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J. Appl. Prob. 12, 39-46 (1975) 
Printed in Israel 

? Applied Probability Trust 1975 

ON THE EXTINCTION TIMES OF VARYING AND 

RANDOM ENVIRONMENT BRANCHING PROCESSES 

ALAN AGRESTI, Department of Statistics, University of Florida 

Abstract 
Bounds are derived for the probability of extinction by the nth generation for 

a branching process in a varying environment. From these bounds, necessary 
and sufficient conditions are established for such a process to become extinct 
with probability one. The extinction time of a random environment branching 
process in which the environmental random variables are independent but not 
necessarily identically distributed is stochastically bounded by the extinction 
times of two varying environment processes. 
BRANCHING PROCESSES; VARYING ENVIRONMENT; RANDOM ENVIRONMENT; EXTINC- 
TION TIME; PROBABILITY OF EXTINCTION; POISSON OFFSPRING 

1. Introduction 

In this paper we derive bounds on the extinction time distributions of two 
generalizations of the familiar Galton-Watson branching process - a non-homo- 
geneous (varying environment) branching process and a branching process with 
random environment consisting of independent but non-identically distributed 
random variables. These bounds are used to obtain some results on the proba- 
bility of extinction of such processes. 

Suppose that the distribution for the offspring of an individual existing in the 
jth generation of the evolution of a population is represented by the probability 
generating function (p.g.f.) gj(s), j O0. If each individual produces offspring 
independently of the past and present history of the population, then the p.g.f. 
for the population size Z, at the nth generation is 

7n,(s) = [0go(1(.". 
gn-J(s)'.))]zo, 

0 < 
s < 1, 

given the initial size Zo (which without loss of generality we assume equals one). 
A discrete time branching process of this nature has been referred to as a non- 
homogeneous Galton-Watson process, or a branching process with varying en- 
vironment. Jagers (1974) showed that many of the limiting characteristics of the 
Galton-Watson process are retained by the varying environment process. In 
Section 2, we obtain bounds for P(T< n) = n,(0) that depend on {g'(1), g"(1), g'(O), 
0 ? j < n- 1}, where Tis the extinction time of the varying environment process. 
As a direct consequence of these bounds, we show in Theorem 2 that under cer- 
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40 ALAN AGRESTI 

tain conditions the probability of extinction q = 1 if and only if 

So0(flit-g((1))- 
= co00. 

A branching process with random environment is characterized by an environ- 
mental stochastic process {(j, j > O} whose realization determines a sequence 
of generational offspring p.g.f.'s {gj(Cj; s), j 

= 
O}. That is, given C = {Co, 0, 

"1}, the process develops as a varying environment process, with p.g.f. 

s)(; 
s) = [go(Co; ..-; 

gn- ln--1; s)...)-]Zo 
for Z,. Unconditionally, the p.g.f. for Z, is n,(s) = En,(C; s), so that 
P(T < n) = r,(O). Athreya and Karlin (1971) derived several properties of such 
a process under general settings for the environmental process. In Section 3, we 
obtain bounds for the extinction time distribution of some branching processes 
with independent non-identically distributed environmental random variables. 
These bounds correspond to bounding stochastically the extinction time of such 
a process by the extinction times of two varying environment processes. An ex- 
ample is given for the Poisson offspring distribution. 

We begin by considering the varying environment process with fractional 
linear offspring generating functions, which are p.g.f.'s of the form 

b bs 
f(s) = 1 + , 0< 

s= 
1, 1 - c (1 - cs) 

where 0 ? b ? 1, 0 
_ 

c < 1, and b + c < 1. When the offspring p.g.f. for the 
jth generation in a branching process with varying environment is fj(s), j 

- 
0, 

then in,(s) = fo('ofn-1(s)-o') also has the fractional linear form. By composing 
hj(s) = fj'(1)s/[1 + ?f'(1)s/f'(1)] and noting that rn,(s) = 1- ho(. h,_,l(1- s) -), 
it is easily verified that 

[( 

n-1 -1 n-1 

(1.1) n(s) -- 1 - (1 - s) fjj(1) + I I 
ffi(1)/ fil(1) Hf ((1) 

j=o j=o0 i=o 
Hence, 

(1.2) P(T ? n) = 1 - ( f j(1) +I f(1)fj(1) f(1) j=0 j=0 i= 

Results (1.1) and (1.2) are exploited in Sections 2 and 3 in deriving the main re- 
sults of the paper. 

