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Abstract

In the mid-1950s S.N. Roy and his students contributed two landmark articles to the contingency table literature [Roy, S.N.,
Kastenbaum, M.A., 1956. On the hypothesis of no “interaction” in a multiway contingency table. Ann. Math. Statist. 27, 749–757;
Roy, S.N., Mitra, S.K., 1956. An introduction to some nonparametric generalizations of analysis of variance and multivariate
analysis. Biometrika 43, 361–376]. The first article generalized concepts of interaction from 2 × 2 × 2 contingency tables to three-
way tables of arbitrary size and to larger tables. In the second article, which is the source of our primary focus, various notions of
independence were clarified for three-way contingency tables, Roy’s union–intersection test was applied to construct chi-squared
tests of hypotheses about the structure of such tables, and the chi-squared statistics were shown not to depend on the distinction
between response and explanatory variables. This work pre-dates by many years later developments that expressed such results in the
context of loglinear models. It pre-dates by a quarter century the development of graphical models. We summarize the main results
in these key articles and discuss the connection between them and the later developments of loglinear modeling and of graphical
modeling. We also mention ways in which these later developments have themselves been further generalized.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Through the mid-1950s, the literature on contingency table analysis had focused almost entirely on two-way tables.
Then, in 1956 two revolutionary articles were published by S.N. Roy with two of his Ph.D. students—Marvin Kasten-
baum and S.K. Mitra. These articles dealt mainly with the structure and analysis of three-way contingency tables. Let
(X, Y, Z) denote the three categorical variables.

Bartlett (1935) had defined no interaction in a 2 × 2 × 2 table as meaning that the odds ratio between two of the
variables is identical for the two strata of the third variable. This property is symmetric in the choice of variables,
with XY common odds ratios being equivalent to XZ common odds ratios and to YZ common odds ratios. Roy and
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Kastenbaum (1956) generalized this definition of interaction to r × s × t tables and presented chi-squared tests of the
hypothesis of no interaction.

Roy and Mitra (1956) focused more generally on contingency table structure—not just for a lack of interaction
but for the various ways that independence for a two-way table extends to three-way tables. In addition, this article
exploited Roy’s union–intersection principle to provide a heuristic justification for chi-squared goodness-of-fit tests for
the various structures. It was not until the 1960s that the implications of this work were fully explored in the context
of loglinear modeling of contingency tables. The development of graphical models starting with Darroch et al. (1980)
also put this paper and its key results in a broader context.

In this article, Section 2 surveys the most important results from Roy and Mitra (1956) and Roy and Kastenbaum
(1956). We show their connections with these later developments of loglinear modeling in Section 3 and graphical
modeling in Section 4. In Sections 5 and 6 we also mention ways in which these later developments have themselves
been further generalized in work that, at least indirectly, has its genesis in these papers by Roy and his students.

2. Summary of the Roy–Mitra–Kastenbaum articles

In their introductory paragraph, Roy and Mitra stated their opinion that as of the time of their article (1956), the
landmark articles in contingency table analysis were Pearson’s introduction of the chi-squared test (in 1900), Fisher’s
correction of that test giving the proper degrees of freedom (in 1922), Cramér’s classic book on mathematical statistics
which derived the asymptotic distribution of the Pearson chi-squared statistic in general parametric cases (see Cramér,
1946, pp. 424–434), Neyman’s fundamental paper (see Neyman, 1949) introducing the class of best asymptotic normal
estimators and its attendant discussion of minimum chi-squared statistics (also discussed by Cramér), the discussion
of association in Yule and Kendall’s landmark book (see Yule and Kendall, 1950), and articles in 1947 by Barnard and
Pearson that applied unconditional approaches to inference. With few exceptions, nearly all methodological discussion
of contingency table analysis up to that date focused on two-way tables.

As an alternative to R.A. Fisher’s famous exact conditional test of independence for 2 × 2 tables, Barnard (1945)
had proposed an unconditional approach for a small-sample analysis comparing two binomial parameters. Barnard’s
approach was strongly criticized by Fisher (in a subsequent letter to the editor of Nature) and not revived for about
35 years. The Pearson (1947) article, while not itself groundbreaking, gave support to the viewpoint that Fisher’s
conditional analysis was not always optimal or even appropriate. Roy and Mitra expressed agreement with this view.
They emphasized throughout their article that the formulation of the probability distribution assumed for the contingency
table should reflect the identification of the response variables (which they referred to as the “variates”) and the
explanatory variables (which they referred to as the “ways of classification”).

