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Summary. To compare proportions with several independent binomial samples, we recommend a method
of constructing simultaneous confidence intervals that uses the studentized range distribution with a score
statistic. It applies to a variety of measures, including the difference of proportions, odds ratio, and relative
risk. For the odds ratio, a simulation study suggests that the method has coverage probability closer to the
nominal value than ad hoc approaches such as the Bonferroni implementation of Wald or “exact” small-
sample pairwise intervals. It performs well even for the problematic but practically common case in which
the binomial parameters are relatively small. For the difference of proportions, the proposed method has
performance comparable to a method proposed by Piegorsch (1991, Biometrics 47, 45–52).
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1. Introduction
This research arose from a pharmaceutical consultancy collab-
oration, in which the aim was to construct simultaneous con-
fidence intervals for odds ratios for comparing several groups
on a binary response. The originally motivating data are of a
similar structure as the data displayed in Table 1, which we
will use throughout the article instead, for reasons of confi-
dentiality. This table is based on results shown in an article
(Kieburtz, 2001) about a randomized clinical trial to compare
four treatments for potentially slowing the functional decline
of early Huntington’s disease: coenzyme Q10, remacemide hy-
drochloride, a combination of coenzyme and remacemide, and
placebo. Safety measures in the study included tabulation of
various adverse events during the 30 months of the study,
and Table 1 shows results for nausea. In this article, we con-
struct confidence intervals to make pairwise comparisons of
the probabilities of nausea for the four treatments.

For data of this sort, significance tests are often used to
summarize the overall evidence against a null hypothesis of no
differences among groups or to investigate hypotheses related
to the factorial nature of the treatments. But our emphasis
here is on making inferences about the sizes of the effects.
There is a large literature on multiple comparison methods
of interval estimation to compare means of several groups,
but there seems to be relatively little literature for multiple
comparison of proportions. Most useful seems to be Piegorsch
(1991), who proposed simultaneous confidence intervals for
pairwise differences between proportions.

Section 2 proposes a method for multiple comparisons using
effect measures for binary data with T groups. The method
is based on applying the studentized range distribution with

a set of approximately standard normally distributed score
statistics constructed for the pairs of groups. The 100(1 − α)%
confidence interval is formed by inverting the test that com-
pares the absolute value of each score statistic to QT (α)/

√
2,

where QT (α) denotes the 100(1 − α) percentile of the studen-
tized range distribution with an infinite number of degrees of
freedom.

Section 3 presents results from a simulation study for si-
multaneous confidence intervals for odds ratios. The method
seems to perform well, considerably better than obvious ad
hoc approaches such as applying the Bonferroni method with
standard methods for pairwise intervals. Section 4 simulates
performance of the method for simultaneous confidence inter-
vals for differences of proportions. The performance is similar
to a method Piegorsch (1991) proposed based on a Bayesian
approach for the pairwise intervals. The simple approach of
using the ordinary Wald interval after adding one outcome of
each type to each sample (Agresti and Caffo, 2000) but re-
placing the normal percentile multiple of the standard error
by QT (α)/

√
2 also performs well when the true proportions

are not very close to 0 or to 1.

2. Multiple Comparisons with a Binary Response
For T groups, denote the binomial parameters by {pi , i =
1, . . . , T }. For independent samples from the groups, let yi

denote a binomial variate based on ni observations from group
i, and let p̂i = yi/ni denote the sample proportion. The key to
the proposed method is to use the studentized range distribu-
tion in conjunction with a pairwise test statistic for which the
two-sided test using the actual null distribution has P-values
that are well approximated by P-values from a large-sample
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Table 1
Data example with several groups having a binary response

(taken from Kieburtz, 2001)

Treatment Sample Cases
group size with nausea Proportion

Coenzyme 87 13 0.149
Remacemide 86 27 0.314
Combination 87 22 0.253
Placebo 87 9 0.103

normal distribution. Test results are then inverted to obtain
confidence intervals.

