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Abstract

Caussinus’s loglinear model of quasi symmetry has interesting connections with
models for within-subject effects with repeated categorical measurement. For bi-
nary responses, Tjur (1982) showed that estimates of main effect parameters in
the quasi-symmetry model are also conditional maximum likelihood estimates of
item parameters for a fixed effects treatment of subject terms in the Rasch item
response model. He showed they are also nonparametric estimates of item pa-
rameters for a random effects treatment of subject terms in the Rasch model. I
describe some generalizations of the quasi-symmetry model that have similar con-
nections with generalizations of the Rasch model. These include a link between an
ordinal quasi-symmetry model and an adjacent-categories logit model with ran-
dom effects, and a link between a multivariate quasi-symmetry model and a logit
random effects model for repeated measurement of a multivariate vector of binary
responses.

Keywords: Adjacent-categories logit; Conditional maximum likelihood; Cumulative

logit; Ordinal; Random effects; Rasch model.
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1 Introduction

The Caussinus (1966) quasi-symmetry model is one of the most useful models for ana-

lyzing contingency tables having the same categories for each classification. Like many, I

became aware of this model and its utility by the detailed discussion of it and its general-

izations in the seminal text on loglinear models by Bishop, Fienberg, and Holland (1975).

In my study of categorical data methods in the period 1975-1990, I became increasingly

aware of its connections with other standard models, such as the Bradley-Terry model

for paired evaluations (Fienberg and Larntz 1976).

In the past ten years, some of my own research has dealt with extensions of this model

as well as connections between it and certain logit models for repeated measurement

having subject-specific terms. This paper summarizes these research results. The logit

models of interest are extensions of the Rasch model. One of them is a generalization

to multivariate binary responses. Two others refer to ordinal generalizations. The three

standard types of ordinal logit models are (1) cumulative logit models, which use all

cumulative probabilities and their complements, (2) adjacent-categories logit models,

which use all pairs of probabilities from adjacent categories, and (3) continuation-ratio

logits (sometimes also called “sequential logits”), which use each category probability

together with the probability of a lower response, or each category probability together

with the probability of a higher response. We consider (1) and (2); see Tutz (1990) for

(3).

I begin by reviewing the Rasch model. Suppose n subjects respond to T items (e.g.,

questions on an exam or questionnaire) that use the same c categories. For subject i

and item t, let Yit denote the response outcome. For the binary-response case (c = 2),

the Rasch model is

logit[P (Yit = 1)] = αi + βt, i = 1, ..., n, t = 1, ..., T. (1)
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(This and all other models in this paper require constraints for identifiability. For sim-

plicity of exposition, we will not discuss these.) The usual assumption for model fitting

is local independence for the repeated responses by a subject, given the subject effect.

Rasch treated subject parameters {αi} as fixed effects, but much subsequent work

treats them as random effects. Tjur (1982) studied a distribution-free approach for them.

He showed that the marginal distribution, integrating out the random effects, satisfies

a multiplicative model. Although he did not note it, that model is in fact the quasi-

symmetry model, as pointed out in related work of the same era (Fienberg 1981, Fienberg

and Meyer 1983). Since similar results occur for models discussed in this paper, the next

section outlines an argument that connects the Rasch and quasi-symmetry models.

2 Quasi Symmetry and the Rasch Model

Cross-classifying responses on the T binary items yields a 2T contingency table. Let

Yi = (Yi1, . . . , YiT ) denote the sequence of T responses for subject i, which contributes

an observation to a particular cell of this table. For a possible sequence of outcomes

r = (r1, ..., rT ) for Yi, where each rt = 1 or 0,

P (Yi = r|αi) =
∏

t

[

exp(αi + βt)

1 + exp(αi + βt)

]rt
[

1

1 + exp(αi + βt)

]1−rt

=
exp[αi(

∑

t rt) +
∑

t rtβt]
∏

t[1 + exp(αi + βt)]
.

