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 Applying R2-Type Measures to
 Ordered Categorical Data

 Alan Agresti

 Department of Statistics

 University of Florida
 Gainesville, FL 32611

 The concentration and entropy measures for categorical data tend to be highly dependent on
 the choice of response categories. If the categorization of the response variable is arbitrary but
 it is reasonable to assume an underlying continuous distribution, then an adaptation of the
 regression R2 measure can be useful for describing multiple association.

 KEY WORDS: Analysis of dispersion; Concentration; Contingency table; Correlation ratio;
 Entropy; Log-linear models; Ordinal data; Proportional reduction in vari-
 ance; R squared.

 1. INTRODUCTION

 Let Y denote a categorical response variable, and
 let X denote a set of explanatory variables. This arti-
 cle considers measures of multiple association be-
 tween Y and X that are analogous to the R2 measure
 for regression models. The measures describe how
 well Y can be predicted for the model chosen to fit
 the data, and they can all be expressed in proportion-
 al reduction in dispersion form.

 Let (fl(a) . . r(a)) denote the distribution for the
 response variable that is estimated by the model at
 the setting Xa of the explanatory variables corre-
 sponding to the ath observation, a = 1, ..., n. Let
 D(Ya) denote a measure of dispersion for the ath ob-
 servation relative to the estimated marginal distri-
 bution (7^, ..., ,) of Y, and let D(Y,I Xa) represent
 this measure computed for (fEl(a), . nr(a)). Then mea-
 sures of association based on proportional reduction
 in dispersion have the form

 , D(Ya)- D(Ya Xa)
 a= 1 a= 1 (1.1)

 a=1

 Haberman (1982) and Magidson (1981) presented
 two measures of multiple association for categorical
 data. The Gini concentration measure C has D(Ya) =
 1 _- Ij 2 for all a, and D(Ya Xa) = 1- J(a), so

 Z (a)- E A2
 C= a j (1.2)

 The entropy measure H has D(Ya) = - 7j j log 7rj
 for all a, and D(Ya I Xa) = -Zj j(a) log nj(a), sO

 n log fj - j log jJ - ( )log
 j a j

 n E Zfj log rj
 J

 (1.3)

 The concentration and entropy measures are the two
 R2-type measures that are provided, at present, when
 multinomial response models (Haberman 1982) are
 fitted using the LOGLINEAR routine in SPSSX.

 These measures C and H share the properties
 0 < (C, H) < 1, with (C, H) = 0 equivalent to {^j(a) =
 7j, a = 1, ..., n,j = 1, ..., r} and (C, H) = 1 equiva-
 lent to {for each a, ^j(a) = 1 for some j}. The lower
 bound occurs for models in which Y is independent
 of X, and the upper bound occurs when the model
 suggests that Y can be perfectly predicted using X.
 When the {j(ta)} are obtained by maximum likeli-
 hood for a multinomial response model, Haberman
 (1982) noted that H is necessarily nondecreasing as
 the model is generalized (e.g., as additional predictors
 are used in X). Although C is not necessarily nonde-
 creasing, in practice it seems to behave much like H.

 Consider the special case in which the explanatory
 variables are all categorical. Let {7ij}, satisfying Li
 j rij = 1, denote cell probabilities in an s x r con-
 tingency table in which the r columns are the levels
 of Y and the s rows are the combinations of levels of
 X; that is, if the ath observation is in row i, then
 T7j(a) = Tij/li+ (j = 1, ..., r). Let {Pij} denote corre-
 sponding sample proportions, and let {7ij} denote
 estimates of {7%i} based on fitting some model to the
 sample. In this case,

 E (Pi+/7i+) E 73/7T+ - Z 74
 C =i J j

 1-_E Z2+
 i

 (1.4)

 and
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 H
 + j log r + j-, (pi+/ti +)E frij log(nij/ri +)
 -= J i

 Z 7r+j log 7t+j

 (1.5)

 Most models that are specifically designed to treat Y
 as a response variable (such as logit models) satisfy
 the constraints {ii+ = pi+ }. In this case these mea-
 sures simplify to