As of 1956, there had been little in the way of systematic presentation of the types of association structure that could
exist in a three-way contingency table. Among the exceptions were Bartlett’s (1935) article defining no interaction in
2 × 2 × 2 tables, Kendall’s (1945) explanation for such tables that conditional independence does not imply marginal
independence (and the related discussion about analyzing partial association in three-way tables in Chapter 2 of the
14th and final edition of Yule and Kendall, 1950), Simpson’s (1951) study about the dangers of collapsibility when
there is no interaction (which, like Yule and Kendall, also mentioned briefly the generalization from independence in
a two-way table to mutual independence in a three-way table), and Lancaster’s (1951) attempt to partition the Pearson
chi-squared statistic for testing mutual independence in three-way tables. These articles all focused on 2×2×2 tables.
Although Lancaster mentioned the possibility of generalization to larger tables, it is amusing in retrospect to read his
comment that “Doubtless little use will ever be made of more than a three-dimensional classification.”

2.1. Sampling schemes

Using the notation from Roy and Kastenbaum (1956) and Roy and Mitra (1956), let {nijk} denote cell counts in the
r × s × t cross-classification, with total sample size n. As Lancaster (1951) had done, Roy and Mitra considered three
sampling schemes for a three-way contingency table:

1. A single multinomial sample over the entire table. This case treats the overall sample size n alone as fixed.
2. Multinomial sampling over the r × s combinations of categories of (X, Y ) at a fixed category of Z, with independent

samples at the t categories of Z. This case treats {n++k} as fixed (a+subscript denotes summation over that index).
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3. Multinomial sampling over the s categories of Y, with independent samples at the r × t categories of (X, Z). This
case treats {ni+k} as fixed.

We will summarize the Roy–Mitra results for these three cases. We let {pijk} denote the cell probabilities. In case (1),∑
i

∑
j

∑
k pijk = 1. In case (2),

∑
i

∑
j pijk = 1 for each fixed k. In case (3),

∑
j pijk = 1 for each fixed combination

of i and k.

2.2. A single multinomial sample

For a single multinomial sample, Roy and Mitra considered the hypotheses:

• X and Y are conditionally independent, given Z. That is,

H0:
pijk

p++k

= pi+k

p++k

p+jk

p++k

for all i, j, and k.

• X and Y are jointly independent of Z. That is,

H0: pijk = pij+p++k for all i, j, and k.

Roy and Mitra showed that:

• If there is conditional independence between X and Y and if also X and Z are marginally independent and Y and Z
are marginally independent, then X, Y, and Z are mutually independent; that is,

pijk = pi++p+j+p++k

for all i, j, and k.
• If X and Z are marginally independent and if Y and Z are marginally independent, then if there is no interaction (as

defined in the Bartlett and Roy–Kastenbaum sense of equality of odds ratios between two variables at each category
of the third variable, as developed below), then X and Y are jointly independent of Z.

Roy and Kastenbaum explored the condition of no interaction in detail. They observed that for a multinomial
sample with only the overall sample size n fixed, no interaction means that the cell probabilities {pijk} have
the form

pijk = aij bikcjk ,

but there is no closed-form expression in terms of the two-way marginal probabilities of {pijk}. Like Roy and Mitra, they
also discussed the last result bulleted above about how no interaction gives the link between two marginal independences
and a joint independence.

For an r × s × t table, Roy and Kastenbaum showed that the hypothesis of no interaction corresponds to (r − 1)

(s − 1)(t − 1) constraint equations involving odds ratios,

prstpij t

pistprjt

= prskpijk

piskprjk

for i = 1, . . . , (r − 1), j = 1, . . . , (s − 1), k = 1, . . . , (t − 1).

