-sample confidence interval
based on inverting two binomial frequentist one-sided tests, when one uses the mid
P -value in place of the ordinary P -value. (The mid P -value is the null probability
of more extreme results plus half the null probability of the observed result.) See
also Leonard and Hsu (1999, pp. 142–144).

For a test of H0: π ≥ π0 against Ha: π < π0, a Bayesian P -value is the posterior
probability, P (π ≥ π0|y). Routledge (1994) showed that with the Jeffreys prior and
π0 = 1/2, this approximately equals the one-sided mid P -value for the frequentist
binomial test.

Much literature about Bayesian inference for a binomial parameter deals with
decision-theoretic results. For estimating a parameter θ using estimator T with loss
function w(θ)(T −θ)2, the Bayesian estimator is E[θw(θ)|y]/E[w(θ)|y] (Ferguson
1967, p. 47). With loss function (T −π)2/[π(1−π)] and uniform prior distribution,
the Bayes estimator of π is the ML estimator p = y/n. Johnson (1971) showed that
this is an admissible estimator, for standard loss functions. Rukhin (1988) intro-
duced a loss function that combines the estimation error of a statistical procedure
with a measure of its accuracy, an approach that motivates a beta prior with param-
eter settings between those for the uniform and Jeffreys priors, converging to the
uniform as n increases and to the Jeffreys as n decreases.

Diaconis and Freedman (1990) investigated the degree to which posterior distri-
butions put relatively greater mass close to the sample proportion p as n increases.
They showed that the posterior odds for an interval of fixed length centered at p
is bounded below by a term of form abn with computable constants a > 0 and
b > 1. They noted that Laplace considered this problem with a uniform prior in
1774. Related work deals with the consistency of Bayesian estimators. Freedman
(1963) showed consistency under general conditions for sampling from discrete
distributions such as the multinomial. He also showed asymptotic normality of
the posterior assuming a local smoothness assumption about the prior. For early
work about the asymptotic normality of the posterior distribution for a binomial
parameter, see von Mises (1964, Ch. VIII, Sect. C).

Draper and Guttman (1971) explored Bayesian estimation of the binomial sam-
ple size n based on r independent binomial observations, each with parameters n
and π. They considered both π known and unknown. The π unknown case arises in
capture-recapture experiments for estimating population size n. One difficulty there
is that different models can fit the data well yet yield quite different projections.
A later extensive Bayesian literature on the capture-recapture problem includes
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Smith (1991), George and Robert (1992), Madigan and York (1997), and King and
Brooks (2001a, 2002). Madigan and York (1997) explicitly accounted for model
uncertainty by placing a prior distribution over a discrete set of models as well as
over n and the cell probabilities for the table of the capture-recapture observations
for the repeated sampling. Fienberg, Johnson and Junker (1999) surveyed other
Bayesian and classical approaches to this problem, focusing on ways to permit het-
erogeneity in catchability among the subjects. Dobra and Fienberg (2001) used a
fully Bayesian specification of the Rasch model (discussed in Sect. 5.1) to estimate
the size of the World Wide Web.

Joseph, Wolfson, and Berger (1995) addressed sample size calculations for
binomial experiments, using criteria such as attaining a certain expected width of a
confidence interval. DasGupta and Zhang (2005) reviewed inference for binomial
and multinomial parameters, with emphasis on decision-theoretic results.

2.3. Bayesian estimation of multinomial parameters

Results for the binomial with beta prior distribution generalize to the multinomial
with a Dirichlet prior (Lindley 1964, Good 1965). With c categories, suppose cell
counts (n1, . . . , nc) have a multinomial distribution with n =

∑
ni and parameters

π = (π1, . . . , πc)′. Let {pi = ni/n} be the sample proportions. The likelihood is
proportional to

c∏
i=1

πni
i .

The conjugate density is the Dirichlet, expressed in terms of gamma functions as

g(π) =
Γ (

∑
αi)

[
∏

i Γ (αi)]

c∏
i=1

παi−1
i for 0 < πi < 1 all i,

∑
i

πi = 1,

where {αi > 0}. Let K =
∑

αi. The Dirichlet has E(πi) = αi/K and Var(πi) =
αi(K −αi)/[K2(K +1)]. The posterior density is also Dirichlet, with parameters
{ni + αi}, so the posterior mean is

E(πi|n1, . . . , nc) = (ni + αi)/(n + K).

Let γi = E(πi) = αi/K. This Bayesian estimator equals the weighted average

[n/(n + K)]pi + [K/(n + K)]γi,

which is the sample proportion when the prior information corresponds to K trials
with αi outcomes of type i, i = 1, . . . , c.

Good (1965) referred to K as a flattening constant, since with identical {αi}
this estimate shrinks each sample proportion toward the equi-probability value
γi = 1/c. Greater flattening occurs as K increases, for fixed n. Good (1980)
attributed {αi = 1} to De Morgan (1847), whose use of (ni+1)/(n+c) to estimate
πi extended Laplace’s estimate to the multinomial case. Perks (1947) suggested
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{αi = 1/c}, noting the coherence with the Jeffreys prior for the binomial (See also
his discussion of Novick 1969). The Jeffreys prior sets all αi = 0.5. Lindley (1964)
gave special attention to the improper case {αi = 0}, also considered by Novick
(1969). The discussion of Novick (1969) shows the lack of consensus about what
‘noninformative’ means.

The shrinkage form of estimator combines good characteristics of sample pro-
portions and model-based estimators. Like sample proportions and unlike model-
based estimators, they are consistent even when a particular model (such as equi-
probability) does not hold. The weight given the sample proportion increases to 1.0
as the sample size increases. Like model-based estimators and unlike sample pro-
portions, the Bayes estimators smooth the data. The resulting estimators, although
slightly biased, usually have smaller total mean squared error than the sample pro-
portions. One might expect this, based on analogous results of Stein for estimating
multivariate normal means. However, Bayesian estimators of multinomial parame-
ters are not uniformly better than ML estimators for all possible parameter values.
For instance, if a true cell probability equals 0, the sample proportion equals 0 with
probability one, so the sample proportion is better than any other estimator.

Hoadley (1969) examined Bayesian estimation of multinomial probabilities
when the population of interest is finite, of known size N . He argued that a finite-
population analogue of the Dirichlet prior is a compound multinomial prior, which
leads to a translated compound multinomial posterior. Let N denote a vector of
nonnegative integers such that its i-th component Ni is the number of objects (out
of N total) that are in category i, i = 1, . . . , c. If conditional on the probabilities
and N , the cell counts have a multinomial distribution, and if the multinomial
probabilities themselves have a Dirichlet distribution indexed by parameter α such
that αi > 0 for all i with K =

∑
αi, then unconditionally N has the compound

multinomial mass function,

f(N|N ; α) =
N ! Γ (K)

Γ (N + K)

c∏
i=1

Γ (Ni + αi)
Ni!Γ (αi)

.

This serves as a prior distribution for N. Given cell count data {ni} in a sample of
size n, the posterior distribution of N - n is compound multinomial with N replaced
by N − n and α replaced by α + n. Ericson (1969) gave a general Bayesian
treatment of the finite-population problem, including theoretical investigation of
the compound multinomial.

For the Dirichlet distribution, one can specify the means through the choice
of {γi} and the variances through the choice of K, but then there is no free-
dom to alter the correlations. As an alternative, Leonard (1973), Aitchison (1985),
Goutis (1993), and Forster and Skene (1994) proposed using a multivariate normal
prior distribution for multinomial logits. This induces a multivariate logistic-normal
distribution for the multinomial parameters. Specifically, if X = (X1, . . . , Xc)
has a multivariate normal distribution, then π = (π1, . . . , πc) with πi =
exp(Xi)/

∑c
j=1 exp(Xj) has the logistic-normal distribution. This can provide

extra flexibility. For instance, when the categories are ordered and one expects
similarity of probabilities in adjacent categories, one might use an autoregressive
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form for the normal correlation matrix. Leonard (1973) suggested this approach in
estimating a histogram.