For the two-sample case with standard effect measures for
binary data, various articles have found that the method of
forming a confidence interval by inverting a large-sample score
test performs well in terms of having nominal coverage proba-
bility approximate well the actual coverage probabilities, even
with relatively small sample sizes (e.g., see Miettinen and
Nurminen, 1985; Newcombe, 1998; Agresti and Min, 2005).
In particular, inverting score tests tends to perform better
than inverting likelihood-ratio tests and much better than in-
verting Wald tests. Mee (1984) and Miettinen and Nurminen
(1985) proposed score confidence intervals for the difference
of proportions, Cornfield (1956) and Miettinen and Nurminen
(1985) proposed score confidence intervals for the odds ratio,
and Koopman (1984) and Miettinen and Nurminen (1985)
proposed score confidence intervals for the relative risk.

For testing the hypothesis that an effect measure θ of inter-
est applied to groups i and j takes a particular null value θij ,0,
let p̃i and p̃j denote the maximum likelihood estimates of pi

and pj under the constraint that the measure equals θij ,0.
For example, θij,0 = {p̃i /(1 − p̃i )}/{p̃j /(1 − p̃j )} for the odds
ratio and θij,0 = p̃i − p̃j for the difference of proportions. Let
zij (θij ,0) denote the score test statistic in the form for which
its asymptotic null distribution is standard normal. Let za de-
note the (1 − a) quantile of the standard normal distribution.
The 100(1 − α)% pairwise confidence interval for the measure
comparing groups i and j consists of the set of θij ,0 values for
which |zij (θij ,0)| < zα/2.

The test statistic z2
ij (θij ,0) is identical to the Pearson chi-

squared statistic for testing the hypothesis that the measure
equals θij ,0 (e.g., Bera and Bilias, 2001; Lovison, 2005). That
is, z2

ij (θij ,0) equals the sum over the four cells in rows i and
j of the T × 2 table of the Pearson component {(observed −
expected)2/expected}. The test statistic is also algebraically
equivalent to

z2
ij (θij,0) =

{ni (p̂i − p̃i )}2

ni p̃i (1 − p̃i )
+

{nj (p̂j − p̃j )}2

nj p̃j (1 − p̃j )
.

Now consider the set of such statistics {zij (θij ,0)}, for all
possible pairwise values {θij ,0}. Evaluated at the actual pa-
rameter values {θij }, for large {ni} the maximum of |zij (θij )|
has approximately the (1/

√
2) multiple of the studentized

range distribution with infinite degrees of freedom. That stu-
dentized range distribution is the distribution of the range
between the maximum and minimum of T independent stan-
dard normal random variables. Generalizing Hochberg and

Tamhane (1987) and Piegorsch (1991), this motivates a mul-
tiple comparison approach in which the confidence interval
for the measure comparing groups i and j consists of the θij ,0

values for which

|zij (θij,0)| < QT (α)/
√

2.

The set of all T(T − 1)/2 of these intervals has large-sample
simultaneous confidence level approximately equal to (1 − α).
For T = 2 this method yields the ordinary score test-based
confidence interval for the measure.

The studentized-range implementation of the score confi-
dence interval has the advantage of generality. It applies with
a variety of measures, including odds ratios, relative risks,
and differences of proportions, with equal or unequal sam-
ple sizes. An alternative approach that applies generally is
to implement the score confidence intervals using the Bon-
ferroni inequality. For each of the q = T (T − 1)/2 pairwise
comparisons, one then uses the ordinary score confidence in-
terval but with confidence level equal to 1 − α/q. Because
the score method achieves approximately the nominal level
for individual comparisons, one would expect this to be con-
servative, more so for larger T. One can make this slightly less
conservative by using the Šidák inequality (e.g., Hochberg and
Tamhane, 1987, p. 366), for which the confidence level for each
comparison is (1 − α)1/q . In practice, this is a very slight dif-
ference (e.g., for α = 0.05, corresponding to critical values of
2.807 versus 2.800 when T = 5 and 3.261 versus 3.254 when
T = 10). Inspection of percentage points shows that Bonfer-
roni and Šidák intervals are both typically about 2% to 3%
wider than the studentized-range type of interval.