Their concluding remarks explained how to generalize the concept of no interaction to higher dimensions and pointed
out that the no interaction constraint is itself a set of contrasts in the logarithms of the probabilities. This is an important
article that previews what became the natural definition of no interaction implied by loglinear models and logistic
regression models with categorical predictors.
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2.3. Multinomial sampling with Z fixed or with X and Z fixed

When Z is fixed, Roy and Mitra considered the hypothesis that X and Y are independent at each level of Z. This
is equivalent in structure to the hypothesis of conditional independence mentioned in the previous subsection. They
noted that if X and Y are conditionally independent and if Y and Z are marginally independent, then X and Y are also
marginally independent. This result relates to later work on conditions for collapsibility of a contingency table in terms
of identical conditional and marginal associations (e.g., Shapiro, 1982).

When X and Z are fixed and Y is a single response variable, Roy and Mitra discussed how hypotheses of interest have
analogs in the analysis of variance for a quantitative response variable with two fixed categorical factors. For example,
a relevant hypothesis is that for a fixed value of one factor, for any particular response outcome the probability is the
same at each category of the other factor.

2.4. Union–intersection tests

Roy (1953) had introduced the union–intersection principle for conducting hypothesis tests, described briefly as
follows: Suppose the null hypothesis of interest can be expressed as an intersection of several component hypotheses;
then, the rejection region for the union–intersection test is the union of the rejection regions for the tests for the
component hypotheses. Roy and Mitra (1956) showed that application of this principle to testing the simple null
hypothesis that a set of multinomial probabilities equal particular fixed values leads to a test statistic that is the Pearson
chi-squared statistic for this hypothesis.

For testing a composite null hypothesis, such as one of the independence conditions or the no interaction condition
specified above, they showed that the union–intersection principle yields the minimum chi-squared statistic as the test
statistic. That test statistic has Pearson chi-squared form

∑
(nijk − np̂ijk)

2/(np̂ijk),

but the parameter estimates {p̂ijk} for it are those based on minimizing this Pearson statistic instead of the usual max-
imum likelihood (ML) estimates. From Neyman (1949), the minimum chi-squared estimates share with ML estimates
the best asymptotic normal property, and Roy and Mitra noted that for computational simplicity one could instead insert
the ML estimates in the test statistic. They applied this result to several cases for two-way and three-way tables. They
noted that for a particular hypothesis, the same Pearson test statistic and the same asymptotic chi-squared distribution
results regardless of the multinomial sampling scheme (and thus, regardless of the distinction between response and
explanatory variables).

The asymptotic chi-squared distribution has degrees of freedom equal to the number of multinomial parameters
minus the number of parameters estimated from the data. In particular, they showed that df = rst − r − s − t + 2 for
testing mutual independence, df = t (r − 1)(s − 1) for testing conditional independence between X and Y (given Z),
and df = (rt − 1)(s − 1) for testing that Y is jointly independent of X and Z.

Finally, they noted that when a hypothesis with an associated chi-squared statistic is an intersection of several hypothe-
ses with their own chi-squared statistics, then the summary chi-squared statistic partitions into a sum of the component
chi-squared statistics asymptotically. (This was later noted to happen exactly for any n when using the likelihood-ratio
(LR) statistic instead of the Pearson statistic.) For example, they noted that the hypothesis of mutual independence of X,
Y, and Z is the intersection of (1) conditional independence between X andY given Z, (2) X and Z marginal independence,
and (3) Y and Z marginal independence. Under the null hypothesis of mutual independence, they noted that the three
component Pearson statistics are asymptotically independent and converge in probability to the overall chi-squared
statistic.

3. Related connections with loglinear models

The results just described from Roy and Mitra (1956) and Roy and Kastenbaum (1956) relate to the extensive
literature that evolved in the 1960s on loglinear models. Let {�ijk} denote expected frequencies in the cells of a three-
way contingency table. For instance, for a single multinomial sample over the entire table, {�ijk = npijk}, but these
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means could also refer to independent Poisson observations or to other sorts of multinomial sampling. See Bishop
et al. (1975) and Agresti (2002) for introductions to loglinear models.

3.1. Independence structure expressed as a loglinear model

The hypothesis of no interaction can be expressed as the loglinear model

log �ijk = � + �X
i + �Y

j + �Z
k + �XY

ij + �XZ
ik + �YZ

jk .

The hypothesis of conditional independence between X and Y, given Z, can be expressed as the loglinear model

log �ijk = � + �X
i + �Y

j + �Z
k + �XZ

ik + �YZ
jk .

