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Abstract

Most software for statistical model %tting reports the value of the maximized log likelihood function,
but the numerical value is di1cult to interpret because of its log scale, its dependence on the sample
size, and the possible omission of constants. A sample-size-scaled version of the likelihood function
summarizes the model %t. A related index uses the mean of the contributions to the likelihood function.
The ratio or di)erence of either index for two models is a summary measure of relative model %t. We
discuss these measures and brie5y consider interval estimation for them. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Table 1, taken from the General Social Survey of 1990, provides responses of
1308 subjects in the US to the question, “Within the past 12 months, how many
people have you known personally that were victims of homicide?” Table 1 shows
responses for those who identi%ed their race as white or as black. For a certain
negative binomial model %tted to these data, software (SAS, using PROC GENMOD)
reports the maximized log likelihood value of −497:9. It is increasingly common for
researchers to report the maximized log likelihood in tables that present results of
their model %tting. This provides information needed to perform likelihood-ratio tests
comparing pairs of nested models, but how does one interpret the magnitude of a
value such as −497:9? Moreover, how does one compare its value to that for a
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Table 1
Data from 1990 General Social Survey on number of victims of murder known in
past year, by race

Race

Response Black White

0 119 1070
1 16 60
2 12 14
3 7 4
4 3 0
5 2 0
6 0 1

di)erent type of model, such as the value of −500:7 for a Poisson loglinear mixed
model containing a normal random e)ect?

One complication is that di)erent software for %tting a model may provide dif-
ferent log likelihood values, since some software (such as SAS GENMOD) drops
constants from the likelihood function that do not a)ect parameter estimation. The
most common use of the likelihood is for inference, but our focus in this article is
mainly on description. When the sample size is large, for instance, a di)erence in log
likelihoods may provide strong evidence that one model %ts better than another, but
the models may provide a similar %t in practical terms. We discuss scalings of the
maximized likelihood that estimate a parameter summarizing the model %t. A ratio of
the index for two models summarizes the relative model %t. This can be helpful for
choosing among models, including non-nested models such as the negative binomial
model and the Poisson model with random e)ects for Table 1.

It is common in practice to use likelihood functions and their variants (conditional
likelihood, marginal likelihood, pro%le likelihood, partial likelihood, : : :) in a vari-
ety of ways, both formally for inference and informally for description and model
selection in measures such as AIC, BIC, and Bayes factors. We do not claim any
striking originality in the ideas that follow, but the measures presented may help
practitioners get a feel for the magnitudes of reported log likelihoods.

2. Summarizing model �ts

Let y= (y1; : : : ; yn) be independent observations. Most applications have a variety
of potential models for y. Let fm(yi; �m) denote the probability density or mass
function of yi for model m, where the parameters {�m} may refer to di)erent types
of models and di)erent dimensions. Let f(·) refer to the true, but unknown, mass
function of each yi. Since in practice an unsaturated model m only approximates
reality, we treat �m as the probability limit of its maximum likelihood (ML) estimator
�̂m. This is the value that minimizes the Kullback–Leibler information criterion

I(f;fm) =Ef log[f(Y )=fm(Y ; �m)]
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between fm and f, where Ef denotes the expectation taken with respect to f (White,
1982).

For model m, let ‘m(�̂m) = Pifm(yi; �̂m) be the maximized likelihood function, and
let Lm(�̂m) = log[‘m(�̂m)]. A di1culty in interpreting the values of ‘m(·) and Lm(·)
is that they depend on n. For models for discrete data, they decrease monotonically
as n increases. The scaled values

�̂m = [‘m(�̂m)]1=n; and log(�̂m) =Lm(�̂m)=n=
1
n

∑
i

logfm(yi; �̂m) (1)

remove the dependence on n. The geometric mean [‘m(�̂m)]1=n of the n contributions
to the maximized likelihood function for model m is a sample version of a parameter

�m = exp{Ef[logfm(Y ; �m)]}
summarizing model %t. Since f is unknown, the sample version (1) takes this ex-
pectation with respect to the empirical distribution and at the value �̂m for �m. We
refer to �m as the geometric mean likelihood for model m. Being a re-scaling of
the maximized likelihood, �̂m and �m are non-decreasing as a particular model adds
predictors.

