Two parts

- **Old:** overview of the book *Semiparametric Regression* by Ruppert, Wand, and Carroll (2003)
- **New:** asymptotics of penalized splines
Example 1 (courtesy of Rich Canfield, Nutrition, Cornell)

- blood lead and intelligence measured on children
- **Question:** how do low doses of lead affect IQ?
 - important since doses are decreasing with lead now out of gasoline
- several IQ measurements per child
 - so longitudinal
- nine “confounders”
 - e. g., maternal IQ
 - need to adjust for them
- **effect of lead appears nonlinear**
 - important conclusion
Dose-response curve

Thanks to Rich Canfield for data and estimates
Spinal bone mineral density example

Example II (in Ruppert, Wand, Carroll (2003), *Semiparametric Regression*)

- age and spinal bone mineral density measured on girls and young women
- several measurements on each subject
- increasing but nonlinear curves
Spinal bone mineral density data
What is needed to accommodate these examples

We need a model with

- potentially many variables
- possibility of nonlinear effects
- random subject-specific effects

The model should be one that can be fit with readily available software such as SAS, Splus, or R.
Underlying philosophy

1. minimalist statistics
 - keep it as simple as possible
2. build on classical parametric statistics
3. modular methodology
 - so we can add components to accommodate special features in data sets
Outline of the approach

- Start with linear mixed model
 - allows random subject-specific effects
 - fine for variables that enter linearly
- Expand the basis for those variables that have nonlinear effects
 - we will use a spline basis
 - treat the spline coefficients as random effects to induce empirical Bayes shrinkage = smoothing
- End result
 - linear mixed model from a software perspective, but nonlinear from a modeling perspective
Example: pig weights (random effects)

Example III (from Ruppert, Wand, and Carroll (2003))

(a)

(b)

(weight vs. number of weeks)

(weight vs. number of weeks)
Random intercept model

\[Y_{ij} = (\beta_0 + b_{0i}) + \beta_1 \text{week}_j \]

- \(Y_{ij} \) = weight of \(i \)th pig at the \(j \)th week
- \(\beta_0 \) is the average intercept for pigs
- \(b_{0i} \) is an offset for \(i \)th pig
- So \((\beta_0 + b_{0i}) \) is the intercept for the \(i \)th pig
Are random intercepts enough?

Example III

(a)

(b)

weight

number of weeks

weight

number of weeks

20 40 60 80

20 40 60 80
Random lines model

\[Y_{ij} = (\beta_0 + b_{0i}) + (\beta_1 + b_{1i}) \text{ week}_j \]

- \(\beta_1 \) is the average slope
- \(b_{ii} \) is an adjustment to slope of the \(i \)th pig
- So \((\beta_1 + b_{1i}) \) is the slope for the \(i \)th pig
- \(b_{0i} \) and \(b_{1i} \) seem positively correlated
 - makes sense: faster growing pigs should be larger at the start of data collection
General form of linear mixed model

Model is:

\[Y_i = X_i^T \beta + Z_i^T b + \epsilon_i \]

- \(X_i = (X_{i1}, \ldots, X_{ip}) \) and \(Z_i = (Z_{i1}, \ldots, Z_{iq}) \) are vectors of predictor variables
- \(\beta = (\beta_1, \ldots, \beta_p) \) is a vector of fixed effects
- \(b = (b_1, \ldots, b_q) \) is a vector of random effects
 - \(b \sim MVN(0, \Sigma(\theta)) \)
 - \(\theta \) is a vector of variance components
Estimation in linear mixed models

- β and θ are the parameter vectors
 - estimated by
 - ML (maximum likelihood), or
 - REML (maximum likelihood with degrees of freedom correction)

- b is a vector of random variables
 - predicted by a BLUP (Best linear unbiased predictor)
 - BLUP is shrunk towards zero (mean of b)
 - amount of shrinkage depends on $\hat{\theta}$
Estimation in linear mixed models, cont.

- **Random intercepts example:**

 \[Y_{ij} = (\beta_0 + b_{0i}) + \beta_1 \text{week}_j \]

- **High variability** among the intercepts \(\Rightarrow \) less shrinkage of \(b_{0i} \) towards 0
 - extreme case: intercepts are fixed effects

- **Low variability** among the intercepts \(\Rightarrow \) more shrinkage
 - extreme case: common intercept (another fixed effects model)
Comparison between fixed and random effects modeling

- fixed effects models allow only the two extremes:
 - no shrinkage
 - common intercept
- mixed effects modeling allows all possibilities between these extremes
Splines

- polynomials are excellent for local approximation of functions
- in practice, polynomials are relatively poor at global approximation
- a spline is made by joining polynomials together
 - takes advantage of polynomials strengths without inheriting their weaknesses
- splines have "maximal smoothness"
Piecewise linear spline model

“Positive part” notation:

\[x_+ = x, \text{ if } x > 0 \] (1)
\[= 0, \text{ if } x \leq 0 \] (2)

Linear spline:

\[m(x) = \{ \beta_0 + \beta_1 x \} + \{ b_1 (x - \kappa_1)_+ + \cdots + b_K (x - \kappa_K)_+ \} \]

- \(\kappa_1, \ldots, \kappa_K \) are “knots”
- \(b_1, \ldots, b_K \) are the spline coefficients
Linear “plus” function with $\kappa = 1$
Linear spline

\[m(x) = \beta_0 + \beta_1 x + b_1(x - \kappa_1)_+ + \cdots + b_K(x - \kappa_K)_+ \]