The hypothesis of X and Y being jointly independent of Z is the loglinear model

log �ijk = � + �X
i + �Y

j + �Z
k + �XY

ij .

The hypothesis of mutual independence among X, Y, and Z is the loglinear model

log �ijk = � + �X
i + �Y

j + �Z
k .

Below we will use the common shorthand for loglinear models that specifies the marginal distributions that are
the minimal sufficient statistics for the models. The four models just stated are denoted (XY , XZ, YZ), (XZ, YZ),
(XY , Z), and (X, Y, Z).

In terms of such notation, the Roy and Mitra results stated in the previous section for a single multinomial sample
were

• Suppose the loglinear model (XZ, YZ) holds and also (X, Z) holds (that is, X and Z are marginally independent)
and (Y, Z) holds. Then, the loglinear model (X, Y, Z) holds.

• Suppose loglinear models (X, Z) and (Y, Z) hold and suppose there is no interaction (that is, loglinear model
(XY , XZ, YZ) holds). Then, loglinear model (XY , Z) holds.

For related results on collapsibility for loglinear models, see Agresti (2002, pp. 358–360, 398). In the 1960s the work
of Roy and Kastenbaum and of Roy and Mitra was extended by many. Important contributions included those from L.
Goodman, J. Darroch, I.J. Good, M. Birch, N. Mantel, and R. Plackett (see, for instance, the summary in Chapter 16
of Agresti, 2002). In particular, Birch (1963) noted how various margins of a contingency table are sufficient statistics
for loglinear models, the likelihood equations equate those margins to their expected values, ML inference is the same
for Poisson sampling and the various types of multinomial sampling, and the ML estimates are unique.

3.2. Chi-squared statistics

As mentioned above, for testing hypotheses about various types of independence in three-way tables, Roy and
Mitra showed that the union–intersection principle yields the minimum chi-squared test statistic. For about 25 years
following the publication of their paper, the minimum chi-squared approach and the related but simpler minimum
modified chi-squared approach in which the cell probability estimates are based on minimizing

∑
(nijk − np̂ijk)

2/(nijk)

received considerable attention. For example, when the estimating equations for the minimum modified chi-squared
statistic are linear, Bhapkar (1966) showed that the estimators are exactly those obtained using weighted least squares
(WLS). Interestingly, Bhapkar was himself one of Roy’s students. Soon after Bhapkar’s article, with the publication of
Grizzle et al. (1969) WLS became a popular competitor for ML for fitting models to contingency tables, because of its
computational simplicity.
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Minimum chi-squared statistics are now much less commonly used for contingency table analysis. However, the
connection between the minimum modified chi-squared statistic and the Pearson chi-squared statistic using ML esti-
mates was strengthened by the observation by Cressie and Read (1984) that these are both special cases of the power
divergence statistic. For a three-way table, this is

2

�(� + 1)

∑
nijk[(nijk/np̂ijk)

� − 1].

The Pearson statistic results when � = 1 and the modified chi-squared statistic results when � = −2.

3.3. The sampling model with all margins fixed

In a two-way table, when both margins are fixed, under independence the relevant sampling distribution is the
hypergeometric. Fisher’s exact test is a well-known inference that uses this structure. Roy and Mitra briefly described
the fixed margins case for two-way contingency tables. They noted that this case is less common in practice, and they
did not consider it at all for three-way tables.

As of 1956, the hypergeometric model seems only to have been considered for 2 × 2 tables, by Fisher for his
exact test in 1935 and by Cornfield (1956) for interval estimation of the odds ratio in case–control studies. Roy and
Mitra argued that a disadvantage of this setting is the lack of an obvious distribution to use under the alternative
hypothesis. However, Cornfield’s result about the relevance of the odds ratio to retrospective studies and his use of a
noncentral hypergeometric distribution to obtain a confidence interval for the odds ratio showed that this case has much
greater scope than believed prior to 1956. Although the fixed-margins sampling scheme is less common in practice,
the hypergeometric and related sampling models received more attention starting in the 1980s as attention focused on
exact, small-sample inference. Using the Fisherian conditional approach, unknown nuisance parameters are eliminated
by conditioning on their sufficient statistics.