With a random effects approach, let F denote the cumulative distribution function of

αi. Then the marginal probability of sequence r for the responses Y for a randomly

selected subject is (suppressing the subject label)

P (Y = r) = exp(
∑

t

rtβt)
∫

exp[α(
∑

t rt)]
∏

t[1 + exp(α + βt)]
dF (α).

This probability contributes to the likelihood, which is that for a multinomial distri-

bution over the 2T cells for possible r. Regardless of the choice for F , the integral is
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complex. However, it depends on the data only through s =
∑

t rt, so a more general

model replaces this integral by a separate parameter for each value of this sum. This

model has form

log P (Y = r) =
∑

t

rtβt + λs. (2)

The term λs in the implied marginal model (2) represents an interaction parameter

λr1,...,rT
that is the same at each value of s =

∑

t rt. These interaction parameters result

from the marginal dependence in responses, due to heterogeneity in {αi}. The interaction

term is invariant to any permutation of the response outcomes (r1, ..., rT ), since each

such permutation yields the same sum. Because of this symmetry in interaction, it is

the extension of Caussinus’s loglinear model of quasi symmetry for the T -way table in

the binary response case (Bishop et al. 1975).

No matter what form the random effects distribution takes, the implied marginal

model has the same main effects structure, and it has an interaction term that is a

special case of the one in (2). Thus, one can consistently estimate the item effects {βt}

using the ordinary ML estimates for the quasi symmetry model. In fact, Tjur (1982)

showed that these estimates are also the conditional ML estimates of {βt} for model (1),

treating {αi} as fixed effects and conditioning on their sufficient statistics.

Tjur (1982) also proved that these quasi-symmetric ML estimators and conditional

ML estimators for the Rasch model are identical to those obtained in a slightly extended

version of ML for a nonparametric treatment of the distribution of αi. Later papers

showed strong connections between the actual nonparametric marginal ML estimates and

conditional ML estimates. Under the assumption that the Rasch model holds, de Leeuw

and Verhelst (1986) showed that the probability that nonparametric ML estimators are

identical to conditional ML estimators (and hence also to quasi-symmetric loglinear ML

estimators) converges to 1 as n increases, for a fixed number of items. Lindsay et al.
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(1991) strengthened this, showing the same result if the subject-effect distribution has

at least (T + 1)/2 support points.

Darroch (1981), Fienberg (1981), Kelderman (1984), and Hatzinger (1989) made re-

lated observations about the connection between the Rasch and quasi-symmetry models.

I found similar connections useful in research on modeling rater agreement (Agresti and

Lang 1993a) and capture-recapture modeling for estimating population size (Agresti

1994), as did others for these and related applications (Darroch and McCloud 1986,

Becker 1990, Darroch et al. 1993, Fienberg et al. 1999).

An extension of the Rasch form of model for nominal response variables is

log[P (Yit = j)/P (Yit = c)] = αij + βtj , j = 1, ..., c − 1. (3)

Similar connections with quasi symmetry occur for this model. The conditional ML

estimates of the item effects are identical to estimates of main effect parameters in

the general quasi-symmetry loglinear model for a cT contingency table (Conaway 1989,

McCullagh 1982). For expected frequencies {µab...c} in that table, the quasi-symmetry

model has form

log µab...c = λa1 + λb2 + ... + λcT + λab...c, (4)

where the interaction term is symmetric in its indices.

3 Quasi Symmetry and an Ordinal Model Using

Adjacent-Category Logits

I considered extensions of Tjur’s results for ordinal responses and for multivariate bi-

nary responses. First consider an ordinal model that has the adjacent-categories logit

representation for the response for subject i on item t,

log[P (Yit = j + 1)/P (Yit = j)] = αij + βt. (5)
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This is a special case of the nominal-scale model in which the item effects have the

structure βt,j+1 − βtj = βt for all j; that is, {βtj} are linear in j. The item effects are

assumed to be identical for each pair of adjacent categories. A somewhat simpler model

decomposes αij in (5) into αi + δj (Andersen 1973, Andrich 1978, Duncan 1984, Hout et

al. 1987, Agresti 1993a).