 ZZ EZ2/ji+ --Z 2j
 C= j (1.6)

 7,+j

 and

 Z Z Rij 1og(?ij//i+;+j)
 H= i j . (1.7)

 7^+j log fr+j

 This concentration measure generalizes Goodman
 and Kruskal's (1954) tau measure, which is C applied
 to the estimates {ij- = pij} obtained with the satu-
 rated model [also see related papers by Efron (1978),
 Gray and Williams (1975), and Margolin and Light
 (1974)]. This entropy measure was suggested by Theil
 (1970) for the {Pij}.

 The measures C and H are most appropriate for a
 fixed set of nominal response categories. When the
 response variable has several possible categor-
 izations, these measures tend to take smaller values

 as the number of categories increases. For instance,
 the dispersion measure for C gives the probability
 that two independent observations occur in different
 categories. It is not surprising to have this probabil-
 ity tend to 1.0 for both the conditional and marginal
 distributions as finer measurement is used, in which
 case C-* 0. In addition, the dispersion functions for
 C and H are invariant to the ordering of response
 categories, and alternative dispersion measures may
 be more appropriate when the categories are ordered.
 In the next section I give an adaptation of the R2
 measure for regression models that is often better
 suited than C or H for ordinal response variables,
 especially when the response categorization is rather
 arbitrary.

 2. A REDUCTION IN VARIANCE MEASURE

 Suppose now that the response variable Y is ordi-
 nal. If one can assume an underlying continuous dis-
 tribution, then it may be reasonable to use a variance
 expression in the proportional reduction in disper-
 sion measure. This is especially appealing for the
 many log-linear models for ordinal variables that re-
 quire the assignment of scores to the levels of Y (e.g.,
 see Agresti 1984, chap. 5).

 Let {vj} be scores that satisfy v1 < v2 < < V,,

 TECHNOMETRICS, MAY 1986, VOL. 28, NO. 2

 let i2=E jvjji, and let fi(a) = Zj vj j(a). Let Ya
 denote the score on the ordinal response for the ath
 observation in the sample; that is, Ya = Vj if the ath
 observation falls in the jth response category. Then
 letting

 D(Ya) = (Ya -/2)2, D(Ya | Xa) = (Ya - (a))2,

 we obtain the proportional reduction in variance mea-
 sure

 (2.1)
 E (Y - f)2 - E (y - f ))2
 ^ a a

 ( Ya- i)2
 a

 The value r7 = 0 occurs if fi,,a = f for a = 1, ..., n.
 This happens if fj(a) = ij for all a and j, but it can
 occur for other {7j(a)} as well. Many models for ordi-
 nal variables imply, however, that levels of X are
 stochastically ordered with respect to Y and that the
 { j} equal the sample response proportions. For such
 models, r = 0 is equivalent to {27j(a) = ftj}. The value
 q = 1 is equivalent to Ya = /(a) for each observation.

 We now consider properties of r in detail for the
 case in which the explanatory variables are categori-
 cal. The measure can then be expressed as

 E (vj - i)2p+j
 4= J

 ZE(vi
 iij

 ai)2pij
 , (2.2)

 L (vi - P,+
 j

 where ai = Z- vj rij/nii+. Let Mi = Ej vjpij/pi+ and
 let M = >j vjp+j. For any model that satisfies {gi =
 Mi},

 4 = Z (fi - i2)2pi+ / (v - 2)2p+. (2.3)

 In this case 47 is simply the ratio of the variation
 "between" levels of X to the "total" variation. Hence
 it is analogous to the correlation ratio that is used
 for continuous response variables, where the mean of
 the response variable is directly modeled. Like C and
 H, r then must fall in the range [0, 1]. For case (2.3),
 r cannot decrease as the set of explanatory variables
 is expanded, since the sum of squares "within" levels
 of X cannot increase.