For example, consider the loglinear model (XZ, YZ) of conditional independence between X andY, given Z. Suppose
we would like to construct a small-sample test of the null hypothesis that this model holds. To obtain a conditional
distribution free of the unknown nuisance parameters {�XZ

ik } and {�YZ
jk }, we condition on their sufficient statistics

{ni+k} and {n+jk}. The conditional probability mass function of {nijk} corresponds to a product of hypergeometric
probability mass functions relating X and Y at the various strata of Z. The computations for the conditional approach
for hypotheses in contingency tables or more generally for inference about parameters in logistic regression models
have been developed in several articles over the past 20 years by Cyrus Mehta and Nitin Patel. See Agresti (1992) for
a survey of the primary small-sample methods.

Likewise, in considering interaction, Roy and Kastenbaum (1956) thought it natural to have only the overall sample
size n fixed. They concluded their article by stating their belief that the structure of no interaction is not especially
meaningful if any of the margins are fixed. This was not borne out by later events. For example, this structure of
no interaction is the standard one for logistic regression models containing only main effect terms. Yet, for such
models it is standard to treat only Y as random and to treat the cross classification of the explanatory variables as fixed
counts.

4. Related connections with graphical models

About 25 years ago and yet 25 years after Roy and Mitra (1956), conditional independence began to receive special
attention as its own focus of research, in connection with a class of probabilistic models called graphical Markov
models. This is a class of multivariate statistical models for which the conditional independence structure of the joint
distribution can be read directly off a graph. In this context, the graph G is a pair (V , E), where V is a finite and
nonempty set of nodes and E is a set of ordered pairs of distinct nodes, representing edges between nodes. Edges can
be undirected or directed (with arrows). Two nodes u, v ∈ V connected by an undirected edge are called neighbors. If
there is an arrow pointing from u to v, then u is called a parent of v and v is called a child of u. A graph is said to be
complete if all the nodes are connected.

In a (conditional) independence graph, each node represents a univariate random variable, while the absence of an
edge between two nodes represents a type of conditional independence. A set of properties, called Markov properties,
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Fig. 1. Examples of independence graphs involving three categorical response variables.

provides the criteria to read off conditional independence restrictions from a graph. The importance of independence
graphs relates to their ability of providing with a graph an intuitive visual display of complex association structures in
terms of conditional independence. For extended presentations of various types of independence graphs, see Lauritzen
(1996), Cox and Wermuth (1996) or Whittaker (1990).

4.1. Graphical models for a single multinomial sample

As mentioned before, the first attempt to give a graphical representation of the pattern of association in a contingency
table is due to Darroch et al. (1980). They defined graphical models as a subclass of hierarchical loglinear models
that can be interpreted in terms of conditional independence using an undirected graph, which is a graph having only
undirected edges. The graph associated with a hierarchical loglinear model has as many nodes as the dimension of
the contingency table: Two nodes are not connected whenever in the hierarchical loglinear model their two-factor
interaction is absent.

We illustrate with the first sampling scheme discussed by Roy and Mitra (see also Section 2.2) in which the three
categorical random variables X,Y, and Z are all response variables with a single multinomial sample. Undirected graphs
having three nodes can represent this case. Such undirected graphs are appropriate when we wish to treat the variables
on an equal footing (all as response variables), with interest in modeling the associations among them.

Let us consider now the independence hypotheses proposed by Roy and Mitra and their independence graphs for
this case in which each variable is a response. First, suppose X and Y are conditionally independent, given Z, that is,
using Dawid’s notation (Dawid, 1979), X ⊥⊥ Y |Z. In this case, X and Y are not neighbors and their nodes are separated
by Z, as shown in Fig. 1(a). As Roy and Mitra noted, this hypothesis is the analogue of no partial XY correlation in
a three-variate normal population, which has a similar graph. Using a loglinear model specification, this hypothesis
corresponds to model (XZ, YZ) reported in Section 3.1, that is, to the absence of terms �XYZ

ijk and �XY
ij .