Here is a summary of other Bayesian literature about the multinomial: Good
and Crook (1974) suggested a Bayes / non-Bayes compromise by using Bayesian
methods to generate criteria for frequentist significance testing, illustrating for
the test of multinomial equiprobability. An example of such a criterion is the
Bayes factor given by the prior odds of the null hypothesis divided by the pos-
terior odds. See Good (1967) for related comments. Dickey (1983) discussed
nested families of distributions that generalize the Dirichlet distribution, and ar-
gued that they were appropriate for contingency tables. Sedransk, Monahan, and
Chiu (1985) considered estimation of multinomial probabilities under the constraint
π1 ≤ ... ≤ πk ≥ πk+1 ≥ ... ≥ πc, using a truncated Dirichlet prior and possibly
a prior on k if it is unknown. Delampady and Berger (1990) derived lower bounds
on Bayes factors in favor of the null hypothesis of a point multinomial probability,
and related them to P -values in chi-squared tests. Bernardo and Ramón (1998)
illustrated Bernardo’s reference analysis approach by applying it to the problem
of estimating the ratio πi/πj of two multinomial parameters. The posterior distri-
bution of the ratio depends on the counts in those two categories but not on the
overall sample size or the counts in other categories. This need not be true with
conventional prior distributions. The posterior distribution of πi/(πi + πj) is the
beta with parameters ni +1/2 and nj +1/2, the Jeffreys posterior for the binomial
parameter.

2.4. Hierarchical Bayesian estimates of multinomial parameters

Good (1965, 1967, 1976, 1980) noted that Dirichlet priors do not always provide
sufficient flexibility and adopted a hierarchical approach of specifying distributions
for the Dirichlet parameters. This approach treats the {αi} in the Dirichlet prior as
unknown and specifies a second-stage prior for them. Good also suggested that one
could obtain more flexibility with prior distributions by using a weighted average of
Dirichlet distributions. See Albert and Gupta (1982) for later work on hierarchical
Dirichlet priors.

These approaches gain greater generality at the expense of giving up the simple
conjugate Dirichlet form for the posterior. Once one departs from the conjugate
case, there are advantages of computation and of ease of more general hierarchical
structure by using a multivariate normal prior for logits, as in Leonard’s work in
the 1970s discussed in Sect. 3 in particular contexts.

2.5. Empirical Bayesian methods

When they first consider the Bayesian approach, for many statisticians, having to
select a prior distribution is the stumbling block. Instead of choosing particular pa-
rameters for a prior distribution, the empirical Bayesian approach uses the data to
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determine parameter values for use in the prior distribution. This approach tradition-
ally uses the prior density that maximizes the marginal probability of the observed
data, integrating out with respect to the prior distribution of the parameters.

Good (1956) may have been the first to use an empirical Bayesian approach
with contingency tables, estimating parameters in gamma and log-normal priors
for association factors. Good (1965) used it to estimate the parameter value for
a symmetric Dirichlet prior for multinomial parameters, the problem for which
he also considered the above-mentioned hierarchical approach. Later research on
empirical Bayesian estimation of multinomial parameters includes Fienberg and
Holland (1973) and Leonard (1977a). Most of the empirical Bayesian literature
applies in a context of estimating multiple parameters (such as several binomial
parameters), and we will discuss it in such contexts in Sect. 3.

A disadvantage of the empirical Bayesian approach is not accounting for the
source of variability due to substituting estimates for prior parameters. It is in-
creasingly preferred to use the hierarchical approach in which those parameters
themselves have a second-stage prior distribution, as mentioned in the previous
subsection.

3. Estimating cell probabilities in contingency tables

Bayesian methods for multinomial parameters apply to cell probabilities for a con-
tingency table. With contingency tables, however, typically it is sensible to model
the cell probabilities. It often does not make sense to regard the cell probabilities as
exchangeable. Also, in many applications it is more natural to assume independent
binomial or multinomial samples rather than a single multinomial over the entire
table.

3.1. Estimating several binomial parameters

For several (say r) independent binomial samples, the contingency table has size
r×2. For simplicity, we denote the binomial parameters by {πi} (realizing that this
is somewhat of an abuse of notation, as we’ve just used {πi} to denote multinomial
probabilities).

Much of the early literature on estimating multiple binomial parameters used an
empirical Bayesian approach. Griffin and Krutchkoff (1971) assumed an unknown
prior on parameters for a sequence of binomial experiments. They expressed the
Bayesian estimator in a form that does not explicitly involve the prior but is in terms
of marginal probabilities of events involving binomial trials. They substituted ML
estimates π̂1, . . . , π̂r of these marginal probabilities into the expression for the
Bayesian estimator to obtain an empirical Bayesian estimator. Albert (1984) con-
sidered interval estimation as well as point estimation with the empirical Bayesian
approach.

An alternative approach uses a hierarchical approach (Leonard 1972). At stage
1, given µ and σ, Leonard assumed that {logit(πi)} are independent from a N(µ, σ2)
distribution. At stage 2, he assumed an improper uniform prior for µ over the real
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line and assumed an inverse chi-squared prior distribution for σ2. Specifically, he
assumed that νλ/σ2 is independent of µ and has a chi-squared distribution with df
= ν, where λ is a prior estimate of σ2 and ν is a measure of the sureness of the prior
conviction. For simplicity, he used a limiting improper uniform prior for log(σ2).
Integrating out µ and σ2, his two-stage approach corresponds to a multivariate t
prior for {logit(πi)}. For sample proportions {pj}, the posterior mean estimate of
logit(πi) is approximately a weighted average of logit(pi) and a weighted average
of {logit(pj)}.

Berry and Christensen (1979) took the prior distribution of {πi} to be a Dirichlet
process prior (Ferguson 1973). With r = 2, one form of this is a measure on the
unit square that is a weighted average of a product of two beta densities and a beta
density concentrated on the line where π1 = π2. The posterior is a mixture of
Dirichlet processes. When r > 2 or 3, calculations were complex and numerical
approximations were given and compared to empirical Bayesian estimators.

Albert and Gupta (1983a) used a hierarchical approach with independent
beta(α, K −α) priors on the binomial parameters {πi} for which the second-stage
prior had discrete uniform form,

π(α) = 1/(K − 1), α = 1, . . . , K − 1,

with K user-specified. In the resulting marginal prior for {πi}, the size of K
determines the extent of correlation among {πi}.Albert and Gupta (1985) suggested
a related hierarchical approach in which α has a noninformative second-stage prior.

Consonni and Veronese (1995) considered examples in which prior informa-
tion exists about the way various binomial experiments cluster. They assumed
exchangeability within certain subsets according to some partition, and allowed
for uncertainty about the partition using a prior over several possible partitions.
Conditionally on a given partition, beta priors were used for {πi}, incorporating
hyperparameters.

Crowder and Sweeting (1989) considered a sequential binomial experiment in
which a trial is performed with success probability π(1) and then, if a success is
observed, a second-stage trial is undertaken with success probability π(2). They
showed the resulting likelihood can be factored into two binomial densities, and
hence termed it a bivariate binomial. They derived a conjugate prior that has certain
symmetry properties and reflects independence of π(1) and π(2).