 For a given contingency table and a given set of
 scores, a certain class of models gives the maximum
 value for (2.2). For models (such as hierarchical log-
 linear models) that satisfy ft+j = p+j for all j, ai and
 Lj (j _ fi)2p+j are constant, so r achieves its maxi-
 mum value when i Ej (vj - i)2pij is minimized.
 For each i, j (vj - fii)2pij/pi+ is minimized for 2fi =
 >j vjpij/Pi+. Hence the maximum r is achieved for
 any model that satisfies {fii = Mi}. Moreover, fi = M
 when {l +j = p+j}, so the maximum value for (2.2) is

 Z (Mi- M)2pi+ / (vj- M)2p+j.
 i j

 (2.4)

 2^ -
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 Table 1. Cross -Classification of Spin Speed and Mask
 Dimension With Size of Contact Window in

 Fabrication of 3.5- pm CMOS Circuits

 Window Size

 Mask Spin
 Dimension Speed I II III IV V

 1 1 30 0 0 0 0

 1 2 10 3 3 7 2

 1 3 6 4 6 12 0

 2 1 17 5 6 2 0

 2 2 7 4 7 9 3
 2 3 6 0 1 3 9

 Source: Based on table XII in Phadke et al. (1983), ignoring missing data.

 The measure (2.4) was proposed for the observed
 data by Anderson and Landis (1982).

 Of course, the maximum value (2.4) for qr for a
 given table is achieved when the saturated model is
 fitted. The maximum likelihood fit for the log-linear

 model that has an interaction term of the form Tivj
 between X and Y (plus all of the corresponding
 lower-order relatives) has df = (s- 1)(r - 2), and it
 also satisfies {/ii = Mi}. For instance, when there is a
 single explanatory variable X, Goodman's (1979)
 "row effects" model

 log riij = +A + xr + j ivj (2.5)
 satisfies the likelihood equations {ni+ = Pi+},
 {If+j = p+j}, and {3j vj uj = Ej vjpij}.

 Another class of models for which rj is particularly
 well suited is the one consisting of models for the
 mean of an ordinal variable having assigned response
 scores. The weighted least squares (WLS) solution for
 this class is quite simple and was presented by Bhap-
 kar (1968); Grizzle, Starmer, and Koch (1969); and
 Williams and Grizzle (1972). When r > 2, the WLS
 solution for these models does not produce cell prob-
 ability estimates {7i}, but it does yield predicted
 means {/i}. Hence r7 can be calculated for these
 models, whereas C and H cannot. Moreover, the cu-
 mulative logit and probit models discussed by Mc-
 Cullagh (1980) can be regarded as mean response
 models for underlying logistic and normal response
 distributions (see Agresti 1984, pp. 153-154).

 I illustrate r using Table 1, which is based on an
 experiment described in Phadke, Kackar, Speeney,
 and Greico (1983) for analyzing the effects of several
 variables on the process for forming contact windows
 in 3.5-,um complementary metal-oxide semiconductor
 (CMOS) circuits. Table 1 gives the 3 x 2 x 5 cross-
 classification of two of the factors, spin speed and
 mask dimension, with the response variable, window
 size. The categories for window size are ordered, with
 the following description (in micrometers): I-
 window not open or not printed, II-(0, 2.25), III-
 [2.25, 2.75), IV-[2.75, 3.25], V-(3.25, oo). To de-
 scribe location effects of these factors on window size,

 I used the row effects model (2.5) with scores v1 =
 .000, v2 = 1.125, v3 = 2.500, V4 = 3.000, V5 = 5.000
 for the response categories. In fitting this model to
 the entire 3 x 2 x 5 table, I adjusted the table by
 adding 1/r = .2 to each cell so that maximum likeli-
 hood (ML) estimates {iij} exist. For the 3 x 5 mar-
 ginal cross-classification of spin speed with window
 size, the likelihood-ratio goodness-of-fit chi-squared
 statistic equals 3.72 based on residual df = 6, and it
 has 21 = .444, I2 = 1.925, i3 = 2.383, and ir = .257.
 Thus there is about a one-fourth reduction in vari-

