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 BIOMETRICS 52, 1103-1111
 September 1996

 THE CONSULTANT'S FORUM

 Order-Restricted Tests for Stratified Comparisons of
 Binomial Proportions

 Alan Agresti and Brent A. Coull

 Department of Statistics, University of Florida,

 Gainesville, Florida 32611-8545, U.S.A.

 SUMMARY

 The data set presented relates a binomial response to ordered levels of an explanatory variable,
 representing doses of a drug, with data collected at several centers. A study goal is to test in-
 dependence of the response and the ordinal factor, assuming under the alternative only that the
 binomial parameter is a monotonically increasing function of the ordinal predictor. We present
 two likelihood-ratio tests that are sensitive to order-restricted alternatives. Simulating the exact
 distributions of the test statistics yields nearly exact P-values. We also discuss related analyses for
 comparing two groups on an ordinal response, and we propose a test that is sensitive to a stochastic
 ordering alternative.

 1. Introduction

 Table 1 was shown to the first author in a recent consultation with a pharmaceutical company.

 At each of 13 centers, subjects were randomly assigned to three dose levels of a drug for treating

 a certain medical condition. For each center, Table 1 shows the number of observations and the

 number of 'success' responses at each dose level. Some centers did not have observations at all

 doses. One study objective was to test the hypothesis of conditional independence of response and

 dose, given center. The study's investigators expected the probability of success to increase with

 dosage level. However, they preferred not to assume a particular functional form, such as logistic,

 for the relationship. They wanted to test conditional independence using a test statistic designed

 for the alternative that the probability of success is monotonically increasing in dose.

 This article proposes order-restricted analyses for a binary response variable that has an explana-

 tory variable with I ordered levels for data that are stratified by K levels of a control variable. For

 concreteness, we refer to the explanatory levels as 'treatments' and the levels of the control variable

 as 'centers.' Let 7tik denote the number of observations for treatment i at center k, and let Yik
 denote the number of 'successes.' We treat Yis as a binomial variate with success probability 7Tik.
 We construct tests of the hypothesis of no treatment effect, Ho: 7rik = * n * = Ik, for k = 1,... , K.
 This is the hypothesis of conditional independence of treatment and response, given center. The

 tests refer to the order-restricted alternative, Ha: 7lk < .. < 7TrIk, for k = 1, . .. , K.
 For data from a single center (K = 1), large-sample solutions exist for this ordered alternative.

 Bartholomew (1959) and Shi (1991) constructed test statistics based on the approximate normal-
 ity of the sample proportions, and Robertson, Wright, and Dykstra (1988, p. 167) presented the
 likelihood-ratio statistic. These test statistics have large-sample chi-bar-squared distributions.

 This article presents two extensions of the likelihood-ratio test statistic to three-way tables.

 These two approaches differ in terms of whether they permit patterns of association to vary among

 centers. Because Table 1 has small counts, rather than relying on large-sample theory, we simulate
 an exact distribution of the likelihood-ratio statistics to generate 'nearly exact' P-values.

 Key words: Conditional independence; Dose-response curve; Isotonic regression; Logistic regres-
 sion; Loglinear models; Stochastic ordering.
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 Table 1

 A binomial response classified by dose and center, with two order-restricted fits