Here is a brief summary of other work with multiple binomial parameters:
Bratcher and Bland (1975) extended Bayesian decision rules for multiple compar-
isons of means of normal populations to the problem of ordering several binomial
probabilities, using beta priors. Sobel (1993) presented Bayesian and empirical
Bayesian methods for ranking binomial parameters, with hyperparameters esti-
mated either to maximize the marginal likelihood or to minimize a posterior risk
function. Springer and Thompson (1966) derived the posterior distribution of the
product of several binomial parameters (which has relevance in reliability con-
texts) based on beta priors. Franck et al. (1988) considered estimating posterior
probabilities about the ratio π2/π1 for an application in which it was appropriate to
truncate beta priors to place support over π2 ≤ π1. Sivaganesan and Berger (1993)
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used a nonparametric empirical Bayesian approach assuming that a set of binomial
parameters come from a completely unknown prior distribution.

3.2. Estimating multinomial cell probabilities

Next, we consider arbitrary-size contingency tables, under a single multinomial
sample. The notation will refer to two-way r × c tables with cell counts n = {nij}
and probabilities π = {πij}, but the ideas extend to any dimension.

Fienberg and Holland (1972, 1973) proposed estimates of {πij} using data-
dependent priors. For a particular choice of Dirichlet means {γij} for the Bayesian
estimator

[n/(n + K)]pij + [K/(n + K)]γij ,

they showed that the minimum total mean squared error occurs when

K =
(
1 −

∑
π2

ij

)
/

[∑
(γij − πij)2

]
.

The optimal K = K(γ,π) depends on π, and they used the estimate K(γ,p).As p
falls closer to the prior guess γ, K(γ,p) increases and the prior guess receives more
weight in the posterior estimate. They selected {γij} based on the fit of a simple
model. For two-way tables, they used the independence fit {γij = pi+p+j} for the
sample marginal proportions. For extensions and further elaboration, see Chapter
12 of Bishop, Fienberg, and Holland (1975). When the categories are ordered,
improved performance usually results from using the fit of an ordinal model, such
as the linear-by-linear association model (Agresti and Chuang 1989).

Epstein and Fienberg (1992) suggested two-stage priors on the cell probabilities,
first placing a Dirichlet(K, γ)prior onπ and using a loglinear parametrization of the
prior means {γij}. The second stage places a multivariate normal prior distribution
on the terms in the loglinear model for {γij}.Applying the loglinear parametrization
to the prior means {γij} rather than directly to the cell probabilities {πij} permits
the analysis to reflect uncertainty about the loglinear structure for {πij}. This was
one of the first uses of Gibbs sampling to calculate posterior densities for cell
probabilities.

Albert and Gupta wrote several articles in the early 1980s exploring Bayesian
estimation for contingency tables. Albert and Gupta (1982) used hierarchical
Dirichlet(K, γ) priors for π for which {γij} reflect a prior belief that the prob-
abilities may be either symmetric or independent. The second stage places a non-
informative uniform prior on γ. The precision parameter K reflects the strength of
prior belief, with large K indicating strong belief in symmetry or independence.
Albert and Gupta (1983a) considered 2×2 tables in which the prior information
was stated in terms of either the correlation coefficient ρ between the two variables
or the odds ratio (π11π22/π12π21). Albert and Gupta (1983b) used a Dirichlet prior
on {πij}, but instead of a second-stage prior, they reparametrized so that the prior
is determined entirely by the prior guesses for the odds ratio and K. They showed
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how to make a prior guess for K by specifying an interval covering the middle 90%
of the prior distribution of the odds ratio.

Albert (1987b) discussed derivations of the estimator of form (1−λ)pij +λπ̃ij ,
where π̃ij = pi+p+j is the independence estimate and λ is some function of the
cell counts. The conjugate Bayesian multinomial estimator of Fienberg and Holland
(1973) shown above has such a form, as do estimators of Leonard (1975) and Laird
(1978). Albert (1987b) extended Albert and Gupta (1982, 1983b) by suggesting
empirical Bayesian estimators that use mixture priors. For cell counts n = {nij},
Albert derived approximate posterior moments

E(πij |n, K) ≈ (nij + Kpi+p+j)/(n + K)

that have the form (1−λ)pij +λπ̃ij . He suggested estimating K from the marginal
density m(n|K) and plugging in the estimate to obtain an empirical Bayesian
estimate. Alternatively, a hierarchical Bayesian approach places a noninformative
prior on K and uses the resulting posterior estimate of K.

3.3. Estimating loglinear model parameters in two-way tables

The Bayesian approaches presented so far focused directly on estimating probabil-
ities, with prior distributions specified in terms of them. One could instead focus
on association parameters. Lindley (1964) did this with r × c contingency tables,
using a Dirichlet prior distribution (and its limiting improper prior) for the multi-
nomial. He showed that contrasts of log cell probabilities, such as the log odds
ratio, have an approximate (large-sample) joint normal posterior distribution. This
gives Bayesian analogs of the standard frequentist results for two-way contingency
tables. Using the same structure as Lindley (1964), Bloch and Watson (1967) pro-
vided improved approximations to the posterior distribution and also considered
linear combinations of the cell probabilities.

As mentioned previously, a disadvantage of a one-stage Dirichlet prior is that it
does not allow for placing structure on the probabilities, such as corresponding to
a loglinear model. Leonard (1975), based on his thesis work, considered loglinear
models, focusing on parameters of the saturated model

log[E(nij)] = λ + λX
i + λY

j + λXY
ij

using normal priors. Leonard argued that exchangeability within each set of log-
linear parameters is more sensible than the exchangeability of multinomial proba-
bilities that one gets with a Dirichlet prior. He assumed that the row effects {λX

i },
column effects {λY

j }, and interaction effects {λXY
ij } were a priori independent.

For each of these three sets, given a mean µ and variance σ2, the first-stage prior
takes them to be independent and N(µ, σ2). As in Leonard’s 1972 work for several
binomials, at the second stage each normal mean is assumed to have an improper
uniform distribution over the real line, and σ2 is assumed to have an inverse chi-
squared distribution. For computational convenience, parameters were estimated
by joint posterior modes rather than posterior means. The analysis shrinks the log
counts toward the fit of the independence model.
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Laird (1978), building on Good (1956) and Leonard (1975), estimated cell prob-
abilities using an empirical Bayesian approach with the loglinear model. Her basic
model differs somewhat from Leonard’s (1975). She assumed improper uniform
priors over the real line for the main effect parameters and independent N(0, σ2)
distributions for the interaction parameters. For computational convenience, as in
Leonard (1975) the loglinear parameters were estimated by their posterior modes,
and those posterior modes were plugged into the loglinear formula to get cell prob-
ability estimates. The empirical Bayesian aspect occurs from replacing σ2 by the
mode of the marginal likelihood, after integrating out the loglinear parameters. As
σ → ∞, the estimates converge to the sample proportions; as σ → 0, they converge
to the independence estimates, {pi+p+j}. The fitted values have the same row and
column marginal totals as the observed data. She noted that the use of a symmetric
Dirichlet prior results in estimates that correspond to adding the same count to each
cell, whereas her approach permits considerable variability in the amount added or
subtracted from each cell to get the fitted value.

In related work, Jansen and Snijders (1991) considered the independence model
and used lognormal or gamma priors for the parameters in the multiplicative form of
the model, noting the better computational tractability of the gamma approach. More
generally, Albert (1988) used a hierarchical approach for estimating a loglinear
Poisson regression model, assuming a gamma prior for the Poisson means and a
noninformative prior on the gamma parameters.

Square contingency tables with the same categories for rows and columns have
extra structure that can be recognized through models that are permutation invari-
ant for certain groups of transformations of the cells. Forster (2004b) considered
such models and discussed how to construct invariant prior distributions for the
model parameters. As mentioned previously, Albert and Gupta (1982) had used
a hierarchical Dirichlet approach to smoothing toward a prior belief of symmetry.
Vounatsou and Smith (1996) analyzed certain structured contingency tables, includ-
ing symmetry, quasi-symmetry and quasi-independence models for square tables
and for triangular tables that result when the category corresponding to the (i, j)
cell is indistinguishable from that of the (j, i) cell (a case also studied by Altham
1975). They assessed goodness of fit using distance measures and by comparing
sample predictive distributions of counts to corresponding observed values.