 ation for this factor. For the 2 x 5 marginal cross-
 classification of mask dimension with window size,
 the model has a chi-squared statistic of 6.18 based on
 df = 3, and it gives /i~ = 1.173, fi2 = 1.862, and rj =
 .043. The reduction in variance is much less than

 with spin speed. When model (2.5) is applied to the
 6 x 5 cross-classification for the interaction of both

 factors simultaneously with window size, qr = .291.
 These rj values are identical to the ones obtained for
 the actual data (i.e., for the saturated model applied
 to the 3 x 5 and 2 x 5 marginal tables and then to
 the adjusted 3 x 2 x 5 table). A simpler row effects
 model for the 3 x 2 x 5 table that has main effects

 but no interaction in the effects of spin speed and
 mask dimension on window size gives r = .275.

 3. DEPENDENCE OF MEASURES ON
 RESPONSE CATEGORIES

 When there are only r = 2 response categories, it is
 easily seen that rj and C are identical for the satu-
 rated model. The measures tend to be quite different,
 however, for large values of r. For instance, suppose
 that at each level of X there is an underlying continu-
 ous distribution for Y, and consider a sequence of
 categorizations of the response with r- oo in such a

 way that maxij Tj(i) -*O. Then the concentration
 measure converges to zero, regardless of how the
 conditional distributions compare to the marginal
 distribution of Y. The entropy measure also tends to
 be small for large values of r. For instance, suppose
 {7ri = l/r} and suppose that each conditional distri-
 bution has t probabilities equal to l/t and the re-
 maining ones equal to 0. Then H = 1-(log t)/(log
 r); and if r and t--, oc with fixed f= t/r > 0, we
 obtain H- 0. For the joint (X, Y) distribution,
 denote the conditional variance by 2lx and the mar-
 ginal variance of Y by aT. If the cutpoints for each
 categorization are evenly spaced and if equal-interval
 scores are assigned to the responses, then the popu-
 lation value tr of (2.1) converges to the correlation
 ratio (a2 - Ea2(x)/a2 for the underlying distribution.

 The dependence of C and H on the response cat-
 egorization can be illustrated using Table 1. The
 values of the measures for the adjusted sample counts
 in that 6 x 5 table are C = .178, H = .199, and r =

 .291. If the table is collapsed to a 6 x 2 table by

 TECHNOMETRiCS, MAY 1986, VOL. 28, NO. 2
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 Table 2. Measures of Association Computed for 2 x 2 x r Tables, With Underlying Trivariate Normal Distribution

 r

 Measure Px,y Px2y 2 3 4 5 10

 C .4 .0 .069 .043 .027 .019 .009
 .4 .4 .137 .090 .059 .041 .019

 .8 .0 .348 .208 .126 .092 .043
 .8 .4 .417 .278 .181 .135 .063

 H .4 .0 .050 .039 .035 .032 .024
 .4 .4 .104 .082 .073 .068 .050

 .8 .0 .268 .207 .177 .161 .117
 .8 .4 .349 .276 .238 .218 .161

 Qr .4 .0 .069 .084 .092 .095 .100
 .4 .4 .137 .168 .184 .191 .200
 .8 .0 .348 .402 .411 .404 .417
 .8 .4 .417 .486 .503 .499 .518

 combining responses II-V, we obtain C = .297,
 H = .252, and rj = .297.

 Table 2 also illustrates the behavior of the C, H,
 and q measures in terms of the categorization of the
 response. The three measures were calculated for a
 set (Xl, X2, Y) of continuous variables categorized
 in tables of sizes 2 x 2 x r with r = 2, 3, 4, 5, 10. (For
 the formulas in Sections 1 and 2, this is treated as a
 4 x r table). The cell proportions {T7ijk} corresponded
 to an underlying trivariate normal distribution with