 Number Number of Proportion Homogeneous Heterogeneous

 Center Dose of trials successes successes fit fit

 1 1 1 0 0.000 0.486 0.000
 2 1 1 1.000 0.486 0.800

 3 4 3 0.750 0.757 0.800
 2 1 1 1 1.000 0.355 0.500

 3 1 0 0.000 0.645 0.500
 3 1 7 4 0.571 0.361 0.385

 2 6 1 0.167 0.361 0.385
 3 2 1 0.500 0.651 0.500

 4 1 1 0 0.000 0.000 0.000
 2 2 0 0.000 0.000 0.000
 3 2 0 0.000 0.000 0.000

 5 1 2 2 1.000 0.775 0.857
 2 1 1 1.000 0.775 0.857
 3 4 3 0.750 0.919 0.857

 6 1 12 9 0.750 0.801 0.750
 2 10 8 0.800 0.801 0.800
 3 9 9 1.000 0.930 1.000

 7 1 6 5 0.833 0.847 0.833
 2 5 5 1.000 0.847 0.909
 3 6 5 0.833 0.948 0.909

 8 2 1 0 0.000 0.176 0.000
 3 2 1 0.500 0.412 0.500

 9 1 2 0 0.000 0.182 0.000
 2 2 0 0.000 0.182 0.000
 3 3 2 0.667 0.423 0.667

 10 1 2 0 0.000 0.000 0.000
 11 1 2 1 0.500 0.495 0.400

 2 3 1 0.333 0.495 0.400
 3 2 2 1.000 0.763 1.000

 12 1 4 3 0.750 0.814 0.750
 2 5 4 0.800 0.814 0.800
 3 5 5 1.000 0.935 1.000

 13 1 1 0 0.000 0.000 0.000
 2 1 0 0.000 0.000 0.000
 3 1 0 0.000 0.000 0.000

 Source: Allan Pallay, Wyeth-Ayerst Research.

 We also discuss a related problem in which the explanatory variable is binary and the response

 categories are ordered. We present an order-restricted test that is sensitive to the alternative of

 stochastically-ordered response distributions.

 2. Order-Restricted Treatment Effects in a Logit Model

 In many applications, one expects the nature of the change in the probability of success as a

 function of the treatment level to be similar in each center. This suggests a model with a lack of

 interaction, on some scale, in the manner in which -Tik depends on treatment and center effects.

 For the logit scale, such a model is

 logit(7r1k) = ak + 3i. (1)

 For this model, conditional independence of response and treatment is equivalent to 31 = =J.
 The model does not assume a structural form for how -Fik varies over treatment levels, but it does
 assume the same type of variation for each center. We construct a test of conditional independence

 with power directed toward the order-restricted alternative, i1 ? <. HI
 When the ordinary maximum likelihood (ML) fit of this model has monotonically increasing {pi~},

 the ML order-restricted fit is identical to it. Otherwise, suppose the ordinary ML estimates satisfy

 i5 > /3j1 for at least one pair of treatments i and i + 1. Since the log likelihood for model (1) is
 concave, it follows from McDonald and Diamond (1983, 1990) that the ML order-restricted fit of the
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 Order-Restricted Tests 1105

 model lies on the boundary of the order-restricted parameter space. The solution equates estimates

 of {/3i} that violate the ordering for the ordinary ML fit. One refits the model by constraining

 pi = /i+1 The algorithm can utilize the fact that fitting a model while equating certain treatment
 parameters corresponds to fitting simpler unconstrained models to collapsed tables that combine

 those treatment levels. The same remarks apply to alternative potential link functions for model

 (1) for which the log likelihood is concave, such as the probit and complementary log-log.

 Let G2(MAJ) denote the likelihood-ratio statistic for testing the goodness of fit of model (1) to the
 observed I x 2 x K contingency table. Let G2 (Mts*) denote the likelihood-ratio statistic for testing the

 fit of the order-restricted version of the model, constraining 31 < ... < 13J. Let G2 (CI) denote the
 likelihood-ratio statistic for testing the fit of the model of conditional independence of treatment

 and response; that is, model (1) with 13i 1=J. Then G2(CI 1I*) = G2(CI) - G2(M*)
 is the likelihood-ratio statistic for testing conditional independence against the order-restricted

 alternative. It contrasts with G2(CI M) = G2 (CI)-G2 (A/1), which tests conditional independence
 against a no-interaction alternative but ignores the ordering of treatment levels.

 For Table 1, G2(CI) = 25.55 with d.f. = 22. The conditional independence model apparently fits

 decently, though this is difficult to determine using the chi-squared reference distribution since the

 data are sparse. The full logit model (1) has G2(MI) = 21.02 with d.f. = 20. The test of conditional

 independence against that alternative has G2(CI I.A/l) = 4.53, based on d.f. = 2, providing weak
 evidence of conditional association (P = 0.10). The unrestricted ML estimates of the treatment

 parameters in model M4' (setting 31 = 0) are 1 = 0, /2 =-0.252, and /3 = 1.067.
 Since 13i and /32 for model (1) violate the order restriction, the order-restricted solution refits the

 model by constraining these two estimates to be identical. This fit yields 1 = 0, 32 = 0, 3 = 1.190,
 and G2(M*) = 21.21. Table 1 displays the fitted proportions of success for this order-restricted

 fit. Section 4 shows how to use the statistic G2(CI A41*) = 4.34 in an order-restricted test of

 conditional independence.