Here is a summary of some other Bayesian work on loglinear-related models
for two-way tables. Leighty and Johnson (1990) used a two-stage procedure that
first locates full and reduced loglinear models whose parameter vectors enclose
the important parameters and then uses posterior regions to identify which ones
are important. Evans, Gilula, and Guttman (1993) provided a Bayesian analysis of
Goodman’s generalization of the independence model that has multiplicative row
and column effects, called the RC model. Kateri, Nicolaou, and Ntzoufras (2005)
considered Goodman’s more general RC(m) model. Evans, Gilula, and Guttman
(1989) noted that latent class analysis in two-way tables usually encounters identi-
fiability conditions, which can be overcome with a Bayesian approach putting prior
distributions on the latent parameters.
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3.4. Extensions to multi-dimensional tables

Knuiman and Speed (1988) generalized Leonard’s loglinear modeling approach by
considering multi-way tables and by taking a multivariate normal prior for all pa-
rameters collectively rather than univariate normal priors on individual parameters.
They noted that this permits separate specification of prior information for different
interaction terms, and they applied this to unsaturated models. They computed the
posterior mode and used the curvature of the log posterior at the mode to measure
precision. King and Brooks (2001b) also specified a multivariate normal prior on
the loglinear parameters, which induces a multivariate log-normal prior on the ex-
pected cell counts. They derived the parameters of this distribution in an explicit
form and stated the corresponding mean and covariances of the cell counts.

For frequentist methods, it is well known that one can analyze a multinomial
loglinear model using a corresponding Poisson loglinear model (before condition-
ing on the sample size), in order to avoid awkward constraints. Following Knuiman
and Speed (1988), Forster (2004a) considered corresponding Bayesian results, also
using a multivariate normal prior on the model parameters. He adopted prior spec-
ification having invariance under certain permutations of cells (e.g., not altering
strata). Under such restrictions, he discussed conditions for prior distributions such
that marginal inferences are equivalent for Poisson and multinomial models. These
essentially allow the parameter governing the overall size of the cell means (which
disappears after the conditioning that yields the multinomial model) to have an
improper prior. Forster also derived necessary and sufficient conditions for the pos-
terior to then be proper, and he related them to conditions for maximum likelihood
estimates to be finite. An advantage of the Poisson parameterization is that Markov
chain Monte Carlo (MCMC) methods are typically more straightforward to ap-
ply than with multinomial models. (See Sect. 6 for a brief discussion of MCMC
methods.)

Loglinear model selection, particularly using Bayes factors, now has a substan-
tial literature. Spiegelhalter and Smith (1982) gave an approximate expression for
the Bayes factor for a multinomial loglinear model with an improper prior (uni-
form for the log probabilities) and showed how it related to the standard chi-squared
goodness-of-fit statistic. Raftery (1986) noted that this approximation is indeter-
minate if any cell is empty but is valid with a Jeffreys prior. He also noted that,
with large samples, -2 times the log of this approximate Bayes factor is approx-
imately equivalent to Schwarz’s BIC model selection criterion. More generally,
Raftery (1996) used the Laplace approximation to integration to obtain approx-
imate Bayes factors for generalized linear models. Madigan and Raftery (1994)
proposed a strategy for loglinear model selection with Bayes factors that employs
model averaging. See also Raftery (1996) and Dellaportas and Forster (1999) for
related work. Albert (1996) suggested partitioning the loglinear model parameters
into subsets and testing whether specific subsets are nonzero. Using normal priors
for the parameters, he examined the behavior of the Bayes factor under both normal
and Cauchy priors, finding that the Cauchy was more robust to misspecified prior
beliefs. Ntzoufras, Forster and Dellaportas (2000) developed a MCMC algorithm
for loglinear model selection.
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An interesting recent application of Bayesian loglinear modeling is to issues
of confidentiality (Fienberg and Makov 1998). Agencies often release multidimen-
sional contingency tables that are ostensibly confidential, but the confidentiality
can be broken if an individual is uniquely identifiable from the data presentation.
Fienberg and Makov considered loglinear modeling of such data, accounting for
model uncertainty via Bayesian model averaging.

Considerable literature has dealt with analyzing a set of 2 × 2 contingency ta-
bles, such as often occur in meta analyses or multi-center clinical trials comparing
two treatments on a binary response. Maritz (1989) derived empirical Bayesian
estimators for the log-odds ratios, based on a Dirichlet prior for the cell proba-
bilities and estimating the hyperparameters using data from the other tables. See
Albert (1987a) for related work. Wypij and Santner (1992) considered the model
of a common odds ratio and used Bayesian and empirical Bayesian arguments to
motivate an estimator that corresponds to a conditional ML estimator after adding a
certain number of pseudotables that have a concordant or discordant pair of obser-
vations. Skene and Wakefield (1990) modeled multi-center studies using a model
that allows the treatment–response log odds ratio to vary among centers. Meng and
Dempster (1987) considered a similar model, using normal priors for main effect
and interaction parameters in a logit model, in the context of dealing with the mul-
tiplicity problem in hypothesis testing with many 2×2 tables. Warn, Thompson,
and Spiegelhalter (2002) considered meta analyses for the difference and the ratio
of proportions. This relates essentially to identity and log link analogs of the logit
model, in which case it is necessary to truncate normal prior distributions so the
distributions apply to the appropriate set of values for these measures. Efron (1996)
outlined empirical Bayesian methods for estimating parameters corresponding to
many related populations, exemplified by odds ratios from 41 different trials of
a surgical treatment for ulcers. His method permits selection from a wide class
of priors in the exponential family. Casella (2001) analyzed data from Efron’s
meta-analysis, estimating the hyperparameters as in an empirical Bayes analysis
but using Gibbs sampling to approximate the posterior of the hyperparameters,
thereby gaining insight into the variability of the hyperparameter terms. Casella
and Moreno (2005) gave another approach to the meta-analysis of contingency
tables, employing intrinsic priors. Wakefield (2004) discussed the sensitivity of
various hierarchical approaches for ecological inference, which involves making
inferences about the associations in the separate 2×2 tables when one observes
only the marginal distributions.

3.5. Graphical models

Much attention has been paid in recent years to graphical models. These have
certain conditional independence structure that is easily summarized by a graph
with vertices for the variables and edges between vertices to represent a condi-
tional association. The cell probabilities can be expressed in terms of marginal and
conditional probabilities, and independent Dirichlet prior distributions for them in-
duce independent Dirichlet posterior distributions. See O’Hagan and Forster (2004,
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Ch. 12) for discussion of the usefulness of graphical representations for a variety
of Bayesian analyses.

Dawid and Lauritzen (1993) introduced the notion of a probability distribution
defined over probability measures on a multivariate space that concentrate on a set of
such graphs. A special case includes a hyper Dirichlet distribution that is conjugate
for multinomial sampling and that implies that certain marginal probabilities have
a Dirichlet distribution. Madigan and Raftery (1994) and Madigan andYork (1995)
used this family for graphical model comparison and for constructing posterior
distributions for measures of interest by averaging over relevant models. Giudici
(1998) used a prior distribution over a space of graphical models to smooth cell
counts in sparse contingency tables, comparing his approach with the simple one
based on a Dirichlet prior for multinomial probabilities.