 correlations Px,x2 = 0 and (a) Px,y = .4, Px2y = 0; (b)
 PX,y = .4, Px2y = .4; (c) Pxy = .8, Px2y = .0; and (d)
 PxIr = .8, Px2y = .4. The cut points for forming the
 tables were chosen at the means for the marginal
 distributions of X1 and X2. For the marginal N(Muy,
 a2) distribution of Y, they were chosen at /uy for
 r = 2, at fy ? .4ay for r = 3, at #uy and fiy ? .8oy for
 r = 4, at juy + .4cy and My ? 1.2ay for r = 5, and at
 M/y, Mly ? .4oy, #py ? .8ay, #ry ? 1.27y, iiy ? 1.67y for
 r = 10. The measure values reported in the table
 were computed for the saturated model. Hence for
 these cases the qr measure is equivalent to the R2
 measure of Anderson and Landis (1982).

 As r increases, the concentration measure de-
 creases dramatically from its initial value toward its
 limiting value of zero. The entropy measure is some-
 what more stable. Its values are also very small, how-
 ever, when r is large, the values at r = 10 being less
 than half the size as when r = 2. For the proportion-
 al reduction in variance measure, the values at r = 10
 are about 25%-45% higher than at r = 2. Like other
 correlation measures, r tends to be attenuated by
 grouping. A Sheppard correction can be made to the
 denominator variance to reduce the dependence on r.
 In terms of relative size, however, the variation in
 values is not nearly so great with q as with C and H.
 Most important, meaningful limiting values can be
 obtained with rq but are generally not obtained with
 C or H, as r-- oo. If the X categorization were also
 suitably refined, qr would converge in the limit to
 PxHY + PX2Y

 TECHNOMETRICS, MAY 1986, VOL. 28, NO. 2

 4. ASYMPTOTIC VARIANCES

 Next I present asymptotic variance formulas for rj,
 C, and H, for the important case in which the ex-
 planatory variables are categorical and the model
 satisfies {ri,+ = Pi+}. Let n, ft, and p denote the {7ij},
 {7ij}, and {Pij} expressed in column vector form. Let
 C~, HH, and q denote population values of C, H, and
 f. Assuming the model holds, these have the same
 form as the sample expressions with ft (and p in j)
 replaced by n. Now /n (- ) d N(0, ]), where X
 is given in Bishop, Fienberg, and Holland (1975, p.
 512, eq. 14.8-19) for arbitrary model form and is
 given in Fienberg (1980, p. 170) for the special case of
 log-linear models. For the saturated model, if = p, so

 = diag() - nn'.
 In (1.6) and (1.7), C and H are simple functions of

 f, so they are asymptotically normally distributed by
 the delta method. For C let

 ? =Z Z + - +jj

 - 277kl k + - 2tj
 VI = = 2J - 27r+l

 5kl = 05/kl = -27 + ,

 and let dc = (dll, ..., dsr) with dkl = (5v1 - v6l)/62.
 Then if 0 <C< C 1, n(C-C, - N(0, c2) with
 2 = dc j dc. For H let

 V = Z Zij log(7ri+7r+j/7ij), ( = E 7+j log 7r+j,
 i j i

 Vkl = 1 + log(k + 7r + l/kl), 6'l = 1 + log 7+,1

 and let dH = (d 1l, ..., r) with dkl = (6Vk - Vbkl)/b
 Then if 0 < H , < 1, /n(H - H,) -d N(0, a2) with
 a H = d H . d.-

 The formulas for -2 and aH are special cases of
 formulas given by Haberman (1982). He gave formu-

 136
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 las that also apply if X is partly or wholly continu-
 ous. Our reason for treating the fully categorical case
 separately here is that the formulas are somewhat
 easier to use.

 The measure r in (2.2) is a function of both n and
 p. If the model truly holds, these jointly satisfy

 . ) ( d N(0, V),
 where V is given in Bishop et al. (1975, p. 517, eq.
 14.9-26). Now let

 v = E (vj- fi)2P+j - Z Z (vj- fii)Pij
 j i j

 k = V (i - 2p

 = -2v1(M - fi) + 2(v1 - fik)(Pk+/fk+)(Mk - ik)

 Vkl2 = Ov/OPkl = (vI - fi)2 - (v- k)2

 Skil = a&k/akl = v, -(M - )

 SkI2 = dS/Pki = (VI - P)2.