 3. A General Order-Restricted Alternative

 Model (1) assumes that the odds ratio between the response and a pair of treatment levels is
 identical in each center. More generally one might permit interaction, allowing the odds ratio to

 vary in an unrestricted manner across centers. This corresponds to the general model

 logit(-Fik) = H3is, (2)

 which is saturated. This model represents the most general alternative hypothesis for a test of

 conditional independence, for which the likelihood-ratio test statistic is G2 (CI). The related. order-
 restricted version of this model assumes that /31k < * * * < /31k for k = 1, ... , K. This model poses an
 order restriction in each center, but makes no further assumption about how patterns of association

 vary across centers. The use of the logit link in model formula (2) or its order-restricted version is
 irrelevant, and the model is equivalent if we use any link function.

 One can fit the order-restricted version of model (2) by constructing such a fit separately for each
 center. This can be done using the pool-adjacent-violators algorithm with the treatment sample

 proportions of success at each center (Ayer et al., 1955). If, for some center, sample proportions
 are out-of-order for a particular adjacent pair of treatments, one combines the levels, recomputes

 the sample proportion, and continues the comparisons. The ultimate solution does not depend on

 the order in which one compares treatments in applying the algorithm.

 Let G2 (Ik) denote the likelihood-ratio statistic for testing independence for center k alone, and

 let G2 (A4k*) denote the likelihood-ratio statistic for testing the fit of the order-restricted model for
 that center. The likelihood-ratio statistic for testing conditional independence against the order-

 restricted version of (2) is then Zk[G2(I) - G2(AMI*)] = G2(CI) - ZkG2(M*).
 Table 1 also shows the fitted proportions of success for the order-restricted fit of model (2).

 For instance, in Center 1, the sample proportions for dose levels 2 and 3 are out of order. After

 pooling, the common estimate for these two levels equals (1 + 3)/(1 + 4) = 0.800. These have
 the proper order, compared to dose level 1, so this is the order-restricted solution for this center.
 The order-restricted fit has ZkG (Mc) =8.31. The likelihood-ratio statistic for testing conditional
 independence against this general order-restricted alternative equals C2 (CI) -E YG2 (Ma) =17.24.

 4. Exact Tests for the Ordered Alternatives

 We now discuss the distributions of the test statistics presented in the previous two sections. We

 first consider the order-restricted fit of the no-interaction model (1). Consider the collapsing of
 the I x 2 x K table in which rows are combined that have identical treatment estimates in that

This content downloaded from 128.227.158.140 on Mon, 13 Apr 2020 13:16:28 UTC
All use subject to https://about.jstor.org/terms



 1106 Biometrics, September 1996

 fit. The fit of model (1) to this collapsed table provides the same estimates of {li } as does the
 order-restricted fit for the complete table. Let G2(CI') and G2(M') denote the likelihood-ratio

 goodness-of-fit statistics for conditional independence and for model (1) fitted to the collapsed

 table. From standard arguments on partitioning chi-squared, such as given by Agresti, Chuang,

 and Kezouh (1987) for the order-restricted fit of a loglinear model, it follows that

 G2(CI) - G2(M*) = G2(CI') - G2(M').

 Suppose the collapsed table has a < I treatment levels. For that particular fixed collapsing, the

 asymptotic distribution of G2(CI') - G2(M') is chi-squared with d.f. = a - 1. The set of possible

 order-restricted solutions, corresponding to the various possible groupings of adjacent parameters

 that are equated for such a solution, relates to the set of possible collapsings of the table. Those
 solutions can be grouped in terms of the number of rows for the collapsing. It follows that the

 asymptotic null distribution of G2 (CI) -G2 (M*) is the same as that of the chi-bar-squared random

 variable IZ=lPaX2i- where X2-1 denotes a chi-squared random variable with d.f. a -1 and
 where Pa denotes the probability that the order-restricted solution has a distinct ordered treatment
 estimates.

 For the order-restricted test for the more general alternative (2), the component statistic

 G2 (Ik I Mk) for each center has a null asymptotic chi-bar-squared distribution. The weights vary
 among centers. The overall likelihood-ratio statistic for the general order-restricted alternative is
 asymptotically a sum of chi-bar-squared random variables.