2. Bounds for varying environment processes 

We consider now a varying environment process in which the offspring p.g.f.'s 
are allowed to have a very arbitrary form. A Taylor expansion is used in Lemma 1 
to obtain a lower bound for n,(s), and hence for P(T ? n). For convenience, 
set P,, = g)(1) 
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On the extinction times of varying and random environment branching processes 41 

Lemma 1. For any sequence of p.g.f.'s {gj(s),j > O} satisfying 
g-(1) 

< co, 
j > 0, 

(2.1) 
ir.(s) 

1 - 
(P.(1 

-s))- + (g" (O)g'()P + 1) 
j=O 

O s s<1 and n 1. 

Proof. Let ri,,(s) = gi(gi+(... gn- 1(s)...)), i = 0, ..., n - 1, and let n,n,(s)= s 
Then, 

n(s) = no,n(s) = g0(71 n(s)). 

By Taylor's Theorem, 

1 - rn.(s) 
= 

nr.(1) 
- 

re.(s) 
= go(1) - go(trl,(s)) 

= 
(1t 

- 
rl,n(s))g9 o(1) - 

2(1 
-_r1 "(S))2 g 

) 2 
- go 

where nrl,n(s) <ro(s) < 1. Thus, 

[I- .(s)]-1 = {[1-7,n(s)]g(1)[1 - (1- 
x1',,(s,))g?'ol(?0) 

- 
2g (1) 

(2.2) + [1-ir1,.(s)]go(1) 2[1 -rn(s)]go(1) 

Now 

1-rn(s) = go(1) - go(7rl,n(s)) (1-nI,n(s))go(1), 
or 

1 - 7rn(s) 1 

l-rn.(s) 
= g0(1) 

Thus, from (2.2), 

1 1 g'(1o) 
l-in(s)= [1-nrI,(s)]go(1) 2go(1)2' 

Similarly, by recurrence on the term [1-7i,,(s)]-1, we get 

17 1 
,,12g 1 - n(s) = (1 - s)g(1) .. g (1) o (1)2 

where 

rni+ 1,(s) < r < 1, 
or 

r(s) 1 - 1 s)P g 
j (1)P+ 

1 

since g'('j) > g'(O). 
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42 ALAN AGRESTI 

An upper bound of 1 - [(P(1 -s))-1 + Ij :1 (g;(1)/g)(O)Pj+1)]-1 is ob- 
tained for n,(s) using a similar argument. We shall not use it, though, due to its 
uselessness for n > j if g)(0) = 0. Using (1.1), it is easy to exploit a result 
on f.l.g.f. bounds for a p.g.f. to obtain another upper bound for rn,(s). 

Lemma 2. For any sequence of p.g.f.'s {gj(s),j 
= 

0} satisfying g"(1) < oo, 

j__>0. 
i n-1 

-1 

(2.3) n,(s) < 1- (PD(1 -s))-_ + ) (g 
(1)/g(1)Pi 

+ 1) 
j=o 0 s 

_ 
1 and n ? 1. 

Proof. Agresti (1974) showed that any p.g.f. gi(s) with g"(1) < c, is bounded 
above for 0 ? s ? 1 by the f.l.g.f. f/(s) with fj'(1) = g'(1) and f'(1) = 2g"(1). 
Now g (s) < fj(s), 0 

= 
s ? 1 and j ? 0, and the fact that these are monotone 

increasing functions implies that 

n,(s) = go(... g,-i(s) ... fo(..fn-((s) ..), 0< s < 1 and n ? 1, 

and by (1.1), 

fo("'"f- ln(S)"") 
= 1 - (P.(1-.s))-1 + (gi()/gJ(1)PJ+1) 

j=O 

If g.(1) < 1 all j 
_ 

0, then the lower bounding f.l.g.f.'s derived by Agresti 
(1974) can be used in the same way to obtain a lower bound for n,(s) which is 
better than (2.1). Letting s = 0 in the inequalities on compositions of p.g.f.'s 
in Lemmas 1 and 2, we have relatively simple bounds for the probability of ex- 
tinction by the nth generation for a branching process with varying environment. 