3.6. Dealing with nonresponse

Several authors have considered Bayesian approaches in the presence of nonre-
sponse. Modeling nonignorable nonresponse has mainly taken one of two ap-
proaches: Introducing parameters that control the extent of nonignorability into
the model for the observed data and checking the sensitivity to these parameters,
or modeling of the joint distribution of the data and the response indicator. Forster
and Smith (1998) reviewed these approaches and cited relevant literature.

Forster and Smith (1998) considered models having categorical response and
categorical covariate vector, when some response values are missing. They in-
vestigated a Bayesian method for selecting between nonignorable and ignorable
nonresponse models, pointing out that the limited amount of information available
makes standard model comparison methods inappropriate. Other works dealing
with missing data for categorical responses include Basu and Pereira (1982), Al-
bert and Gupta (1985), Kadane (1985), Dickey, Jiang, and Kadane (1987), Park and
Brown (1994), Paulino and Pereira (1995), Park (1998), Bradlow and Zaslavsky
(1999), and Soares and Paulino (2001). Viana (1994) and Prescott and Garthwaite
(2002) studied misclassified multinomial and binary data, respectively, with appli-
cations to misclassified case-control data.

4. Tests and confidence intervals in two-way tables

We next consider Bayesian analogs of frequentist significance tests and confidence
intervals for contingency tables. For 2×2 tables, with multinomial Dirichlet priors
or binomial beta priors there are connections between Bayesian and frequentist
results.

4.1. Confidence intervals for association parameters

For 2× 2 tables resulting from two independent binomial samples with parameters
π1 and π2, the measures of usual interest are π1 − π2, the relative risk π1/π2, and
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the odds ratio [π1/(1−π1)]/[π2/(1−π2)]. It is most common to use a beta(αi, βi)
prior for πi, i = 1, 2, taking them to be independent. Alternatively, one could use
a correlated prior. An obvious possibility is the bivariate normal for [logit(π1),
logit(π2)]. Howard (1998) instead amended the independent beta priors and used
prior density function proportional to

e−(1/2)u2
πa−1

1 (1 − π1)b−1πc−1
2 (1 − π2)d−1,

where

u =
1
σ

log
(

π1(1 − π2)
π2(1 − π1)

)
.

Howard suggested σ = 1 for a standard form.
The priors forπ1 andπ2 induce corresponding priors for the measures of interest.

For instance, with uniform priors, π1−π2 has a symmetrical triangular density over
(-1, +1), r = π1/π2 has density g(r) = 1/2 for 0 ≤ r ≤ 1 and g(r) = 1/(2r2)
for r > 1, and the log odds ratio has the Laplace density (Nurminen and Mutanen
1987). The posterior distribution for (π1, π2) induces posterior distributions for the
measures. For the independent beta priors, Hashemi, Nandram and Goldberg (1997)
and Nurminen and Mutanen (1987) gave integral expressions for the posterior
distributions for the difference, ratio, and odds ratio.

Hashemi et al. (1997) formed Bayesian highest posterior density (HPD) con-
fidence intervals for these three measures. With the HPD approach, the posterior
probability equals the desired confidence level and the posterior density is higher
for every value inside the interval than for every value outside of it. The HPD in-
terval lacks invariance under parameter transformation. This is a serious liability
for the odds ratio and relative risk, unless the HPD interval is computed on the log
scale. For instance, if (L, U) is a 100(1 − α)% HPD interval using the posterior
distribution of the odds ratio, then the 100(1 − α)% HPD interval using the pos-
terior distribution of the inverse of the odds ratio (which is relevant if we reverse
the identification of the two groups being compared) is not (1/U, 1/L). The “tail
method” 100(1 − α)% interval consists of values between the α/2 and (1 − α/2)
quantiles. Although longer than the HPD interval, it is invariant.

Agresti and Min (2005) discussed Bayesian confidence intervals for associ-
ation parameters in 2×2 tables. They argued that if one desires good coverage
performance (in the frequentist sense) over the entire parameter space, it is best to
use quite diffuse priors. Even uniform priors are often too informative, and they
recommended the Jeffreys prior.

4.2. Tests comparing two independent binomial samples

Using independent beta priors, Novick and Grizzle (1965) focused on finding the
posterior probability that π1 > π2 and discussed application to sequential clinical
trials. Cornfield (1966) also examined sequential trials from a Bayesian viewpoint,
focusing on stopping-rule theory. He used prior densities that concentrate some
nonzero probability at the null hypothesis point. His test assumed normal priors for
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µi = logit(πi), i = 1, 2, putting a nonzero prior probability λ on the null µ1 = µ2.
From this, Cornfield derived the posterior probability that µ1 = µ2 and showed
connections with stopping-rule theory.

Altham (1969) discussed Bayesian testing for 2×2 tables in a multinomial
context. She treated the cell probabilities {πij} as multinomial parameters having
a Dirichlet prior with parameters {αij}. For testing H0: θ = π11π22/π12π21 ≤ 1
against Ha: θ > 1 with cell counts {nij} and the posterior Dirichlet distribution
with parameters {α

′
ij = αij + nij}, she showed that

P (θ ≤ 1|{nij}) =
α

′
21−1∑

s=max(α′
21−α

′
12,0)

(
α

′
+1 − 1

s

)(
α

′
+2 − 1

α
′
2+ − 1 − s

)
/

(
α

′
++ − 2

α
′
1+ − 1

)
.

This posterior probability equals the one-sided P-value for Fisher’s exact test, when
one uses the improper prior hyperparameters α11 = α22 = 0 and α12 = α21 =
1, which correspond to a prior belief favoring the null hypothesis. That is, the
ordinary P -value for Fisher’s exact test corresponds to a Bayesian P -value with a
conservative prior distribution, which some have taken to reflect the conservative
nature of Fisher’s exact test. If αij = γ, i, j = 1, 2, with 0 ≤ γ ≤ 1, Altham
showed that the Bayesian P -value is smaller than the Fisher P -value. The difference
between the two is no greater than the null probability of the observed data.

Altham’s results extend to comparing independent binomials with correspond-
ing beta priors. In that case, see Irony and Pereira (1986) for related work comparing
Fisher’s exact test with a Bayesian test. See Seneta (1994) for discussion of another
hypergeometric test having a Bayesian-type derivation, due to Carl Liebermeister
in 1877, that can be viewed as a forerunner of Fisher’s exact test. Howard (1998)
showed that with Jeffreys priors the posterior probability that π1 ≤ π2 approxi-
mates the one-sided P -value for the large-sample z test using pooled variance (i.e.,
the signed square root of the Pearson statistic) for testing H0 : π1 = π2 against
Ha : π1 > π2.

Little (1989) argued that if one believes in conditioning on approximate an-
cillary statistics, then the conditional approach leads naturally to the likelihood
principle and to a Bayesian analysis such as Altham’s. Zelen and Parker (1986)
considered Bayesian analyses for 2×2 tables that result from case-control studies.
They argued that the Bayesian approach is well suited for this, since such studies
do not represent randomized experiments or random samples from a real or hypo-
thetical population of possible experiments. Later Bayesian work on case-control
studies includes Ghosh and Chen (2002), Müller and Roeder (1997), Seaman and
Richardson (2004), and Sinha, Mukherjee, and Ghosh (2004). For instance, Sea-
man and Richardson (2004) extend to Bayesian methods the equivalence between
prospective and retrospective models in case-control studies. See Berry (2004) for
a recent exposition of advantages of using a Bayesian approach in clinical trials.

Weisberg (1972) extended Novick and Grizzle (1965) and Altham (1969) to the
comparison of two multinomial distributions with ordered categories. Assuming
independent Dirichlet priors, he obtained an expression for the posterior probability
that one distribution is stochastically larger than the other. In the binary case, he
also obtained the posterior distribution of the relative risk.
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Kass and Vaidyanathan (1992) studied sensitivity of Bayes factors to small
changes in prior distributions. Under a certain null orthogonality of the parameter of
interest and the nuisance parameter, and with the two parameters being independent
a priori, they showed that small alterations in the prior for the nuisance parameter
have no effect on the Bayes factor up to order n−1. They illustrated this for testing
equality of binomial parameters.