 Using these asymptotic results in practice to construct P-values for the order-restricted tests is
 problematic. First, determining weights {pa} for the asymptotic chi-bar-squared distribution for

 G2 (CI) - G2 (M*) is difficult. Even if one knew {l7ik} and {fnik}, one could not calculate the
 weights; the best one could do is estimate their values through simulation. For sparse data such as
 Table 1, estimates of these weights are poor. The situation is even worse for the test for the more

 general model (2), in which one would need to estimate weights {pa } separately for each center and
 then determine P-values based on a sum of chi-bar-squared variates. In any case, for either model
 the asymptotic distribution might well be inadequate for small samples or highly sparse data such
 as Table 1.

 An alternative approach, involving much less approximation, estimates a P-value for the exact
 conditional distribution of the test statistic. In testing conditional independence, one eliminates

 unknown parameters by conditioning on the row and column marginal totals in each center. Given

 these totals, the null distribution of the cell counts in each table is multivariate hypergeometric,
 and counts from separate centers are independent (see, e.g., Agresti, 1992). Exact conditional

 distributions of G2(C0 I M*) and EkG2(Ik I Mk) for the order-restricted versions of alternatives
 (1) and (2) are generated using these distributions.

 Even when the data set contains only a few centers, it is a computationally intensive task

 to generate the exact conditional distribution. When the data are not too extensive, the software

 StatXact (Cytel Software, 1991) can generate such distributions for linear rank statistics for I x 2 x K
 contingency tables, but it does not handle the order-restricted statistics considered in this article.

 On the other hand, it is computationally relatively simple and inexpensive to simulate the exact
 conditional distribution. To do this, one randomly samples tables from the relevant multivariate

 hypergeometric distributions having the required fixed margins. For each generated three-way ta-

 ble, one computes G2(CI 0 M*) and/or ZkG2 (Ik I Mk). The estimate of the exact P-value is the
 proportion of sampled tables for which the statistic is at least as large as the observed value. Com-
 puting the test statistic for 50,000 generated tables ensures that the estimated P-value falls within

 0.004 of the true value with probability at least 0.95; the estimate is considerably more accurate
 for P-values far from 0.5.

 Agresti, Wackerly, and Boyett (1979), Patefield (1981, 1982), and Kreiner (1989) provided details
 about Monte Carlo simulation of exact distributions for contingency tables. An advantage of the
 simulation approach, compared to exact enumeration, is that the computation time does not grow

 dramatically in the sample size or the number of centers. One can easily generate a sufficiently
 large number of tables to estimate the exact P-value to within a desired accuracy with some fixed
 probability. Thus, this approach works well both for small and large sample sizes.

 For Table 1, we used this approach to estimate exact P-values for various tests. Assuming

 independence between response and dosage for each center, we randomly generated 50,000 3 x2 x

 13 tables such that the row and column totals for each center were identical to those in Table 1. We

 applied Patefield's (1981) algorithm separately to each center for generation of each partial table.

 The 95%o confidence interval for the exact P-value is based on inverting the large-sample test for a
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 proportion; that is, it consists of all null hypothesis proportion values not rejected in a two-sided

 0.05-level test using the normal test statistic.

 First, we consider the ordinary likelihood-ratio tests of conditional independence. The data are

 highly sparse, so estimated exact P-values are preferred to asymptotic ones. The statistic G2(CI)

 = 25.55, based on d.f. = 22, has an asymptotic chi-squared P-value of 0.272. A 95% confidence
 interval for the exact P-value of this statistic equals (0.551, 0.560). A comparison of these reflects

 the tendency of the asymptotic G2-based test to be relatively liberal for mildly sparse data. For

 the more focused alternative (1) of no interaction, the statistic G2(CI A/I) = 4.53, based on d.f. =

 2, has an asymptotic chi-squared P-value of 0.104. A 95% confidence interval for the exact P-value

 equals (0.143, 0.150).

 Next we consider the two tests of conditional independence based on order-restricted alternatives.

 First, using the order-restricted version of the no-interaction model (1) as the alternative yields

 G2(CI I MAI) = 4.34; a 95% confidence interval for the exact P-value equals (0.068, 0.072). Next,

 using the order-restricted version of the saturated model (2) as the alternative yields ckG2 (Ik I lAJ*)
 17.24; a 95% confidence interval for the exact P-value equals (0.125, 0.131).