In the discrete case, let a1; a2; : : : aK denote the possible values for Y , with true
probabilities {f(ak)}. This true distribution has

log(�f) =
∑
k

f(ak) logf(ak): (2)

This is the maximum possible value for log(�m) and serves as a baseline. This
distribution corresponds to an unspeci%ed multinomial model, which is the satu-
rated model. In the sample let pk denote the proportion of times that ak occurs,
k = 1; : : : ; K . The sample value of log(�f) is

∑
k pk logpk , a sample-size-standardized

multinomial log likelihood used in measures of association (e.g., Theil, 1970). Sim-
ilarly, log(�̂m) =

∑
k pk logfm(ak ; �̂m).

3. Comparing �ts of two models

In practice, it is more informative to compare likelihood values for di)erent models
than to consider a model in isolation. A summary measure of the relative model 7t
for models ‘ and m is

�‘m = �‘=�m = exp[Ef{logf‘(Y ; �‘)] − Ef[logfm(Y ; �m)}]:
Its sample value is

�̂‘m = �̂‘=�̂m = exp[{L‘(�̂‘) − Lm(�̂m)}=n]
the ratio of geometric means of the contributions to the maximized likelihoods for
the two models. The models do not need to be nested for �‘m to be meaningful. In
fact, the expectations in �‘ and �m could even refer to di)erent true distributions,
such as in comparing model %ts for a particular model at di)erent times based on
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distinct samples. In the case of nested models, with model ‘ a special case of model
m; log(�̂‘m) equals (−1=2n) times the usual likelihood-ratio statistic.

In the discrete case, it can be informative to compare a model to the baseline of
the saturated model, using �̂mf = �̂m=�̂f for �f in (2). This equals

�̂mf = exp

{∑
k

pk log[fm(ak ; �̂m)=pk]

}
= exp(−Dm=2n);

where Dm denotes the deviance for the model. Hence, the comparison of relative
model %t using the saturated model as a baseline provides a sample-size-standard-
ized interpretation of the deviance. A baseline model in the other direction is the
null model having probability K−1 at each ak ; for it, �̂0 =K−1 and �̂m0 =
exp{∑k pk log[Kfm(ak ; �̂m)]}.

In practice, observations are not typically iid, but the regression context is common,
for which independent observations occur at di)erent settings of predictor variables.
The above sample estimators then refer to parameters that describe model %t of
conditional distributions of the response, with expectations taken with respect to the
joint distribution of all the variables. Speci%cally, if X denotes a vector of explanatory
variables, then for model m,

�m = exp{E[logfm(Y |X ; �m)]}:
For instance, �m is appropriate for surveys that randomly sample subjects and then
classify those subjects on various predictors and response variables, since the em-
pirical distribution estimates a true joint distribution of (X; Y ). Otherwise, when the
expectation naturally applies only to Y , as in multi-center clinical trials, the indices
apply to the empirical distribution on the predictor variables but the numerical value
is not comparable to other samples with substantially di)erent distributions of those
predictor variables. Of course, this is true for most association measures, including
correlation and R-squared measures.

4. A mean likelihood measure and related measures

Another index in the same spirit as �m is �m =E[fm(Y ; �m)]. The sample version
�̂m = [

∑
i fm(yi; �̂m)]=n is the mean (rather than geometric mean) contribution to the

maximized likelihood function. The measures of relative %t �̂‘=�̂m and �̂‘− �̂m com-
pare models. These measures have a slightly simpler interpretation than ones based
on �̂m involving geometric means, but they have the disadvantage of not being func-
tionally related to the maximized likelihood. For instance, �̂m need not necessarily
increase as the model becomes more complex.

For discrete data, �̂m relates to dissimilarity indices (Goodman and Kruskal, 1959).
For observation i that takes value yi, the empirical distribution puts probability 1 at
yi and 0 everywhere else. The amount of mass that needs to be moved from the %tted
distribution for model m to yield this empirical distribution equals 1 − fm(yi; �̂m).
The mean of these in the sample, or 1 − �̂m, is a dissimilarity measure of distance
of y from the %tted distribution.



A. Agresti, B. Ca,o /Computational Statistics & Data Analysis 39 (2002) 127–136 131

Although we have not seen �m; �m, and related comparison measures directly
used, other likelihood-based measures have been proposed for summarizing the %t of
models. For instance, let L0 denote the maximized log likelihood for some baseline
model, such as a model having only an intercept parameter and no predictor e)ects.
Let Ls denote the log likelihood for the saturated model. Then, Dm = − 2(Lm − LS)
is the deviance for model m. The proportional reduction in deviance for the model
of interest,

Lm − L0

Ls − L0
=

D0 − Dm

D0

is an alternative sample-size-adjusted index of model %t (Goodman, 1971). How-
ever, for di)erent model forms, the null model di)ers, making comparison of values
inappropriate. For instance, it is not appropriate to compare the value for a nega-
tive binomial model (in which the baseline model is negative binomial with only
an intercept) to that for a Poisson generalized linear mixed model (GLMM); the
measures are comparable only with the same baseline model, such as an ordinary
Poisson generalized linear model (GLM) with only an intercept.