Walley, Gurrin, and Burton (1996) suggested using a large class of prior dis-
tributions to generate upper and lower probabilities for testing a hypothesis. These
are obtained by maximizing and minimizing the probability with respect to the
density functions in that class. They applied their approach to clinical trials data
for deciding which of two therapies is better. See also Walley (1996) for discussion
of a related “imprecise Dirichlet model” for multinomial data.

Brooks (1987) used a Bayesian approach for the design problem of choosing the
ratio of sample sizes for comparing two binomial proportions. Matthews (1999) also
considered design issues in the context of two-sample comparisons. In that simple
setting, he presented the optimal Bayesian design for estimation of the log odds
ratio, and he also studied the effect of the specification of the prior distributions.

4.3. Testing independence in two-way tables

Gunel and Dickey (1974) considered independence in two-way contingency ta-
bles under the Poisson, multinomial, independent multinomial, and hypergeometric
sampling models. Conjugate gamma priors for the Poisson model induce priors in
each further conditioned model. They showed that the Bayes factor for indepen-
dence itself factorizes, highlighting the evidence residing in the marginal totals.

Good (1976) also examined tests of independence in two-way tables based on
the Bayes factor, as did Jeffreys for 2×2 tables in later editions of his book. As in
some of his earlier work, for a prior distribution Good used a mixture of symmetric
Dirichlet distributions. Crook and Good (1980) developed a quantitative measure
of the amount of evidence about independence provided by the marginal totals and
discussed conditions under which this is small. See also Crook and Good (1982)
and Good and Crook (1987).

Albert (1997) generalized Bayesian methods for testing independence and es-
timating odds ratios to other settings, extending Albert (1996). He used a prior
distribution for the loglinear association parameters that reflects a belief that only
part of the table reflects independence (a “quasi-independence” prior model) or that
there are a few “deviant cells,” without knowing where these outlying cells are in
the table. Quintana (1998) proposed a nonparametric Bayesian analysis for devel-
oping a Bayes factor to assess homogeneity of several multinomial distributions,
using Dirichlet process priors. The model has the flexibility of assuming no specific
form for the distribution of the multinomial probabilities.

Intrinsic priors, introduced for model selection and hypothesis testing by Berger
and Pericchi (1996), allow a conversion of an improper noninformative prior into
a proper one. For testing independence in contingency tables, Casella and Moreno
(2002), noting that many common noninformative priors cannot be centered at the
null hypothesis, suggested the use of intrinsic priors.
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4.4. Comparing two matched binomial samples

There is a substantial literature on comparing binomial parameters with indepen-
dent samples, but the dependent-samples case has attracted less attention. Altham
(1971) developed Bayesian analyses for matched-pairs data with a binary response.
Consider the simple model in which the probability πij of response i for the first
observation and j for the second observation is the same for each subject. Using the
Dirichlet({αij}) prior and letting {α

′
ij = αij + nij} denote the parameters of the

Dirichlet posterior, she showed that the posterior probability of a higher probability
of success for the first observation is

P [π12/(π12 + π21) > 1/2|{nij}] =
α

′
12−1∑
s=0

(
α

′
12 + α

′
21 − 1

s

)(1
2
)α

′
12+α

′
21−1

.

This equals the frequentist one-sided P -value using the binomial distribution when
the prior parameters are α12 = 1 and α21 = 0. As in the independent samples
case studied by Altham (1969), this is a Bayesian P -value for a prior distribution
favoring H0. If α12 = α21 = γ, with 0 ≤ γ ≤ 1,Altham showed that this is smaller
than the frequentist P -value, and the difference between the two is no greater than
the null probability of the observed data.

Altham (1971) also considered the logit model in which the probability varies
by subject but the within-pair effect is constant. She showed that the Bayesian
evidence against the null is weaker as the number of pairs (n11 + n22) giving the
same response at both occasions increases, for fixed values of the numbers of pairs
giving different responses at the two occasions. This differs from the analysis in
the previous paragraph and the corresponding conditional likelihood result for this
model, which do not depend on such “concordant” pairs. Ghosh et al. (2000a)
showed related results.

Altham (1971) also considered logit models for cross-over designs with two
treatments, adding two strata for the possible orders. She showed approximate
correspondences with classical inferences in the case of great prior uncertainty. For
cross-over designs, Forster (1994) used a multivariate normal prior for a loglinear
model, showing how to incorporate prior beliefs about the existence of a carry-over
effect and check the posterior sensitivity to such assumptions. For obtaining the
posterior, he handled the non-conjugacy by Gibbs sampling. This has the facility
to deal easily with cases in which the data are incomplete, such as when subjects
are observed only for the first period.

5. Regression models for categorical responses

5.1. Binary regression

Bayesian approaches to estimating binary regression models took a sizable step
forward with Zellner and Rossi (1984). They examined the generalized linear mod-
els (GLMs) h[E(yi)] = x

′
iβ, where {yi} are independent binary random variables,

xi is a vector of covariates for yi, and h(·) is a link function such as the probit or



Bayesian inference for categorical data analysis 317

logit. They derived approximate posterior densities both for an improper uniform
prior on β and for a general class of informative priors, giving particular attention
to the multivariate normal. Their approach is discussed further in Sect. 6.

Ibrahim and Laud (1991) considered the Jeffreys prior for β in a GLM, giv-
ing special attention to its use with logistic regression. They showed that it is a
proper prior and that all joint moments are finite, as is also true for the posterior
distribution. See also Poirier (1994). Wong and Mason (1985) extended logistic
regression modeling to a multilevel form of model. Daniels and Gatsonis (1999)
used such modeling to analyze geographic and temporal trends with clustered lon-
gitudinal binary data. Biggeri, Dreassi, and Marchi (2004) used it to investigate the
joint contribution of individual and aggregate (population-based) socioeconomic
factors to mortality in Florence. They illustrated how an individual-level analysis
that ignored the multilevel structure could produce biased results.

Although these days logistic regression is more popular than probit regres-
sion, for Bayesian inference the probit case has computational simplicities due to
connections with an underlying normal regression model. Albert and Chib (1993)
studied probit regression modeling, with extensions to ordered multinomial re-
sponses. They assumed the presence of normal latent variables Zi (such that the
corresponding binary yi = 1 if Zi > 0 and yi = 0 if Zi ≤ 0) which, given the
binary data, followed a truncated normal distribution. The normal assumption for
Z = (Z1, . . . , Zn) allowed Albert and Chib to use a hierarchical prior structure
similar to that of Lindley and Smith (1972). If the parameter vector β of the linear
predictor has dimension k, one can model β as lying on a linear subspace Aβ0,
where β0 has dimension p < k. This leads to the hierarchical prior

Z ∼ N(Xβ, I), β ∼ N(Aβ0, σ
2I), (β0, σ

2) ∼ π(β0, σ
2),

where β0 and σ2 were assumed independent and given noninformative priors.
Bedrick, Christensen, and Johnson (1996, 1997) took a somewhat different ap-

proach to prior specification. They elicited beta priors on the success probabilities at
several suitably selected values of the covariates. These induce a prior on the model
parameters by a one-to-one transformation. They argued, following Tsutakawa and
Lin (1986), that it is easier to formulate priors for success probabilities than for
regression coefficients. In particular, those priors can be applied to different link
functions, whereas prior specification for regression coefficients would depend on
the link function. Bedrick et al. (1997) gave an example of modeling the probability
of a trauma patient surviving as a function of four predictors and an interaction,
using priors specified at six combinations of values of the predictors and using
Bayes factors to compare possible link functions.