 The computational intensity for these analyses was not too horrendous. For instance, using a

 FORTRAN program to estimate the P-value for the statistic ZkG2(Ik I lt/lk*) using 50,000 randomly
 generated tables took about 3 minutes on a Sun Sparc Station 10. The analogous test for the statistic

 G2(CI M M*) took longer (about 50 minutes) because we used iterative proportional fitting to fit

 the no-interaction model for each randomly generated table.

 5. Power Considerations

 Either order-restricted test provides stronger evidence of an association than the corresponding test

 that ignores the ordering, the estimated exact P-values being 0.070 vs. 0.147 for the no-interaction

 alternative and 0.128 vs. 0.554 for the general alternative. Currently, power computations for the

 tests using estimated exact P-values would be extremely time consuming to perform. However,

 when the binomial parameters are truly ordered, one expects a power advantage from a procedure

 that utilizes the ordering compared to one that ignores it.

 Asymptotically, the reasons for this are clear.. We illustrate for the statistics G2 (CI- M t*) and

 G2 (CI I Al) relating to logit model (1). Suppose that model holds and the {f3h } are truly strictly
 monotone. The probability that the order-restricted fit is identical to the ordinary fit, and hence

 that G2(CI |Mta*) G2(CI |A/I), converges to 1 as rn increases. Thus, both test statistics then

 have the same asymptotic noncentral chi-squared distribution. The null distribution of G2 (CI I A/I)
 is chi-squared with d.f. I - 1, whereas the null distribution of G2(CI I _AM*) is asymptotically
 a mixture of chi-squared distributions having d.f. values between 0 and I -1. Thus, in the null

 case, G2 (CI M SA ) is stochastically larger than G2(CI MI*). Under the strictly ordered alternative,
 since the two statistics will tend to take similar value, it follows that C2 (CI A/I*) will tend to be

 farther out in the right-hand tail of its null distribution than C2 (CI AlIt) falls in the tail of its null
 distribution, leading to smaller P-values and a more powerful test.

 An analogous argument holds for comparing the statistics C2 (CI) and ZA C2 (Ikf A/IZ) when the
 binomial parameters are strictly ordered in each stratum. The statistic C2 (CI) is a sum of chi-

 squared statistics for different strata, each of which has d.f. =I-i; ZkG2(Ik7 A/IZ.,,) is stochastically
 smaller, being a sum of statistics each of which is a null mixture of chi-squared variates having

 d.f. between 0 and I-1. For a rigorous argument comparing chi-squared tests having common
 noncentrality but differing d.f. values, see Das Gupta and Perlinan (1974).

 By the same reasoning, when one expects the association between treatment and response to be

 similar in each center, it makes sense to use the statistic G2(CI M*) rather than skG2(Ik fs).
 The former statistic provides greater power than the more general statistic, unless the nature of

 the association varies dramatically across centers. This strategy parallels the usual one for ordinary

 tests of conditional independence, in which it is common to use G2 (CI I _A/I) (or the corresponding
 efficient score test, the Cochran-Mantel-Haenszel test) rather than G2(CI) in order to direct the
 power toward a more focused alternative based on fewer degrees of freedom.

 6. Order-Restricted Comparison of Two Groups on an Ordinal Response

 The two order-restricted tests also apply to a rows-and-columns-reversed situation in which the

 explanatory variable is binary and the response variable ha~s ordered categories. Let crick denote
 the probability of response outcome j, for j =1, .. ., J. with treatment i (i =1, 2) in center kt;
 thus, YEjwrik =1. Denote the conditional local odds ratios within centers by

 0j(k) =(wTS ?1,kwT2jk)/(wljhITS j?1k), j =1, .. ., J -1 , k =1 , .. ., K.
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 One can reverse the roles of response and explanatory variables and apply the test statistics of

 Sections 2 and 3. The statistic based on the approach of Section 3 permits the pattern of association

 to vary among centers. The order restriction used there is equivalent to log(0O'(k)) > 0 for all j and
 k. The structure of uniformly nonnegative or uniformly nonpositive local log odds ratios for each

 table is sometimes called likelihood-ratio dependence (Lehmann, 1966).