In practice, there are cases (e.g., in a regulatory environ-
ment) in which it is useful to ensure a lower bound on the
simultaneous coverage probability. That is, the goal is to
achieve at least the nominal coverage probability, using the
exact small-sample distributions. Such conservative methods
can be used in a multiple comparison setting with the Bonfer-
roni method, to guarantee at least the nominal coverage. For a
given overall sample size, one would expect the conservative-
ness to increase as a function of T, because of the increasing
discreteness for each comparison and the conservativeness im-
plicit in the Bonferroni method. Some statisticians prefer the
adaptation of exact confidence intervals that invert the test
using the mid P-value (which subtracts half the probability of
the observed test statistic value from the ordinary P-value and
which has null expected value equal to 1/2). In various set-
tings, this method has been found to provide shorter intervals
with coverage probability tending to fall nearer the nominal
level, although not guaranteed to achieve at least that level.
See, for example, Hirji (2005, pp. 50–51, 218–219). Likewise,
multiple comparisons can implement this approach using the
Bonferroni method.

3. Multiple Comparison of Odds Ratios:
Example and Simulations

In practice, especially when the proportions are small, it is
often useful to compare groups with the odds ratio or the
relative risk. Table 2 shows the results of 95% multiple com-
parisons of odds ratios for the data in Table 1, using the
studentized-range implementation of the score interval. We
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Table 2
95% simultaneous confidence intervals for pairwise odds ratios and pairwise difference of
proportions for data in Table 1. Each confidence interval is based on the studentized-range

implementation of the pairwise intervals inverting score tests.

Odds Confidence Difference of Confidence
Rows ratio interval proportions interval

(1, 2) 0.38 (0.15, 1.00) −0.161 (−0.325, 0.000)
(1, 3) 0.52 (0.20, 1.38) −0.103 (−0.260, 0.064)
(1, 4) 1.52 (0.48, 4.77) 0.046 (−0.089, 0.184)
(2, 3) 1.35 (0.57, 3.19) 0.061 (−0.114, 0.234)
(2, 4) 3.97 (1.38, 11.31) 0.211 (0.055, 0.364)
(3, 4) 2.93 (1.00, 8.52) 0.149 (0.000, 0.299)

conclude that there is a difference between the remacemide
and placebo treatments, with the odds of nausea for the
remacemide treatment being between about 1.4 and 11.3
times the odds of nausea with placebo.

We used a simulation study to evaluate the performance
of this method, considering essentially the same cases as
Piegorsch (1991) did in evaluating a method he proposed.
He considered three sets of proportion values: p1 = 0.02, 0.05,
and 0.10, with the remaining T − 1 parameters equally spaced
between p1 and pT = 5 p1. We used T = 2, 3, 5, 8 in order
to study behavior ranging from the baseline of a single com-
parison (T = 2) to a relatively large number of groups. As in
Piegorsch’s analysis, we considered cases in which the sample
sizes were equal, with values 25, 50, and 100. We also consid-
ered a mixed case with sample sizes 25 for half the groups and
50 for the other half, with 25 for the extra group when T is an
odd number. Table 3 shows the estimated probability (based
on 10,000 simulations) that at least one of the T(T − 1)/2
intervals failed to contain the true parameter value. The pro-

Table 3
Estimated error probabilities (nominal level 0.05) for simultaneous confidence intervals for odds ratios for T groups. Methods

compared are multiple range implementation of score intervals, Bonferroni method with Wald intervals, and Bonferroni method
with “exact” small-sample intervals. True proportions are equally spaced between p1 = 0.02, 0.05, 0.10 and pT = 5 p1.

p1 = 0.02 p1 = 0.05 p1 = 0.10

T ni Score Exact Wald Score Exact Wald Score Exact Wald

2 25 0.057 0.009 0.008 0.042 0.015 0.026 0.036 0.018 0.024
50 0.034 0.009 0.028 0.042 0.015 0.029 0.053 0.028 0.034