Other measures describe predictive power of a model, such as analogs of R-squared
and the correlation between the observed response and the %tted value (e.g., Zheng
and Agresti, 2000). Two models that provide the same %tted values necessarily have
the same values of such as a measure, but they need not have the same values of
measures such as �̂ because of the possible di)erence in likelihoods. In this sense,
the measures in this article are indices of model %t and relative model %t as opposed
to predictive power.

5. Example

We now return to Table 1 on Y = annual numbers of homicide reports, for subjects
classi%ed by race. The sample mean was 0.52 for blacks and 0.09 for whites, with
standard deviations of 1.07 and 0.39, respectively. A natural %rst choice for count
data of this form is a Poisson GLM, such as a loglinear model with predictor a
dummy variable for race. However, there is evidence of overdispersion, the sample
variance being roughly double the mean for each race.

Models having an additional parameter to allow extra variability include the neg-
ative binomial and a Poisson GLMM. The Poisson GLMM is a mixture model
whereby the Poisson applies, given the mean for a particular subject, and the log
means for each race have a normal distribution. That is, the response for subject i
follows a Poisson distribution with an unknown mean ui, where {log(ui)} are inde-
pendent N (�1; �2) for blacks and N (�2; �2) for whites. The negative binomial model
results from a gamma mixture for ui; this is a GLMM in which the log of the mean
has a log gamma distribution, for each race. Such mixture models seem plausible
here. Due to various unmeasured demographic factors, heterogeneity likely occurs
among subjects of a given race in the distribution of Y .

Table 2 summarizes model %t for six models: the ordinary Poisson GLM, the
Poisson GLMM, and the negative binomial model, each with and without an e)ect
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Table 2
Indices of model %t and corresponding 95% con%dence interval (CI) for Table 1

Model

Index Poisson GLM Poisson GLMM Negative binomial

Lm(�̂m) −618:0 −559:0 −529:0 −500:7 −523:7 −497:9
�̂m 0.623 0.652 0.667 0.682 0.670 0.683
CI for �m (0.579,0.671) (0.611,0.696) (0.631,0.705) (0.647,0.719) (0.634,0.708) (0.649,0.720)
�̂m 0.794 0.808 0.828 0.833 0.830 0.833
CI for �m (0.761,0.827) (0.780,0.838) (0.801,0.856) (0.807,0.859) (0.803,0.857) (0.807,0.860)∗

∗Note: For each model type, the %rst model is the null model and the second model has an e)ect
for race. The Poisson models use the log link, with a normal random e)ect in the generalized linear
mixed model (GLMM).

Table 3
Indices of relative model %t (compared to negative binomial model with race e)ect) and corresponding
95% con%dence intervals, for Table 1

Model

Index Poisson GLM Poisson GLMM Negative binomial

�̂m6 = �̂m=�̂6 0.912 0.954 0.976 0.998 0.980 1.0
CI for �m6 (0.879,0.946) (0.932,0.977) (0.964,0.989) (0.994,1.002) (0.969,0.992) —
�̂6 − �̂m 0.039 0.025 0.006 0.001 0.003 0.0
CI for �6 − �m (0.026,0.053) (0.016,0.035) (0.002,0.008) (−0:002,0.002) (0.001,0.006)∗ —

∗Note: For each model type, the %rst model is the null model and the second model has an e)ect
for race.

for race. It reports the maximized log likelihood function Lm(�̂m) and the estimated
geometric mean likelihood �̂m. (It also reports a 95% con%dence interval for �m
discussed in Section 6). Under the negative binomial model with race e)ect, for
instance, the estimated geometric mean probability of the response was �̂6 = 0:683.
From {�̂m}, the need to accommodate the overdispersion is clear. For instance, �̂m is
higher for a negative binomial model with no e)ect than for a Poisson GLM with
the race e)ect.