 The test statistic of Section 2 is based on the additional no-interaction structure for these odds

 ratios,

 H)1 = j =H(K), 3 ,... -

 Denote the common value of the jth odds ratio across the K partial tables in this case by Oj.
 This order-restricted no-interaction structure for an ordinal response corresponds to an adjacent-

 categories logit model for that response of form

 log(wij+1,/k1/ijk) = %ak + o3jI(i 1),

 where /j = log(02) > 0 for all j.
 In some applications with an ordinal response, one might prefer to use a weaker order-restricted

 condition. For instance, one could test conditional independence against the alternative of a stochas-

 tic ordering of the two response distributions in each center. For each treatment and center, let

 'Yijk = Wilk + * + 7Fk, i = 1,.*. , J. The stochastic ordering alternative is

 'Yljk < 'Y2jk, j. = 1, ... ., J -I k = 1, ... ., K.

 Letting

 Aj(k) = -Y2jk(l - 'Yljk)/'Yljk(l - Y2jk),

 this alternative has the form log(Aj(k)) > 0 for all j and k.
 Grove (1980) and Robertsoil and Wright (1981) presented an order-restricted test for this alter-

 native with K = 1, based on results for ML estimation with stochastic orderings by Brunk et al.

 (1966). For partial table k, let rjk = (nig + .. + flljk)/(n2lk + .. + n2jk),j 1.... J. The J
 columns are divided into subsets as follows: The first subset ends at the column vi for which rack is

 the maximum of {rlk, .. ., rJkj}. If this does not include all columns, then the next subset consists
 of columns {v1 + 1,... , v2} such that r12k is the maximum of {rq,1+1,k,... , rJ}. One continues
 in this manner, forming the collection of subsets. For instance, suppose that a particular partial

 table has counts (1, 4, 1, 3, 1) in row 1 and (2, 2, 2, 2, 2) in row 2. Then the ratios of partial sums
 are (1/2, 1.25, 1, 9/8, 1); the first subset consists of columns 1 and 2, the second subset consists of

 columns 3 and 4, and the final subset is column 5. Grove (1980) provided a geometric representation
 of this construction.

 In this construction of subsets, suppose a particular subset consists of columns a, a + 1, .. . , b.

 Then the ML fitted value under the stochastic ordering restriction for cell (i, J, k) in those columns
 equals

 (o?ak + + n+bk)(ni+k)

 (l iak + + Mibk) (n++k)

 Note that when a = b (i.e., a subset contains a single column), the fitted value in that cell equals

 the fitted value for the conditional independence model, namely n+jkni+k/n++k. The construction
 yields a single subset when the maximum ratio of cumulative proportions for row 1 to row 2 equals

 1, the value for the final column. In that case, the sample counts themselves satisfy a stochastic

 ordering and the ML fitted values are simply those sample counts.

 Let G2(Sk) denote the likelihood-ratio statistic for testing the fit of the stochastic-ordering
 restriction to the data for partial table k. Note that necessarily,

 S G2(Sk) ? 5G2(MZlk) < G2(M*),
 k k

 since model AItI implies that model ML1, holds for each partial table, which itself implies that Sk
 holds in each partial table. In partial table k, the likelihood-ratio statistic G2(Ik7 Sk) =G2(Ik)-
 C2 (Sk) compares the fitted values under independence to the fitted values under the stochastic
 ordering alternative. The asymptotic distribution of this statistic for testing independence is chi-

 bar-squared (Robertson and Wright, 1981).
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 Order-Restricted Tests 1109

 The likelihood-ratio statistic for testing conditional independence against a simultaneous stochas-

 tic ordering alternative for each partial table is Yk [G2 (Ik Sk)]. The order-restricted statistics for
 testing conditional independence satisfy

 S G2(Ik I Sk) 5> a G2(Ik I M )? > G2(CI _AM,*).
 k k

 In the same manner as discussed in Section 4 for the other statistics, one can simulate the exact null

 conditional distribution of K [G2 (k I Sk)], given the margins in each table, and estimate precisely
 an exact P-value for this more general ordered alternative. We illustrate with Table 1, although

 this analysis is somewhat unnatural for these data since the ordinal variable is the explanatory

 variable rather than the response. The simultaneous stochastic ordering fit has EkG2(Sk) = 5.85.
 Comparing this to G2(CI) = 25.55 gives a likelihood-ratio statistic for an order-restricted test of
 conditional independence equal to 19.69. Simulating the exact distribution yields a 95% interval
 estimate of the exact P-value of (0.196, 0.203).