Theorem 1. For a varying environment branching process with offspring 
p.g.f.'s {gj(s), j 0} satisfying g"(1) < x, j 

= 
0, 

1- P1 + X1 (g(O)/g.(1)Pj+ 1) 
(2.4) i=o 

_ 
P(T ? n) < 1- I-P-1 + 

1 
(gj(1)/g(1)P+i)] j = 

-O 

Noting that (i)q = 
lim,_,~P(T 

< n) is the limit of an increasing sequence, 
so that 

inf Pn + 1 2 (gi(0)/gI(1)P+ 1)] = 0. 
n_>O j=o 

implies that q = 1, and that (ii) the upper bound for P(T ? n) is a composition 
of f.l.g.f.'s evaluated at zero, so that q = 1 implies that 

lim P n-+ (gj(1)/gj(l)P+, ) = o, 
n-+ao j=O0 
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On the extinction times of varying and random environment branching processes 43 

we see next that Theorem 1 suggests necessary and sufficient conditions that 

q = 1, under certain assumptions. 

Theorem 2. For a varying environment branching process with offspring 
p.g.f.'s {g%(s), 

j!_O} 
satisfying supji>(g(O)/g'j(1))< oo and infj,,,>(g'(O)/g'(1))> 0 

for some finite no 
- 

0, 

(2.5) q = 1 if and only if Pj+x = co. 
j=o 

As an example, if for some k 2 0, g,+k(l) ? 1 + 1/(n + 1) for n 
_ 

0, (so 
that Pn < cn for some c > 0), then q = 1 under the other conditions on 
the offspring p.g.f.'s in Theorem 2. Such a model might be appropriate for a 
mutant gene which has a selective advantage which is gradually lost. This 
situation was treated by Pollak (1966) for the Poisson offspring case. Also if 

JPo(1-gj(0)) = oo, then q < 1 implies that 
limn-ooP, oo (see Jagers 

(1974)), so that by Theorem 1, 

1 - ,1 (g'(O)/g(1)Pj+ l, ) < q 1 - (g(1)/g)(1)P j=o =0 

3. Some bounds for a random environment process 

Suppose now that {rj, j O0} is a sequence of independent non-identically 
distributed random variables that determines the succession of offspring p.g.f.'s 
{g1(,; s),j > 0} in a branching process with random environment. We shall 
assume, unless otherwise stated, that Zo = 1 and that all expectations used in 
the results stated below exist and are finite. 

For fixed Cj, gj(Cj; s) is a convex function of s for j 0 and 0 ? s ? 1, so 
by Jensen's inequality, 

nn(s) 
= 

En,,(C;s) 
= E[go(Co;gl(Cl ;... 

;gn-l(n-1; s)'"))] 
> Ego(Co; Eg 

l(Cl;'"-; 
gn- l(n- l; s).-.)) 

> ... > Ego(Co; Egl(l; ---; 
Egn-_l(n-_l;s)'")). 

That is, the p.g.f. for Z,, in a branching process with independent non-identically 
distributed environment is bounded below by the composition of the n corres- 
ponding expected offspring p.g.f.'s. Thus, 

(3.1) P(T? n) ? Ego(Co; ...;Egn,,1(,n-1;0) ...), 

so that extinction of the random environment process occurs stochastically faster 
than extinction of the varying environment process with offspring p.g.f.'s 
(Eg i((.;s), j > 0}. Also, applying Theorem 1 to (3.1), 
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44 ALAN AGRESTI 

(n-1 - 
1 n n- 

1 j 

(3.2) P(T? n)> 1 m- ( jmi + + I Eg(Ej;;O)/mi HI m , 
L\j=O j=O 1=0 

where mj = Eg'((i; 1). If Zo = k > 1, the p.g.f. for 
Z. 

is 

E[go(Co; ...ln,- 
,n-1;s).)] -> 

[Ego(o;...glIn- 1;-;s)...)]? = [rn,(s)] 
by Jensen's inequality, and (3.2) can be applied again. 