 Then if dklm = (<' - v65km)/62 (all k, 1, m) and if
 d' = (d11, ..., ds,2), we have /n(r - r) - N(0, ua)
 with (2 = d'Vd.

 If a model is fitted that satisfies M = fi and Mi =
 fii (all i), then V ki = II = 0 in the expression for the
 asymptotic variance of 4. In that case, the value of 4
 matches that for the saturated model, and the asymp-
 totic variance simplifies to a2 = irkl d2 with

 (vI -lk) - (v - )2 (1 - E)
 dkl =

 Z (vj _ p)2 + j

 In particular, this is the asymptotic variance of the
 Anderson and Landis (1982) R2 measure.

 The asymptotic standard errors can be estimated

 by substituting the model estimates {7rij} for {7rj}.
 For instance, the estimated standard error of 4 =
 .291 for the row effects model fitted to Table 1 is
 n// = .683/(162)2 = .054. An approximate 95%
 confidence interval for rj is .291 + 1.96(.054), or (.186,
 .396). Similarly, the estimated standard error of
 C = .139 is 6c/ /n= .026, and the estimated stan-
 dard error of H = .139 is 6nH//I = .027.

 In describing the R2-type measures in Sections 1
 and 2 and giving their standard errors, I have as-
 sumed full multinomial sampling, since such mea-
 sures are usually of less interest when one variable is
 fixed. If it were more reasonable to assume indepen-
 dent multinomial sampling at each level of X (per-
 haps the case for Table 1), one might also use a fixed
 population distribution for X (rather than the ob-
 served one) in defining the measures. These alter-
 native measures and their standard errors can be for-

 mulated using the methodology discussed in Good-
 man and Kruskal (1972).

 5. CHOICE OF SCORES

 One disadvantage of the r4 measure is the necessity
 of assigning scores to the response categories. It is
 often not obvious how to assign distances between
 categories of an ordinal variable. If 4 is used for a
 model that requires assigning scores to the response
 categories, then normally one would use the same
 scores for q as are used in the model. For the models
 proposed by Goodman (1979), including the row ef-
 fects model (2.5), the simplest descriptions of model
 parameters occur for equal-interval scores. Unless
 the particular classification suggests a more natural
 scoring (e.g., as in Table 1), I suggest these scores as a
 "default" choice. In any case, the researcher should
 try a few "reasonable" choices to determine the de-
 pendence of the value of q on that choice. For the
 adjusted Table 1, for instance, the equal-interval
 scoring also gives q = .291, and another "reasonable"
 choice (0, 2.0, 2.5, 3.0, 3.5) gives q = .304.

 Alternatively, one could use the data to generate
 scores. For instance, one might choose the ridits for
 the marginal distribution of Y as scores; that is,

 vj = + + + P+j-l + +j/2,  j=1,...,r.

 In this case q is a natural summary measure for the
 models for mean ridits discussed by Williams and
 Grizzle (1972) and by Semenya, Koch, Stokes, and
 Forthofer (1983). An advantage of ridit scores is that
 they directly take into account the way the response
 is categorized. For instance, if two adjacent catego-
 ries are combined, then the new ridit score is between
 the original two; the other ridit scores are unaffected.

 As another possibility, one might choose a model
 that contains parameters that can be interpreted as
 scores. In particular, Goodman's (1979) multipli-
 cative row and column effects model can be regarded
 as a generalization of the row effects model in which
 scores are estimated that produce the best fit of that
 model. Goodman (1981) showed that such scores are
 similar in many ways to scores that would be ob-
 tained in a canonical correlation analysis. The
 asymptotic variance given for q in Section 4 must be
 derived separately for cases in which the scores are

 generated by the data, since the {vj} are then random
 rather than fixed. Although it is difficult to make
 general remarks about the effect of the choice of
 scores, in my experience substantive interpretations
 have not depended on that choice.
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