Agresti (1993a) showed that conditional ML estimates and extended nonparametric

marginal ML estimates of the item effects in model (5) are identical to the ordinary ML

estimates obtained in fitting the loglinear model

log µab...c = aβ1 + bβ2 + · · ·+ cβT + λab...c , (6)

where λ is permutationally invariant. This is a special case of the quasi-symmetry model

that has linear structure for the main effects. It treats the main effects as variates, with

equally-spaced scores, rather than qualitative factors. Each main effect term has a single

parameter, rather than the c − 1 parameters in the Caussinus model. Model (6) is an

ordinal quasi-symmetry model, since it reflects the ordering of the response categories.

Agresti (1993a) also showed that estimates of {βt} for the model with simpler structure

for αij equal those for a simpler loglinear model in which the interaction parameter

depends only on the sum of the scores for the T items. For examples of the use of

model (6), see Agresti (1993a, 1993b, 1995). It is simple to fit the model using software

for generalized linear models. See Agresti (1996, p. 277) for the use of SAS (PROC

GENMOD).

The ML estimates of {βt} in (6) have the same order as the sample mean responses

(using equally-spaced scores) in the T one-way margins of the cT table, as those are the

sufficient statistics for {βt}. The complete symmetry model for a cT contingency table

is the special case of (6) in which β1 = ... = βT . Given that model (6) holds, marginal

homogeneity is equivalent to symmetry. When model (6) fits well, one can test marginal
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homogeneity using a likelihood-ratio test with df = T − 1, based on comparing its fit

to that of complete symmetry. This is an ordinal analog of the Caussinus (1966) test of

marginal homogeneity based on comparing the ordinary quasi-symmetry model to the

complete symmetry model.

4 Quasi Symmetry and an Ordinal Model Using

Cumulative Logits

An alternative model form for ordinal responses uses cumulative logits. For subject i

and item t, the cumulative logit analog of model (5) is

log[P (Yit ≤ j)/(1 − P (Yit ≤ j))] = αij − βt. (7)

This model has the proportional odds property, for which the item effects {βt} are

identical at each j. Complete symmetry is implied by β1 = ... = βT .

The conditional ML approach does not apply to model (7) since these logits are not

the canonical parameters for the multinomial. Agresti and Lang (1993b) eliminated

the subject parameters by noting that (7) corresponds to a Rasch model for all c − 1

binary collapsings of the response, with the same item effects for each collapsing. Hence,

because of the connection between Rasch models and quasi symmetry, one can estimate

the item parameters by fitting a quasi-symmetry model simultaneously to all such binary

collapsings, using the same main effect parameters for each. They did this using methods

for maximizing a likelihood subject to constraints (Lang and Agresti 1994).

See Agresti and Lang (1993b) and Agresti (1993b, 1995) for examples and a more

detailed discussion of this approach. Samejima (1969), Andrich (1978), Masters (1982),

Duncan (1984), and Tutz (1990) described related models for ordinal responses. Hedeker

and Gibbons (1994) presented a random effects approach for a simpler form of the subject

term.
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5 Quasi Symmetry and Analyses of Ordinal Matched

Pairs

This section considers separately the matched-pairs case T = 2 with an ordinal response.

In this case, quasi-symmetry models have simple logit representations, and additional

ways exist of obtaining item estimates. These models refer to probabilities {πab} for the

c × c table of counts {nab} for the pairs of possible responses for the n subjects.