In the Darroch et al. (1980) graphical loglinear models, the maximal interaction parameters of the hierarchical
loglinear model correspond to the cliques of the graph. A clique is a subset of nodes forming a maximal complete
subgraph; that is, it forms an undirected subgraph such that all the nodes are neighbors and such that with the inclusion
of an additional node the resulting subgraph would no longer be complete. The graph in Fig. 1(a) consists of two
cliques, {X, Z} and {Y, Z}, because X and Y are not neighbors. Therefore, the graphical loglinear model is (XZ, YZ).

Roy and Mitra next considered the hypothesis that X and Y are jointly independent of Z, denoted by (X, Y ) ⊥⊥ Z.
Fig. 1(b) shows the corresponding undirected graph, where both X andY are not connected to Z. The cliques of this graph
are {X, Y } and {Z}. Therefore, in the graphical loglinear specification denoted by (XY , Z), the maximal interaction
term is �XY

ij . The graph suggests also that X ⊥⊥ Z|Y and that Y ⊥⊥ Z|X.
The independence graph in Fig. 1(c) consists of all singletons, implying conditional independence for each pair

of variables, given the third one. Equivalently, there is mutual independence among the variables. This was the third
and last hypothesis considered in this scheme by Roy and Mitra. This graph has cliques {X}, {Y }, and {Z}, and the
corresponding loglinear model denoted by (X, Y, Z) has no interaction terms.

Fig. 1 does not show the graph with an edge between each pair of variables. Its single clique is {X, Y, Z}. So,
it corresponds to the loglinear model with maximal interaction parameter �XYZ

ijk , which is the saturated model for a
three-way table. That is, whenever a loglinear model contains all the pairwise associations, only the case with the
highest-order interaction present is a graphical model. The model (XY , XZ, YZ) of no interaction that was the basis
of the Roy and Kastenbaum paper is not a graphical model.
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Fig. 2. Examples of independence graphs for two response variables (X and Y) and an explanatory variable (Z).

Fig. 3. Examples of independence graphs for one response variable (Y) and two explanatory variables (X, Z).

4.2. Graphical models for multinomial sampling with Z fixed or with X and Z fixed

Roy and Mitra emphasized taking into account the sampling design, and hence distinguishing between response
and explanatory variables. Undirected graphs cannot make this distinction. Other types of graphs have to be used that
allow edges to be directed. Graphs admitting only directed edges and containing no directed cycles are called directed
acyclic graphs. They treat variables in an asymmetric way, so that, for example, an arrow from X to Y means that X
is explanatory to Y as a response. More general graphs admitting both directed and undirected nodes are called chain
graphs (Lauritzen and Wermuth, 1989). They can incorporate symmetric and asymmetric dependence. Both undirected
graphs and directed acyclic graphs are special cases of chain graphs.

In chain graphs, nodes can be partitioned into an ordered sequence of subsets, called blocks, so that the variables
within a block are classified as pure explanatory, intermediate, or pure response variables. Within each block nodes
can be connected only by undirected edges, forming an undirected subgraph, while nodes in different blocks can be
connected only by arrows. The variables in a block from which arrows emanate are considered explanatory of the ones
in the successive blocks.

Consider now the case in which X and Y are response variables, while Z is explanatory. The appropriate graph in this
case is a joint-response graph, which is a type of chain graph. The nodes are partitioned into two blocks: The block
on the right contains the node Z as a pure explanatory variable and the block on the left contains Y and X as a joint
response. Fig. 2(a) illustrates a joint-response graph, showing the case of conditional dependence for each pair of the
variables. The graph is complete.

Fig. 2(b) portrays the Roy and Mitra hypothesis stating that the response variables are conditionally independent
given the explanatory variable Z. In this case the chain graph reduces to a directed acyclic graph. This graph is Markov
equivalent to Fig. 1(a); that is, it encodes the same conditional independence statements. Fig. 2(c) depicts the Roy
and Mitra hypothesis stating that X and Y are jointly independent of Z. The graph is equivalent to Fig. 1(b), since if
(X, Y ) ⊥⊥ Z then Z is not a useful explanatory variable for X and Y in that it explains nothing about them.

Suppose next that Y is the sole response variable and X and Z are explanatory variables. In the usual modeling,
one would not assume structure between the explanatory variables X and Z, regarding them as fixed rather than
random by virtue of the response–explanatory distinction or the sampling design. Likewise, Roy and Mitra did not
specify the relationship between X and Z, focusing instead on the conditional distribution of Y given the explanatory
variables.