The two models suggested by {�̂m} are the Poisson GLMM and the negative
binomial model with a race e)ect. The values �̂4 = 0:682 and �̂6 = 0:683 show no
practical di)erence between the two in terms of this criterion. That both models %t
relatively well is highlighted by noting that the general multinomial model for these
data has a log likelihood of −489:5 and �̂f = 0:688, barely larger than �̂4 and �̂6.
Table 2 also contains the mean likelihood values {�̂m} for the six models. They
suggest the same conclusions.

Table 3 summarizes the estimated relative model %t using �̂m6 and �̂6 − �̂m with
the negative binomial model as the baseline. This also shows the Poisson GLMM
and negative binomial models as roughly comparable in this summary sense.
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6. Con�dence intervals for measures of relative �t

The measures �̂m; �̂m; �̂‘m, and �̂‘ − �̂m are descriptive summaries of model %t
that help us interpret the numerical value of the maximized likelihood. We intend
them as descriptive rather than inferential tools. However, in some cases it may be
useful to construct a con%dence interval for corresponding true values in the sampled
population.

A straightforward way to construct a large-sample con%dence interval for �m ex-
ploits the sample mean representation for log �̂m. By the central limit theorem, the
asymptotic distribution of

√
n

[
1
n

n∑
i=1

logfm(yi; �m) − Ef[logfm(Y ; �m)]

]

is normal with mean 0 and variance having unbiased estimator[∑
i

{logfm(yi; �m) − Lm(�m)=n}2

]/
(n− 1):

A consistent estimator of this is

s2m =

[∑
i

{logfm(yi; �̂m) − Lm(�̂m)=n}2

]/
(n− 1):

By standard arguments (e.g., Linhart, 1988), this is also the asymptotic distribution
of

√
n

[
1
n

n∑
i=1

logfm(yi; �̂m) − Ef{logfm(Y ; �m)}
]

=
√
n[log(�̂m) − log(�m)]:

Thus, a large-sample 100(1−�)% con%dence interval for �m exponentiates endpoints
of log(�̂m) ± z�=2sm=

√
n.

For a pair of models ‘ and m, standard methods can also generate a con%dence
interval for �‘m. Let s‘m denote the sample standard deviation of logf‘(yi; �̂‘) −
logfm(yi; �̂m); i= 1; : : : ; n. Then, a large-sample con%dence interval for �‘m expo-
nentiates endpoints of log(�̂‘m) ± z�=2s‘m=

√
n.

One could judge model ‘ to be “better” than model m when the con%dence in-
terval for �‘m contains only numbers larger than 1.0. In practice, however, other
considerations may be more relevant. For instance, if �‘m ¡ 1 but is very close to 1
and model ‘ is simpler and easier to interpret, it might be preferred. Also, if model ‘
is a special case of model m, then �‘m6 1 yet model ‘ may be preferred for %nite n
because of the usual advantages of model parsimony, such as having better estimates
of {f(ak); k = 1; : : : ; K}. Hence, although �‘m helps us interpret the relative %ts of
two models, we do not propose basing model selection on inferential results for �‘m.

Table 2 shows 95% con%dence intervals for �m for the various models for Table 1.
Table 3 shows intervals for �m6 for comparing models to the negative binomial
model. The interval for �46 comparing the Poisson GLMM to the negative binomial
model is (0.994, 1.002). All values in this interval being very close to 1.0 suggests
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the models give comparable %ts in the population in terms of the geometric mean
likelihood summary.

Although these methods for constructing con%dence intervals are straightforward,
our evidence is that sample sizes may need to be quite large for actual coverage
probabilities to be near nominal con%dence levels. For instance, although substitut-
ing �̂m in (1=n)

∑n
i=1 logfm(yi; �m) makes no i)erence asymptotically, for small to

moderate samples it can a)ect the coverage properties. To examine the coverage
issue, we conducted various simulation studies, of which we describe one below.
Coverage probabilities tended to be too low unless n was large. Coverages tended
to be more accurate for the single-model measure �m than for �‘m comparing two
models.

To illustrate, one simulation study treated counts in Table 1 as representing a
“true” distribution. We simulated 100,000 random samples from a joint distribution
having probabilities equal to {count=1308}. We calculated the sample proportion
of times that the 90%, 95%, 99% con%dence interval for each measure contained
the true value, for the models discussed in Section 5. With Monte Carlo error of
no more than about 0.003, estimated coverage probabilities for 95% intervals with
n= (50; 300; 1308) were (0.865,0.939,0.949) for �4 with the Poisson GLMM and
(0.862,0.938,0.948) for �6 with the negative binomial model (both with race e)ect)
but only (0.818,0.925,0.933) for �46 comparing the two models. Results were some-
what better for simple models without predictors and worse for pairs of models of
di)erent form with di)erent predictors. In this example, for instance, the expected
percentage of observations for the black sample was only 12%, and the imbalance in
allocated sample sizes could adversely a)ect results. Without the predictor, estimated
coverage probabilities with n= (50; 300; 1308) were (0.896,0.942,0.949) for �3 with
the Poisson GLMM, (0.884,0.941,0.949) for �5 with the negative binomial model,
and (0.827,0.944,0.954) for �35 comparing the models.