Let P. = J- gj(j; 1) now. Conditional upon % = {Co, 1, '), 

[ "n-• 1-1 
7r(C; s) < 1 

- 
(P1(1_ s))-1 + 

(gJ•j,;1)/gj(cj,;1)P+t1) 
, n 

- 
1, 

j=O 

by Lemma 2. Thus, again using Jensen's inequality, the unconditional p.g.f. for 

Z, is 

rn,(s) = 
Et(;s) -< 1 E (Pn(1 

s)) -1 + (g(Cj;1)/g,(C; 1)Pj+ 1) 
j=0 

(3.3) 
([ n-1 1 n-1 J-1 1 

=1-i [(i j(1 -s) + (E(gj(j; 1)/g j(;1)')/ 
j = .=o i=0 

where pi = (Egf(Ci; 1)-1)-1. Letting s = 0, 

n-1 1 n-1 j-1- 1 

(3.4) P(T ? n) < 1 - (ijY + 
IfE(gj(j,; 

1)lgj(j; 1)2) *) 
S \j=o j=0\ i= 

Now, comparing (3.4) to (1.2), we see that this random environment process 
becomes extinct stochastically slower than the varying environment process 
composed of f.l.g.f.'s with jth offspring mean ji and jth second derivative at one 

equal to 2 
E(gj(j,; 

1)/g(gj; 1)2) . 
In the i.i.d. case, (3.4) implies that the random environment process becomes 

extinct stochastically slower than the Galton-Watson process with a f.l.g.f. 
and offspring mean t = 

(Eg'•(o; 1)-l)-', and (3.1) implies that the process 
becomes extinct stochastically faster than the Galton-Watson process with p.g.f. 

x1l(s) 
= Ego(Co; s). Thus, simple bounds can be given for the percentiles and mean 

of the time to extinction using inequalities for the Galton-Watson process given 
by Agresti (1974). 

It is easily seen that inequalities (3.2) and (3.4) imply an analogue of Theorem 
2 for the probability of extinction q of a random environment process, for any 
Zo ? 1: If inf>n,,(Egj( y; 1)/Eg.(Cj; 1)) > 0 for some finite no 

-0, 
then 

(3.5) I0 m, = oo implies that q = 1; 
j=0 i=0 

if supjoE(g)t((; 1)/g j((j; 1)2) < o0, then 

This content downloaded from 128.227.62.150 on Mon, 21 Oct 2013 16:01:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


On the extinction times of varying and random environment branching processes 45 

(3.6) q = 1 implies that ( ~i = 0o. 
j=o i=o 

4. An application to Poisson branching processes 

The Poisson p.g.f. e*(s- 1 has been widely used in branching process models 
for biological populations. However, some researchers (e.g., Kojima and Kelleher 

(1962)) have noted that offspring counts often display more variability than 
allowed for in a Poisson model, and have proposed using a negative binomial 

p.g.f. as an alternative. This is the model derived from the assumption that each 
individual produces offspring according to a Poisson distribution, but the mean 
; varies among individuals according to the gamma density [F(f)]-'1A "- 'e- . 
Although the Galton-Watson process has been used most commonly in these 
models, the varying and random environment models would be more appropriate 
in many situations. 

Consider the branching process with random environment in which the off- 

spring distributions are Poisson with means {~A, i ? 0} determined by a sequence 
of independent non-identically distributed gamma variables with parameters 

{ac, Pl, 
i > 0}1. If Zo = 1, this random environment process becomes extinct 

stochastically slower than a varying environment process composed of f.l.g.f.'s 
with means ({y = (EA~1)-X = (fli-l)/a, i > O}, by (3.4). Also, by (3.1) this 

process becomes extinct stochastically faster than the varying environment pro- 
cess with negative binomial p.g.f.'s [1 + (1-s)/1i]- -= Ee'(s-1) and means 

#i/Lxi = 
Eij 

i > 0. 
Now if for all i 

- 
0, 0, is a convex set in which Ci falls with probability 

one, g,(O; s) is a convex function of 0 in 0i, and ESi exists, then by Jensen's 

inequality, 

Ego(Co; Egl(Cl; ... Egn -_in-; s) 
..)) _. 

go(ECo; g(EC,;... ; 
- 
-(E-, _1; 

s) ...)), 

O < s ? 1. In particular, letting gi(A; s) = e'(s- ), the varying environment 

process with negative binomial p.g.f.'s {[1 + (1 -s)/aco]-' = 
Ee'-(s-), 

i 
> 0} 

itself becomes extinct stochastically faster than the varying environment process 
with Poisson p.g.f.'s {e(EAi)(s-1)= e (Pilai)(s- ), i ? 0} . As a special case, we see 
then that the Poisson offspring i.i.d. gamma environment process becomes extinct 
stochastically faster than the negative binomial offspring Galton-Watson process, 
which itself becomes extinct stochastically faster than the familiar Poisson off- 
spring Galton-Watson process. For each process, E(Z, Zo) 

= Zo(fl#)"n. 
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