100 0.039 0.013 0.024 0.045 0.024 0.033 0.049 0.034 0.044
Mixed 0.054 0.009 0.031 0.042 0.012 0.029 0.042 0.018 0.029

3 25 0.046 0.003 0.002 0.058 0.011 0.011 0.047 0.013 0.027
50 0.056 0.008 0.010 0.039 0.014 0.025 0.053 0.024 0.031

100 0.047 0.012 0.021 0.049 0.025 0.030 0.048 0.028 0.037
Mixed 0.059 0.005 0.007 0.050 0.013 0.021 0.044 0.015 0.028

5 25 0.034 0.001 0.000 0.044 0.008 0.005 0.046 0.014 0.020
50 0.044 0.005 0.002 0.043 0.015 0.014 0.045 0.018 0.025

100 0.042 0.012 0.011 0.044 0.019 0.028 0.049 0.028 0.032
Mixed 0.049 0.003 0.002 0.051 0.009 0.011 0.047 0.015 0.022

8 25 0.029 0.001 0.000 0.046 0.007 0.002 0.044 0.012 0.015
50 0.038 0.004 0.001 0.047 0.013 0.010 0.046 0.016 0.025

100 0.040 0.009 0.004 0.044 0.017 0.020 0.046 0.022 0.026
Mixed 0.058 0.002 0.002 0.054 0.008 0.014 0.046 0.015 0.018

posed method seems to work well, perhaps better than one
might expect in cases with relatively small sample sizes and
small proportions. This method tended to be a bit conserva-
tive, overall, so we do not show results here for the Bonferroni
implementation of the score interval, because that is necessar-
ily more conservative.

Table 3 also shows results of using Bonferroni methods
with the pairwise exact conditional confidence interval due
to Cornfield (1956) based on inverting two one-sided tests
using the noncentral hypergeometric distribution. The ordi-
nary conservatism for two groups tends to worsen with more
groups, even though the overall sample size increases in these
analyses. When the mid-P adaptation of the exact approach
was implemented with the Bonferroni method, the error prob-
abilities (not shown in Table 3) fell between those for the “ex-
act” intervals and for the score intervals. Hence, this method
also tended to be quite conservative. For example, when p1 =
0.05 with n = 50, its estimated error probabilities for T = (2,
3, 5, 8) were (0.035, 0.027, 0.023, 0.023), compared to (0.015,
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0.014, 0.015, 0.013) for the “exact” method and (0.042, 0.039,
0.043, 0.047) for the studentized-range implementation of the
score interval.

Because we are not aware of any literature on multiple com-
parisons for odds ratios, for another comparison we considered
an ad hoc method we thought practitioners are likely to em-
ploy. In practice, the Wald interval is commonly used, and
an obvious multiple comparison approach is to implement it
using the Bonferroni method. The Wald confidence interval
for the log odds ratio is known to be somewhat conservative
(Agresti, 1999). With sample odds ratio θ̂ij for groups i and
j, the Wald confidence interval exponentiates

log(θ̂ij ) ± zα/2

×
√

(ni p̂i )−1 + {ni (1 − p̂i )}−1 + (nj p̂j )−1 + {nj (1 − p̂j )}−1.

Table 3 also shows results for the Bonferroni implementation
of the Wald interval. As expected, it is quite conservative.
The order of conservatism is the same as the table shows for
the Bonferroni method applied with the “exact” interval, but
that approach has the advantage of necessarily achieving at
least the nominal confidence level. We found similar behavior
with adjustments of the Wald interval that have been recom-
mended, such as implementing it after smoothing the table
by adding 0.50 to each cell count or adding 2ni+n+j /n2 to cell
count nij in group i making response j (Agresti, 1999).

4. Multiple Comparison of Difference of Proportions
Next, we apply the proposed method of using the studen-
tized range together with the score statistic to the difference
of proportions. For T = 2 groups, the confidence interval is
then equivalent to one that Mee (1984) proposed. When none
of the restricted maximum likelihood estimates falls at the
boundary, the score interval corresponds to inverting the test
having test statistic

zij (θij,0) =
(p̂i − p̂j ) − θij,0√

{p̃i (1 − p̃i )/ni} + {p̃j (1 − p̃j )/nj }
.