 One could add further structure for the stochastic ordering alternative. For instance, one could

 constrain odds ratios of cumulative probabilities to be identical across strata, or one could con-

 strain odds ratios within strata to be identical across cutpoints j for the cumulative probabilities.

 These structured alternatives correspond to cumulative logit models, the latter type having the

 proportional odds assumption. Such model-based alternatives make additional assumptions about

 structure but have the potential for increasing power, from building strength by focusing on a nar-

 rower alternative. More generally, one could also extend these tests to I x J x K tables with ordinal

 rows, columns, or layers. For instance, one could extend a test of Patefield (1982) for I x J tables

 for which the alternative corresponds to the (I - 1)(J - 1) local log odds ratios being uniformly

 nonnegative. For proportional odds models and related models with other links that assume the

 same treatment effects for each cutpoint and imply stochastic orderings of distributions, one can

 exploit results on the concavity of the log likelihood in determining order-restricted fits (Pratt,

 1981).

 7. Comments

 It is perhaps surprising that the order-restricted literature, as extensive as it is, does not seem

 to contain the simple likelihood-ratio tests for three-way tables proposed here. There is, however,
 considerable literature on ways of handling monotonicity in bivariate analyses. Chassan (1960) gave
 an early attempt to construct order-restricted analyses for a single table (see also Chassan, 1962;
 Bennett, 1962). Morris (1988) provided confidence limits for a set of binomial parameters having
 a monotonicity assumption; Thomas (1983) provided nonparametric estimates for a monotone
 increasing hazard rate; and Schmoyer (1984) provided ML estimation when response probabilities
 are constrained to satisfy a sigmoidal shape. Model-based analyses for a binary response include

 Bacchetti (1989) using additive isotonic models, Ramsey (1972), Disch (1981), and Gelfand and Kuo
 (1991) using Bayesian approaches, and Geyer (1991) using logistic regression for convex response
 functions. Finally, Silvapulle (1994) has recently presented a class of one-sided tests that can be
 used for large-sample order-restricted inference about parameters in generalized linear models.

 Many other ways exist of using ordering in a more structured manner to build power in testing
 the hypothesis of conditional independence. When the association is expected to be similar in

 each partial table, the most common approach is to use generalizations of the Cochran-Mantel-

 Haenszel test based on assigning scores (possibly rank-based) to the ordered categories (e.g., Landis,
 Heyman, and Koch, 1978). For I x 2 x K tables such as discussed in Section 2, this is an efficient

 score test for model (1) when the {hi} satisfy the pattern {/i = 3ui} for the scores {ui} chosen
 for the treatment levels. The test statistics proposed in Sections 2 and 3 are designed for more

 general alternatives, in which {fi} in model (1) and {/3ik} in model (2) are only assumed to be
 monotone across treatment levels. More generally, see Tarone and Gart (1980) for a discussion of
 score tests for various underlying models. For 2 x J x K tables comparing two groups on an ordinal
 response such as discussed in Section 6, the Landis et al. (1978) approach with midrank scores for
 the response categories provides an efficient score test for the special case of a proportional odds
 model having the same effects in each center.

 A FORTRAN program for conducting the analyses described in this paper is available from the
 authors by e-mail or upon receipt of a formatted 3 1/2 inch floppy disk.
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 RESUME

 Le jeu de donnees presented est une reponse binomiale ordonnee d'une variable exploratoire represen-
 tant les doses d'un produit. Les donnees proviennent de plusieurs centres. Un des buts de l'etude
 est de tester l'independance de la reponse et du facteur ordinal en supposant que sous l'hypothese
 alternative le parametre de la binomiale est une fonction monotone croissants du predicteur
 ordinal. Nous presentons deux tests du rapport de vraisemblance qui sont sensibles a l'ordre des
 alternatives. Nous simulons les distributions exactes des tests statistiques qui donnent pratiquement
 les valeurs P. Puis nous discutons des analyses pour comparer deux groupes sur une reponse ordinale
 et nous proposons un test sensible a l'ordre aleatoire de l'alterrrative.
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