Alternatively, for interval estimation we have used bootstrap methods such as
a non-parametric percentile bootstrap and the Efron BCa bootstrap (Efron and
Tibshirani, 1993). Results for the example are similar to those reported in Tables 2
and 3. These methods are computationally intensive (especially when used with mod-
els that themselves require substantial computation, such as the Poisson GLMM), and
the limited simulation studies we have done have insu1cient precision to determine
if they perform better than those based on standard asymptotics. The bootstrap is
also the method we used for interval estimation of �̂m and �̂‘ − �̂m, since the above
asymptotic argument does not apply. Tables 2 and 3 show percentile bootstrap inter-
vals for the �m measures and their comparisons using the negative binomial baseline
model.

Incidentally, similar problems with achieving nominal error rates have been noted
in the literature on tests comparing non-nested models f1 and f2. We summa-
rize brie5y this literature. The ordinary likelihood-ratio test does not apply for test-
ing the null hypothesis that f1 holds against the alternative that f2 holds. Cox
(1962) formed an approximately standard normal null test statistic that compares
the log-likelihood ratio to its estimated expectation under the null model. He also
mentioned the possibility (later pursued by Atkinson, 1970 and others) of imbedding
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the two models into a family of models [f1(y; �1)]�f2(y; �2)]1−� and making infer-
ences about � with standard methods. Since Cox’s paper, most related work is in the
econometrics literature for normal error models. For instance, Davidson and MacK-
innon (1981) compared normal but possibly non-linear regression models by using
a model based on a weighted average of the two and conducting inference about
the weight; their method relates to Atkinson’s (1970) in certain special cases. Fisher
and McAleer (1981) gave a related approach and Royston and Thompson (1995)
considered adjustments to improve distributional properties. Godfrey and Pesaran
(1983) proposed mean- and variance-adjusted Cox tests to reduce the small-sample
bias of that statistic, and Victoria-Feser (1997) proposed robust versions of the Cox
tests. McAleer (1995) presented several examples of non-nested models, summa-
rized proposed methods of comparison, and discussed uses of the methods in various
applications.

7. Related problems for future research work

Based on results in Section 6, scope exists for improving con%dence intervals
for the measures proposed in this paper. Standard methods are simple, but evidence
exists from our simulations and from methods deriving from Cox’s testing work that
it is not easy to construct inferential methods for non-nested models that achieve
close to nominal error rates when n is not large (see, e.g., McAleer, 1995).

Not surprisingly, in our simulation studies con%dence intervals much more of-
ten overestimated than underestimated the true parameter value. The sample value
log(�̂m) =Lm(�̂m)=n¿Lm(�m)=n, and hence it tends to overestimate log(�m). A useful
topic for future work is to %nd adjustments of �̂m and �̂‘m that reduce bias, in terms
of estimating �m and �‘m. The jackknife is one possibility, but again our simulation
study had insu1cient precision to determine if it has better performance.

Introducing a penalty for the number of parameters may also help with bias re-
duction. A related area for future work relates to AIC-type corrections involving the
likelihood such as have traditionally been used to aid in model selection. Denote
the number of parameters in model m by pm. By the same arguments that apply to
Akaike’s AIC index (see, e.g., Burnham and Anderson 1998), a corrected value for
�̂m is

�̂cm = exp{[Lm(�̂m) − pm]=n}= exp(−pm=n)�̂m: (3)

For the de%nition of AIC for model m as AICm =Lm(�̂m)−pm (Some sources de%ne
it as −2[Lm(�̂m) − pm]); �̂cm = exp(AICm=n) is a sample-size-scaled version of AIC.
Similarly, a corrected estimate of the index of relative model %t is

�̂c
‘m = �̂c‘=�̂

c
m = exp[(pm − p‘)=n]�̂‘m = exp[(AIC‘ − AICm)=n]:

For Table 1, n is large and such AIC-type corrections have no substantive impact.
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