Newcombe (1998) and Agresti and Min (2005) found that this
method performs well. Table 2 also shows the results of 95%
multiple comparisons for the difference of proportions for Ta-
ble 1, using the studentized-range implementation of the score
confidence interval. Substantive results are the same as with
the odds ratio. There may be a considerable difference be-
tween remacemide and placebo, with the probability of nausea
being between about 0.06 and 0.36 higher for remacemide.

Piegorsch (1991) considered methods for simultaneous con-
fidence intervals for the difference of proportions. He first
considered (1) the Bonferroni approach applied with the
Wald confidence interval, and (2) a method implemented in
Hochberg and Tamhane (1987, p. 275) using the Wald interval
together with the studentized range distribution. These per-
formed poorly, having error rates substantially higher than
the nominal level when the sample sizes are small. This is no
surprise, because the Wald method behaves poorly when T =
2, especially when the parameters are not near 0.50. In partic-
ular, the midpoint for each interval is the difference between
the sample proportions. Piegorsch showed that better perfor-
mance is obtained with a reformulated pairwise interval, moti-
vated partly by a Bayesian approach of Beal (1987), for which

the midpoint of the interval shrinks the sample differences of
proportions toward 0. When implemented for multiple com-
parisons using the studentized range distribution, with equal
sample sizes, ni = n, the interval for pi − pj is

(1 + d2)−1 [
(p̂i − p̂j ) ± d{(2 − θ̃ij )θ̃ij (1 + d2)

− (p̂i − p̂j )2}1/2
]
,

with

θ̃ij = {n(p̂i + p̂j ) + 1}/(n + 1)

and

d = QT (α)/2
√

n.

For T = 2, the center of the 95% confidence interval is ap-
proximately {n/(n + 2)}(p̂1 − p̂2). McCann and Tebbs (2007)
extended this method to pooled data in which a group is
classified as “positive” if at least one subject in the group is
positive.

Table 4 shows simulation results comparing the
studentized-range implementation of the score interval
with this method of Piegorsch’s. Overall, results are compa-
rable. Neither method performs well for the smallest sample
size (25 per group) when the true proportions are very
small. This is not surprising, as in these cases the number of
“successes” would tend to be near 0 for each group.

Good performance would also occur with studentized-range
implementation of other approaches that provide such shrink-
age and have good coverage performance on a pairwise com-
parison basis. The overall performance should reflect whether
the pairwise coverage probabilities tend to be either conserva-
tive or liberal. For example, one such possibility for each pair-
wise interval is the Wald confidence interval constructed after
adding one observation of each type to each sample (Agresti
and Caffo, 2000). Let p̃i = (yi + 1)/(ni + 2). The confidence
interval for pi − pj is

(p̃i − p̃j ) ± {QT (α)/
√

2}se

where

se =

√
p̃i (1 − p̃i )

ni + 2
+

p̃j (1 − p̃j )
nj + 2

.

With equal sample sizes, the center of the interval is
{n/(n + 2)}(p̂i − p̂j ). Agresti and Caffo (2000) noted that this
method has good pairwise performance but tends to be con-
servative when the pi are near the boundary. Simulations with
this method, summarized also in Table 4, indicated that it
performs well unless pi are near 0. Another pairwise interval
that provides shrinkage and performs quite well on a pairwise
basis uses the Bayesian approach (Agresti and Min, 2005).
The posterior distribution for pi − pj is induced by indepen-
dent binomial samples having relatively uninformative beta
priors.