Section 3 noted that the logit model (5) for adjacent categories relates to a special

ordinal version (6) of quasi symmetry. Letting β = β2 − β1 in that loglinear model, it is

equivalent to the logit model (Agresti 1983),

log(πab/πba) = β(b − a). (8)

This is a special case of Goodman’s diagonals-parameter symmetry model, with a linear

trend for the diagonals parameters (Goodman 1979; for related material, see Goodman

2002). One can also estimate β using software for logistic regression models, treating

{nab, a < b} as independent binomial variates with sample sizes {nab + nba}.

Simple ordinal tests of marginal homogeneity derive from model (8). A Wald test

uses as test statistic the ratio of β̂ to its asymptotic standard error. The likelihood-ratio

test compares this model with the symmetry model. Rao’s efficient score test is based

on the difference in sample means for the marginal distributions, for equally-spaced

category scores. Specifically, let {pab} denote the sample proportions in the observed

c × c table. A z test statistic is the ratio of d = [
∑

a a(pa+ − p+a)] to its estimated

standard error, which is the square root of (1/n)[
∑

a

∑

b(a − b)2pab − d2].

For cumulative logit model (7) with T = 2, a simple estimate of β = β2 − β1 uses

the fact that the model implies a Rasch model for each of the c − 1 collapsings of the

response to a binary variable. For each collapsing, the off-main-diagonal cells of the
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2×2 table provide an estimate in the form of the binary conditional ML estimate for

two items, log(n12/n21). A nearly efficient estimator results by combining these c − 1

estimates, adding the numerators and adding the denominators before taking their ratio

and their logarithm (Agresti and Lang 1993b). In terms of the cell counts {nab} in the

full c × c table, the resulting estimate is

β̃ = log{[
∑

a<b

(b − a)nab]/[
∑

a>b

(a − b)nab]}. (9)

The estimated asymptotic variance of this estimator equals

V̂ (β̃) =

∑

a<b(b − a)2nab

[
∑

a<b(b − a)nab]2
+

∑

a>b(a − b)2nab

[
∑

a>b(a − b)nab]2
.

Another simple test of marginal homogeneity for ordinal matched-pairs data uses z =

β̃/
√

V̂ (β̃). Like the test based on the ordinal quasi-symmetry model, it is sensitive to lo-

cation shifts in the marginal distributions. McCullagh (1977) discussed other estimators

for the cumulative logit model applied to matched pairs.

6 Quasi Symmetry and a Multivariate Logit Model

for Repeated Measurement

A multivariate extension of the Rasch model also has connections to quasi-symmetric

loglinear models. It refers to V separate binary variables, each measured for T items.

For subject i, denote the response for item t with variable v by Yitv, with observed value

1 or 0. Consider the model

logit[P (Yitv = 1)] = αiv + βtv. (10)

For each variable v, this model has the additive subject and item form of the Rasch

model. The {β1v, ..., βTv} for each v describe the item effects for each variable. The {αiv}

reflect the heterogeneity among subjects that induces the correlations among repeated

responses on a variable.
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Agresti (1997) gave a nonparametric treatment of αi = (αi1, ..., αiV ), treating this

as a vector of correlated random effects. Integrating out the random effects yields a

marginal model for the outcomes y = (y11, . . . , yTV ) on the TV combinations of items

and variables with expected frequencies {µy} in a 2TV contingency table. Regardless of

the joint distribution for those random effects, this model satisfies

log µy =
∑

t

∑

v

βtvytv + λ(
∑

t

yt1, ...,
∑

t

ytV ), (11)

where the final term represents a separate parameter for each possible ordered set of the

V sums of item scores. Specifically, model (10) implies that a marginal model has the

same main effects structure as (10), and it has an interaction term that is a special case

of the one in (11). Thus, one can consistently estimate {βtv} in a nonparametric manner

using the ordinary ML estimates for the loglinear model. Moreover, the conditional ML

estimates of {βtv} for model (10) are identical to the ordinary ML estimates of {βtv}

obtained by fitting loglinear model (11).