Item response models are binary regression models that describe the probability
that a subject makes a correct response to a question on an exam. The simplest
models, such as the Rasch model, model the logit or probit link of that probability
in terms of additive effects of the difficulty of the question and the ability of the
subject. For Bayesian analyses of such models, see Tsutakawa and Johnson (1990),
Kim et al. (1994), Johnson and Albert (1999, Ch. 6), Albert and Ghosh (2000),
Ghosh et al. (2000b), and the references therein. For instance, Ghosh et al. (2000b)
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considered necessary and conditions for posterior distributions to be proper when
priors are improper.

Another important application of logistic regression is in modeling trend, such
as in developmental toxicity experiments. Dominici and Parmigiani (2001) pro-
posed a Bayesian semiparametric analysis that combines parametric dose-response
relationships with a flexible nonparametric specification of the distribution of the re-
sponse, obtained using a Dirichlet process mixture approach. The degree to which
the distribution of the response adapts nonparametrically to the observations is
driven by the data, and the marginal posterior distribution of the parameters of in-
terest has closed form. Special cases include ordinary logistic regression, the beta-
binomial model, and finite mixture models. Dempster, Selwyn, and Weeks (1983)
and Ibrahim, Ryan, and Chen (1998) discussed the use of historical controls to ad-
just for covariates in trend tests for binary data. Extreme versions include logistic
regression either completely pooling or completely ignoring historical controls.

Greenland (2001) argued that for Bayesian implementation of logistic and Pois-
son models with large samples, both the prior and the likelihood can be approxi-
mated with multivariate normals, but with sparse data, such approximations may be
inadequate. For sparse data, he recommended exact conjugate analysis. Giving con-
jugate priors for the coefficient vector in logistic and Poisson models, he introduced
a computationally feasible method of augmenting the data with binomial “pseudo-
data” having an appropriate prior mean and variance. Greenland also discussed the
advantages conjugate priors have over noninformative priors in epidemiological
studies, showing that flat priors on regression coefficients often imply ridiculous
assumptions about the effects of the clinical variables.

Piegorsch and Casella (1996) discussed empirical Bayesian methods for lo-
gistic regression and the wider class of GLMs, through a hierarchical approach.
They also suggested an extension of the link function through the inclusion of a
hyperparameter. All the hyperparameters were estimated via marginal maximum
likelihood.

Here is a summary of other literature involving Bayesian binary regression mod-
eling. Hsu and Leonard (1997) proposed a hierarchical approach that smoothes the
data in the direction of a particular logistic regression model but does not require es-
timates to perfectly satisfy that model. Chen, Ibrahim, andYiannoutsos (1999) con-
sidered prior elicitation and variable selection in logistic regression. Chaloner and
Larntz (1989) considered determination of optimal design for experiments using
logistic regression. Zocchi and Atkinson (1999) considered design for multinomial
logistic models. Dey, Ghosh, and Mallick (2000) edited a collection of articles that
provided Bayesian analyses for GLMs. In that volume Gelfand and Ghosh (2000)
surveyed the subject and Chib (2000) modeled correlated binary data.

5.2. Multi-category responses

For frequentist inference with a multinomial response variable, popular models in-
clude logit and probit models for cumulative probabilities when the response is ordi-
nal (such as logit[P (yi ≤ j)] = αj +x

′
iβ), and multinomial logit and probit models
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when the response is nominal (such as log[P (yi = j)/P (yi = c)] = αj + x
′
iβj).

The ordinal models can be motivated by underlying logistic or normal latent vari-
ables. Johnson and Albert (1999) focused on ordinal models. Specification of priors
is not simple, and they used an approach that specifies beta prior distributions for
the cumulative probabilities at several values of the explanatory variables (e.g.,
see p. 133). They fitted the model using a hybrid Metropolis-Hastings/Gibbs sam-
pler that recognizes an ordering constraint on the {αj}. Among special cases, they
considered an ordinal extension of the item response model.

Chipman and Hamada (1996) used the cumulative probit model but with a
normal prior defined directly on β and a truncated ordered normal prior for the
{αj}, implementing it with the Gibbs sampler. For binary and ordinal regression,
Lang (1999) used a parametric link function based on smooth mixtures of two
extreme value distributions and a logistic distribution. His model used a flat, non-
informative prior for the regression parameters, and was designed for applications
in which there is some prior information about the appropriate link function.

Bayesian ordinal models have been used for various applications. For instance,
Chipman and Hamada (1996) analyzed two industrial data sets. Johnson (1996)
proposed a Bayesian model for agreement in which several judges provide ordinal
ratings of items, a particular application being test grading. Johnson assumed that
for a given item, a normal latent variable underlies the categorical rating. The model
is used to regress the latent variables for the items on covariates in order to compare
the performance of raters. Broemeling (2001) employed a multinomial-Dirichlet
setup to model agreement among multiple raters. For other Bayesian analyses with
ordinal data, see Bradlow and Zaslavsky (1999), Ishwaran and Gatsonis (2000),
and Rossi, Gilula, and Allenby (2001).

For nominal responses, Daniels and Gatsonis (1997) used multinomial logit
models to analyze variations in the utilization of alternative cardiac procedures
in a study of Medicare patients who had suffered myocardial infarction. Their
model generalized the Wong and Mason (1985) hierarchical approach. They used
a multivariate t distribution for the regression parameters, with vague proper priors
for the scale matrix and degrees of freedom.

In the econometrics literature, many have preferred the multinomial probit
model to the multinomial logit model because it does not require an assumption of
“independence from irrelevant alternatives.” McCulloch, Polson, and Rossi (2000)
discussed issues dealing with the fact that parameters in the basic model are not
identified. They used a multivariate normal prior for the regression parameters and
a Wishart distribution for the inverse covariance matrix for the underlying normal
model, using Gibbs sampling to fit the model. See references therein for related
approaches with that model. Imai and van Dyk (2005) considered a discrete-choice
version of the model, fitted with MCMC.

5.3. Multivariate response extensions and other GLMs

For modeling multivariate correlated ordinal (or binary) responses, Chib and Green-
berg (1998) used a multivariate probit model. A multivariate normal latent random
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vector with cutpoints along the real line defines the categories of the observed dis-
crete variables. The correlation among the categorical responses is induced through
the covariance matrix for the underlying latent variables. See also Chib (2000).
Webb and Forster (2004) parameterized the model in such a way that conditional
posterior distributions are standard and easily simulated. They focused on model
determination through comparing posterior marginal probabilities of the model
given the data (integrating out the parameters). See also Chen and Shao (1999),
who also briefly reviewed other Bayesian approaches to handling such data.

Logistic regression does not extend as easily to multivariate modeling, because
of a lack of a simple logistic analog of the multivariate normal. However, O’Brien
and Dunson (2004) formulated a multivariate logistic distribution incorporating
correlation parameters and having marginal logistic distibutions. They used this
in a Bayesian analysis of marginal logistic regression models, showing that proper
posterior distributions typically exist even when one uses an improper uniform prior
for the regression parameters.

Zeger and Karim (1991) fitted generalized linear mixed models using a Bayesian
framework with priors for fixed and random effects. The focus on distributions for
random effects in GLMMs in articles such as this one led to the treatment of
parameters in GLMs as random variables with a fully Bayesian approach. For any
GLM, for instance, for the first stage of the prior specification one could take the
model parameters to have a multivariate normal distribution. Alternatively, one can
use a prior that has conjugate form for the exponential family (Bedrick et al. 1996).
In either case, the posterior distribution is not tractable, because of the lack of closed
form for the integral that determines the normalizing constant.