5. Comments and Summary
We have recommended using the studentized-range method
by inverting the score test rather than the likelihood-ratio
test. This is because, for two groups with the measures con-
sidered, the score test has been observed to perform bet-
ter. However, our simulations did evaluate the performance
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Table 4
Estimated error probabilities (nominal level 0.05) for Piegorsch (P) method and for studentized-range implementation of score
intervals and Agresti–Caffo (A–C) intervals for the difference between proportions. True proportions are equally spaced between

p1 = 0.02, 0.05, 0.10 and pT = 5 p1.

p1 = 0.02 p1 = 0.05 p1 = 0.10

T ni Score P A–C Score P A–C Score P A–C

2 25 0.028 0.079 0.006 0.067 0.055 0.044 0.056 0.049 0.042
50 0.060 0.040 0.035 0.051 0.055 0.046 0.050 0.051 0.054

100 0.047 0.045 0.046 0.048 0.049 0.049 0.049 0.050 0.049
Mixed 0.029 0.018 0.023 0.039 0.016 0.042 0.054 0.021 0.046

3 25 0.010 0.012 0.003 0.042 0.048 0.031 0.058 0.055 0.047
50 0.031 0.053 0.023 0.055 0.049 0.042 0.052 0.048 0.045

100 0.052 0.047 0.034 0.053 0.050 0.041 0.054 0.050 0.052
Mixed 0.035 0.015 0.005 0.046 0.036 0.029 0.050 0.040 0.043

5 25 0.003 0.002 0.002 0.034 0.043 0.026 0.051 0.042 0.050
50 0.019 0.027 0.011 0.049 0.042 0.034 0.052 0.050 0.047

100 0.042 0.039 0.028 0.053 0.045 0.041 0.053 0.046 0.045
Mixed 0.025 0.008 0.003 0.041 0.043 0.028 0.051 0.040 0.046

8 25 0.001 0.000 0.000 0.023 0.035 0.026 0.045 0.045 0.049
50 0.010 0.022 0.005 0.043 0.039 0.035 0.052 0.046 0.050

100 0.037 0.029 0.020 0.054 0.047 0.041 0.056 0.049 0.050
Mixed 0.028 0.011 0.003 0.044 0.033 0.028 0.050 0.040 0.051

of the studentized-range method together with inverting the
likelihood-ratio test in standard normal form. The estimated
coverage probabilities tended to be farther from the nominal
value than obtained with the score test, typically erring in the
liberal direction. For example, using the likelihood-ratio test
with the difference of proportions, for the case p1 = 0.05 with
n = 50 the estimated error probabilities for T = (2, 3, 5, 8)
were (0.056, 0.062, 0.077, 0.085), compared to (0.051, 0.055,
0.049, 0.043) for the score test.

In summary, our proposed method using the studentized
range distribution with a score statistic is applicable for all
the standard measures for comparing binomial parameters.
For the odds ratio, it seems to perform better than the obvi-
ous ad hoc approaches one might use, such as the Bonferroni
method applied with a standard confidence interval. For the
difference of proportions, the method seems to give results
comparable to a method proposed by Piegorsch (1991). Thus,
the proposed method seems to be a useful general-purpose
way to obtain simultaneous confidence intervals comparing
several binomial parameters.

In future research, it would be useful to develop simultane-
ous confidence intervals in other contexts. An important case
is when the groups to be compared are ordered (such as doses
of a drug) and it is sensible to assume monotonicity of the pro-
portions. Then, more efficient approaches undoubtedly exist,
especially with small sample sizes. Various closed-testing pro-
cedures have been proposed that are more efficient than the
Bonferroni method for multiple significance testing. These ap-
ply when the hypotheses tested are closed under intersection,
and the test statistics are ordered from largest to smallest,
applying less stringent significance levels to the second, third,
and so on (e.g., Holm, 1979). Such methods might be use-
ful if they could be applied to interval estimation. Some such
methods are especially useful for ordered groups (e.g., Marcus,
Peritz, and Gabriel, 1976; Rom, Costello, and Connell, 1994).

There is also the challenge of obtaining realistic coverage
probabilities when the confidence intervals formed are them-
selves suggested by a large number of preliminary tests, such
as in the extension by Benjamini and Yekutieli (2005) of the
false discovery rate from multiple testing to selected multiple
interval estimation. Finally, our method applies with indepen-
dent samples, and there is scope for developing simultaneous
confidence intervals for dependent samples.

A program using R for implementing the proposed
studentized-range-score method with the odds ratio and the
difference of proportions is available from the authors.
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