For this loglinear model, the interaction involving any set of items for a particular

variable has term that is invariant for any permutation of the response outcomes for

those items. For the univariate case, model (11) is the quasi-symmetry model. Thus,

model (11) is a multivariate quasi-symmetry model.

In the matched-pairs case (T = 2), model (11) has fitted values in the 2×2 marginal

table for each variable that are identical to the observed counts. The estimate of

exp(β2v − β1v) then equals the number of cases with (y1v, y2v) = (0, 1) divided by the

number of cases with (y1v, y2v) = (1, 0). In the univariate case (V = 1), this is also the

conditional ML estimate for the logit model, and Neuhaus et al. (1994) showed that it

is also normally the estimate for a parametric random effects approach.
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7 Summary

This paper has discussed the connection between item response models and quasi-

symmetric loglinear models. Other articles that dealt in part with this connection or

exploited it to fit an item response form of model with loglinear software include Fien-

berg and Meyer (1983), Kelderman (1984), Fischer et al. (1986), Kelderman and Rijkes

(1994), and Erosheva et al. (2002). Ten Have and Becker (1995) discussed a wide variety

of loglinear models with quasi-symmetric structure

One can extend the models of this article to incorporate covariates, as long as the

main focus is on within-subjects effects. For instance, one might stratify a sample by

some group factor (e.g., gender), and analyze whether the same item effects apply for

each group. One could do this by comparing the fits of two models, one assuming

homogeneous item effects and the other permitting heterogeneous item effects. The

related quasi-symmetry models also have homogeneous or heterogeneous main effects,

with the symmetric interaction term having different parameters for each group. Agresti

(1993b) gave examples of this type.

In my experience, quasi-symmetry models very often fit quite well, even for large

sample sizes. This may partly reflect the fact that the Rasch form of model is a natural

one for many applications. Moreover, quasi-symmetry models address components of

relationships not analyzed by standard loglinear analyses. When quasi-symmetry models

show lack of fit, they usually still fit much better than complete symmetry or mutual

independence loglinear models. From their structure of heterogeneous main effects and

their connection with Rasch-like models, ordinal quasi-symmetry models are designed

to detect shifts in location among margins of the cT table. Thus, they may fit poorly

when marginal distributions show differences in dispersion as well as location.

In summary, the quasi-symmetry model benefits from wide scope, from close con-
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nections with other useful models, and from ease of generalization to other models for

multinomial or multivariate repeated categorical responses. The statistical community

as well as methodologists who frequently deal with categorical responses owe Professor

Henri Caussinus their grateful thanks and congratulations for introducing this model.
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Conaway, M. (1989). Analysis of repeated categorical measurements with conditional
likelihood methods. Journal of the American Statistical Association, 84, 53-62.

Darroch, J. N. (1981). The Mantel-Haenszel test and tests of marginal symmetry; fixed
effects and mixed models for a categorical response. International Statistical Review,
49, 285-307.

13



Darroch, J. N., and P. I. McCloud. (1986). Category distinguishability and observer
agreement. The Australian Journal of Statistics, 28, 371-388.

Darroch, J. N., S. E. Fienberg, G. F. V. Glonek, and B. W. Junker. (1993). A three-
sample multiple-recapture approach to census population estimation with heterogeneous
catchability. Journal of the American Statistical Association, 88, 1137-1148.

De Leeuw, J., and N. Verhelst. (1986). Maximum likelihood estimation in generalized
Rasch models. Journal of Educational Statistics, 11, 183-196.

Duncan, O. D. (1984). Rasch measurement: Further examples and discussion. Pp. 367-
403 in Surveying Subjective Phenomena, vol. 1, edited by C. F. Turner and E. Martin.
New York: Russell Sage Foundatiom.

Erosheva, E., S. E. Fienberg, and B. Junker. (2002). Alternative statistical models
and representations for large sparse multi-dimensional contingency tables. Annales de
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