WithY as the sole response, Fig. 3(a) presents a graph in which each pair is conditionally dependent. Fig. 3(b) depicts
the graph of conditional independence of X and Y given Z, which is illustrated in the graph by the missing arrow from
X to Y. This graph is Markov equivalent to those in Figs. 1(a) and 2(b). As mentioned above, the independence graph
in Fig. 3(c) would usually be of less interest. However, we mention in passing that for such graphs, variables (such as
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X and Z here) that are unconnected parents of a common child are marginally independent but conditionally dependent
given the child. (For explanation, see the discussion of chain graph Markov properties in Lauritzen, 1996, Section
3.2.3.)

5. Other types of independence graphical models

Not all types of independence structures can be captured by undirected graphs, directed graphs, or chain graphs. As a
consequence, new types of graphs have been proposed in recent years to encode different independence structures. For
example, one may be interested in modeling marginal independence between pairs of variables. In this framework, Cox
and Wermuth (1993) defined a new class of graphs, called covariance graphs, in which the presence of a dashed edge
denotes a marginal dependence in a set of jointly Gaussian variables. In the same direction, as an alternative to graphical
loglinear models, Drton and Richardson (2005) defined a class of graphical models for binary variables whose marginal
independence structures can be read off a graph. Lupparelli and Marchetti (2005) generalized their result by showing
how such graphs apply to marginal loglinear models for which the log link function applies to marginal probabilities
(Bergsma and Rudas, 2002).

Another type of independence that has been recently investigated for categorical variables is conditional independence
for specific values of a given variable:X ⊥⊥ Y |Z=k∗. In this context, Fienberg and Kim (1999) explored the possibility of
using a class of graphical loglinear models for combining conditional loglinear structures. The approach of considering
conditional independence at specific values of a given variable has also been discussed by HZjsgaard (2003, 2004). He
introduced a new type of graph, called a split graph, for contingency tables. A split graph consists of a collection of
graphs arranged in a hierarchy displaying the different association structures for the conditional joint distributions at
each value of the given variable.

Finally, Bayesian approaches have also been used with graphical models. In a simple nonhierarchical approach, the
prior distribution for the joint probabilities factors into prior distributions for marginal and conditional probabilities.
With independent Dirichlet form for those distributions, one obtains independent Dirichlet posterior distributions as
well. Dawid and Lauritzen (1993) introduced the notion of a probability distribution defined over probability measures
on a multivariate space that concentrate on a set of such graphs. A special case includes a hyper Dirichlet distribu-
tion that is conjugate for multinomial sampling and that implies that certain marginal probabilities have a Dirichlet
distribution.

6. Marginal homogeneity: a type of independence for marginal distributions

The Roy and Mitra paper focused on independence structure when there are independent observations on a set of
variables. With the increased frequency of longitudinal studies in practice and consequent dependent observations,
another type of independence that has increasingly received attention is independence between a response and the
time of measurement. In the contingency table literature, this is often referred to as marginal homogeneity, because it
corresponds to a joint distribution for a multivariate response having identical marginal distributions.

Relevant literature here includes McNemar (1947) for matched pairs with binary data, Stuart (1955), Madansky
(1963), Bhapkar (1966), and Caussinus (1966) for square contingency tables with a multiple-category response, Agresti
(2002, pp. 420–421, 429–431, and Exercise 10.37, 10.38, and 12.35) for various approaches for ordered categories,
and Cochran (1950), Bhapkar (1973), and Darroch (1981) for multi-way tables. See Bishop et al. (1975, Chapter 8)
and Agresti (2002, Chapters 10 and 11) for surveys of such methods.

In the spirit of Roy’s multivariate researches, one could extend formulations of marginal homogeneity and marginal
inhomogeneity to multivariate response data when a vector of categorical response variables is observed repeatedly.
For example, in analyzing safety in clinical trials for a new drug, it is common to measure the presence or absence of
a large number of adverse side effects. In crossover trials, the same subjects are observed under two or more doses of
the drug. For two doses with c potential adverse events (AEs), the data then take the form of paired multivariate binary
data, with c binary variables measured for the subjects under two conditions.