Recently Bayesian model averaging has received much attention. It accounts
for uncertainty about the model by taking an average of the posterior distribution
of a quantity of interest, weighted by the posterior probabilities of several potential
models. Following the previously discussed work of Madigan and Raftery (1994),
the idea of model averaging was developed further by Draper (1995) and Raftery,
Madigan, and Hoeting (1997). In their review article, Hoeting et al. (1999) discussed
model averaging in the context of GLMs. See also Giudici (1998) and Madigan
and York (1995).

6. Bayesian computation

Historically, a barrier for the Bayesian approach has been the difficulty of calcu-
lating the posterior distribution when the prior is not conjugate. See, for instance,
Leonard, Hsu, and Tsui (1989), who considered Laplace approximations and related
methods for approximating the marginal posterior density of summary measures of
interest in contingency tables. Fortunately, for GLMs with canonical link function
and normal or conjugate priors, the posterior joint and marginal distributions are
log-concave (O’Hagan and Forster 2004, pp. 29–30). Hence numerical methods to
find the mode usually converge quickly.

Computations of marginal posterior distributions and their moments are less
problematic with modern ways of approximating posterior distributions by simu-
lating samples from them. These include the importance sampling generalization
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of Monte Carlo simulation (Zellner and Rossi 1984) and Markov chain Monte
Carlo methods (MCMC) such as Gibbs sampling (Gelfand and Smith 1990) and
the Metropolis-Hastings algorithm (Tierney 1994). We touch only briefly on com-
putational issues here, as they are reviewed in other sources (e.g., Andrieu, Doucet,
and Robert (2004) and many recent books on Bayesian inference, such as O’Hagan
and Forster (2004), Sects. 12.42–46). For some standard analyses, such as inference
about parameters in 2×2 tables, simple and long-established numerical algorithms
are adequate and can be implemented with a wide variety of software. For instance,
Agresti and Min (2005) provided a link to functions using the software R for tail
confidence intervals for association measures in 2×2 tables with independent beta
priors.

For binary regression models, noting that analysis of the posterior density of β
(in particular, the extraction of moments) was generally unwieldy, Zellner and Rossi
(1984) discussed other options: asymptotic expansions, numerical integration, and
Monte Carlo integration, for both diffuse and informative priors. Asymptotic ex-
pansions require a moderately large sample size n, and traditional numerical inte-
gration may be difficult for very high-dimensional integrals. When these options
falter, Zellner and Rossi argued that Monte Carlo methods are reasonable, and they
proposed an importance sampling method. In contrast to naive (uniform) Monte
Carlo integration, importance sampling is designed to be more efficient, requiring
fewer sample draws to achieve a good approximation. To approximate the posterior
expectation of a function h(β), denoting the posterior kernel by f(β|y), Zellner
and Rossi noted that

E[h(β)|y] =
∫

h(β)f(β|y) dβ/

∫
f(β|y) dβ

=
∫

h(β)
f(β|y)
I(β)

I(β) dβ/

∫
f(β|y)
I(β)

I(β) dβ.

They approximated the numerator and denominator separately by simulating many
values {βi} from the importance function I(β), which they chose to be multivariate
t, and letting

E[h(β)|y] ≈
∑

i

h(βi)wi/
∑

wi,

where wi = f(βi|y)/I(βi).
Gibbs sampling, a highly useful MCMC method to sample from multivariate

distributions by successively sampling from simpler conditional distributions, be-
came popular in Bayesian inference following the influential article by Gelfand and
Smith (1990). They gave several examples of its suitability in Bayesian analysis,
including a multinomial-Dirichlet model. Epstein and Fienberg (1991) employed
Gibbs sampling to compute estimates of the entire posterior density of a set of cell
probabilities (a finite mixture of Dirichlet densities), not simply the posterior mean.
Forster and Skene (1994) applied Gibbs sampling with adaptive rejection sampling
to the Knuiman and Speed (1988) formulation of multivariate normal priors for
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loglinear model parameters. Other examples include George and Robert (1992),Al-
bert and Chib (1993), Forster (1994), Albert (1996), Chipman and Hamada (1996),
Vounatsou and Smith (1996), Johnson and Albert (1999), and McCulloch, Polson,
and Rossi (2000).

Often, the increased computational power of the modern era enables statisticians
to make fewer assumptions and approximations in their analyses. For example, for
multinomial data with a hierarchical Dirichlet prior, Leonard (1977b) made approx-
imations when deriving the posterior to account for hyperparameter uncertainty. By
contrast, Nandram (1998) used the Metropolis-Hastings algorithm to sample from
the posterior distribution, rendering Leonard’s approximations unnecessary.

7. Final comments

We have seen that much of the early work on Bayesian methods for categorical data
dealt with improved ways of handling empty cells or sparse contingency tables. Of
course, those who fully adopt the Bayesian approach find the methods a helpful
way to incorporate prior beliefs. Bayesian methods have also become popular for
model averaging and model selection procedures. An area of particular interest now
is the development of Bayesian diagnostics (e.g., residuals and posterior predictive
probabilities) that are a by-product of fitting a model.

Despite the advances summarized in this paper and the increasingly extensive
literature, Bayesian inference does not seem to be commonly used yet in practice
for basic categorical data analyses such as tests of independence and confidence in-
tervals for association parameters. This may partly reflect the absence of Bayesian
procedures in the primary software packages. Although it is straightforward for
specialists to conduct analyses with Bayesian software such as BUGS, widespread
use is unlikely to happen until the methods are simple to use in the software most
commonly used by applied statisticians and methodologists. For multi-way contin-
gency table analysis, another factor that may inhibit some analysts is the plethora
of parameters for multinomial models, which necessitates substantial prior speci-
fication.

For many who are tentative users of the Bayesian approach, specification of
prior distributions remains the stumbling block. It can be daunting to specify and
understand prior distributions on GLM parameters in models with non-linear link
functions, particularly for hierarchical models. In this regard, we find helpful the
approach of eliciting prior distributions on the probability scale at selected values
of covariates, as in Bedrick, Christensen and Johnson (1996, 1997). It is simpler to
comprehend such priors and their implications than priors for parameters pertaining
to a non-linear link function of the probabilities.

For the frequentist approach, the GLM provides a unifying approach for cate-
gorical data analysis. This model is a convenient starting point, as it yields many
standard analyses as special cases and easily generalizes to more complex struc-
tures. Currently Bayesian approaches for categorical data seem to suffer from not
having a natural starting point. Even if one starts with the GLM, there is a variety
of possible approaches, depending on whether one specifies priors for the proba-
bilities or for parameters in the model, depending on the distributions chosen for
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the priors, and depending on whether one specifies hyperparameters or uses a hier-
archical approach or an empirical Bayesian approach for them. It is unrealistic to
expect all problems to fit into one framework, but nonetheless it would be helpful
to data analysts if there were a standard default starting point for dealing with basic
categorical data analyses such as estimating a proportion, comparing two propor-
tions, and logistic regression modeling. However, it may be unrealistic to expect
consensus about this, as even frequentists take increasingly diverse approaches for
analyzing such data.

Historically, probably many frequentist statisticians of relatively senior age first
saw the value of some Bayesian analyses upon learning of the advantages of shrink-
age estimates, such as in the work of C. Stein. These days it is possible to obtain
the same advantages in a frequentist context using random effects, such as in the
generalized linear mixed model. In this sense, the lines between Bayesian and fre-
quentist analysis have blurred somewhat. Nonetheless, there are still some analysis
aspects for which the Bayesian approach is a more natural one, such as using model
averaging to deal with the thorny issue of model uncertainty. In the future, it seems
likely to us that statisticians will increasingly be tied less dogmatically to a single
approach and will feel comfortable using both frequentist and Bayesian paradigms.
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