Consider paired multivariate measurement for n subjects of c binary response variables. For observation i of
variable j on a subject, let yij = 1 for a “success” and yij = 0 for a “failure,” j = 1, . . . , c, i = 1, 2. Let y =
(y1, y2)

′(y11, . . . , y1c, y21, . . . , y2c)
′ denote the 2c-dimensional binary responses for a randomly selected subject.
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A 22c contingency table summarizes all possible outcomes for y. One could assume a multinomial distribution for the
counts in this 22c table. Let �i (j) = P(yij = 1) denote a first-order marginal probability. The hypothesis

H0: �1(j) = �2(j), j = 1, 2, . . . , c

corresponds to simultaneous marginal homogeneity (SMH) in terms of the c binary variables. This is a special case of
a generalized loglinear model of form C log A� = X�, where A is a binary matrix that sums the joint probabilities to
give the first-order marginal probabilities.

Although the hypothesis is quite simplistic, even in this modern era of computers when c is large it is computationally
difficult to maximize the likelihood subject to this constraint, for example in order to conduct an LR test. One must
maximize a multinomial likelihood with 22c − 1 joint probabilities, subject to equality constraints relating two sets of
c marginal probabilities. A corresponding Pearson statistic compares the 22c observed and fitted counts for the SMH
model, using the usual X2 = ∑

(observed − fitted)2/fitted. This is the score statistic for testing SMH. Like the LR
test, it is computationally infeasible with current software when c is large.

For computationally simpler alternatives, Klingenberg and Agresti (2006) considered Wald and score-type tests for
SMH. For the sample proportions, let d = (d1, . . . , dc)

′, where dj = �̂1(j) − �̂2(j). The covariance matrix � of d is

Var(dj ) = [�1(j) + �2(j) − 2�(j, j) − {�1(j) − �2(j)}2]/n,

Cov(dj , dk) = [�1(j, k) + �2(j, k) − {�(j, k) + �(k, j)} − {�1(j) − �2(j)}{�1(k) − �2(k)}]/n,

where �i (j, k)=P(yij =1, yik =1) and �(j, k)=P(y1j 1, y2k =1). The statistic W =d′�̂−1d with sample proportions
in this matrix is a Wald statistic for testing SMH, having asymptotic chi-squared distribution with df = c.

An alternative statistic uses the pooled estimate of the covariance matrix under the null hypothesis of SMH. The
pooled estimate for the common proportion �0(j) in each dose group is

�̂0(j) = {�̂1(j) + �̂2(j)}/2.

The variance of dj and the covariance of dj and dk then simplify to

Var0(dj ) = [�1(j) + �2(j) − 2�(j, j)]/n = 2{�0(j) − �(j, j)}/n,

Cov0(dj , dk) = [�1(j, k) + �2(j, k) − {�(j, k) + �(k, j)}]/n.

Klingenberg and Agresti (2006) showed that the test statistic W0d′�̂−1
0 d converges much more quickly to the asymptotic

chi-squared distribution thatW does. Also, they showed that the two estimates of the covariance matrix are linked through
�̂ = �̂0 − dd′/n, from which it can be shown that

W = W0/(1 − W0/n).

Ireland et al. (1969) showed the same type of result for paired multicategorical responses in the univariate case.
Analogous hypotheses occur for the simultaneous comparisons of marginal distributions for multivariate responses

with independent samples. See Agresti and Klingenberg (2005). For the independent and dependent sample cases, their
articles noted that it is inappropriate to rely on large-sample chi-squared distributions when n is small or c is large
or when some of the true marginal probabilities are near 0. For such cases, they recommended small-sample exact
permutation tests.

7. Summary

The articles by Roy with Kastenbaum and with Mitra had major influences in increasing the attention focused on the
analysis of multi-way contingency tables. Their work was followed by other seminal articles on this subject by students
of Roy and by other students and faculty at the University of North Carolina following his death. Good examples of this
work are the important contributions by Bhapkar (1966) and by Grizzle et al. (1969). Directly or indirectly, such work
also had a major impact on later developments in categorical data analysis, such as loglinear modeling and graphical
models. As we have seen, these areas continue to be generalized today. We in the statistical community owe a great
debt to S.N. Roy for this aspect of his many contributions to the current body of statistical knowledge.
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