- slope jumps by \(b_k \) at \(\kappa_k, \ k = 1, \ldots, K \)
Fitting LIDAR data with plus functions
Generalization: higher degree splines

\[m(x) = \beta_0 + \beta_1 x + \cdots + \beta_p x^p + b_1 (x - \kappa_1)_+^p + \cdots + b_K (x - \kappa_K)_+^p \]

- \(p \)th derivative jumps by \(p! b_k \) at \(\kappa_k \)
- first \(p - 1 \) derivatives are continuous
LIDAR data: ordinary Least Squares

- Raw Data
- 2 knots
- 3 knots
- 5 knots
- 10 knots
- 20 knots
- 50 knots
- 100 knots

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression

Introduction
Mixed linear models
Univariate splines
Back to examples
Summary

Asymptotic Theory

Framework and summary
0-degree splines
Linear Splines
Work in progress
Summary
Penalized least-squares

- Use matrix notation:

\[m(X_i) = \beta_0 + \beta_1 X_i + \cdots + \beta_p X_i^p + b_1 (X_i - \kappa_1)_+^p + \cdots + b_K (X_i - \kappa_K)_+^p \]

\[= X_i^T \beta_X + B^T (X_i) b \]

- Minimize

\[\sum_{i=1}^{n} \left(Y_i - (X_i^T \beta_X + B^T (X_i) b) \right)^2 + \lambda b^T Db. \]
Penalized least-squares, cont.

- From previous slide: minimize
 \[
 \sum_{i=1}^{n} \left\{ Y_i - (X_i^T \beta X + B^T(X_i)b) \right\}^2 + \lambda b^TDb.
 \]

- \(\lambda b^TDb \) is a penalty that prevents overfitting
- \(D \) is a positive semidefinite matrix
 - so the penalty is non-negative
 - Example:
 \[
 D = I
 \]
- \(\lambda \) controls that amount of penalization
- the choice of \(\lambda \) is crucial
Penalized Least Squares

Penalized Splines, Mixed Models, and Recent Large-Sample Results

David Ruppert

Outline

Semiparametric Regression

Introduction

Mixed linear models

Univariate splines

Back to examples

Summary

Asymptotic Theory

Framework and summary

0-degree splines

Linear Splines

Work in progress

Summary
Selecting λ

To choose λ use:

1. one of several model selection criteria:
 - cross-validation (CV)
 - generalized cross-validation (GCV)
 - AIC
 - C_P

2. ML or REML in mixed model framework
 - convenient because one can add other random effects
 - also can use standard mixed model software
Return to spinal bone mineral density study

\[\text{SBMD}_{i,j} = U_i + m(\text{age}_{i,j}) + \epsilon_{i,j}, \]

\[i = 1, \ldots, m = 230, \quad j = i, \ldots, n_i. \]
Fixed effects

\[
X = \begin{bmatrix}
1 & \text{age}_{11} \\
\vdots & \vdots \\
1 & \text{age}_{1n_1} \\
\vdots & \vdots \\
1 & \text{age}_{m1} \\
\vdots & \vdots \\
1 & \text{age}_{mn_m}
\end{bmatrix}
\]
Random effects

$$Z = \begin{bmatrix} 1 & \cdots & 0 & (age_{11} - \kappa_1)^+ & \cdots & (age_{11} - \kappa_K)^+ \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 1 & \cdots & 0 & (age_{1n_1} - \kappa_1)^+ & \cdots & (age_{1n_1} - \kappa_K)^+ \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & (age_{m1} - \kappa_1)^+ & \cdots & (age_{m1} - \kappa_K)^+ \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 1 & (age_{mn_m} - \kappa_1)^+ & \cdots & (age_{mn_m} - \kappa_K)^+ \end{bmatrix}$$
Random effects

\[
\mathbf{u} = \begin{bmatrix}
U_1 \\
\vdots \\
U_m \\
b_1 \\
\vdots \\
b_K
\end{bmatrix}
\]
Random effects

Variability bars on \(\hat{m} \) and estimated density of \(U_i \)
Modeling the blood lead and IQ data

For the jth measurements on the ith subject:

$$IQ_{ij} = b_i + m(lead_{ij}) + \beta_1 X_{ij}^1 + \cdots + \beta_L X_{ij}^L + \epsilon_{ij}$$

- $m(\cdot)$ is a spline
 - include the population average intercept
- b_i is a random subject-specific intercept
 - $E(b_i) = 0$
 - model assumes parallel curves
- X_{ij}^ℓ is the value of the ℓth confounder, $\ell = 1, \ldots, L$
Summary (overview of semiparametric regression)

- **Semiparametric philosophy**
 - use nonparametric models where needed
 - but only where needed

- LMMs and GLMMs are fantastic tools, but (apparently) totally parametric

- By basis expansion, LMMs and GLMMs become semiparametric

- Low-rank splines eliminate computational bottlenecks

- Smoothing parameters can be estimated as ratios of variance components
Li and Ruppert (2008, *Biometrika*)

- p-degree spline model:

 $$f(x) = \sum_{k=1}^{K+p} b_k B_k(x), \quad x \in (0, 1)$$

- pth degree B-spline basis:

 $$\{B_k : k = 1, \ldots, K + p\}$$

- knots:

 $$\kappa_0 = 0 < \kappa_1 < \ldots < \kappa_K = 1$$
B-splines

0-degree B-splines

Linear B-splines

Quadratic B-splines
Outline of asymptotic theory

1. First: summary
2. Go through the case $p = 0$, $m = 1$, equally-spaced x_i carefully
3. Then do $p = 0$ and $m = 2$
4. Discuss higher order cases and unequally-spaced data
Penalized spline estimators are approximately binned Nadaraya-Watson kernel estimators

Penalized splines are not design-adaptive in the sense of Fan (1992)

The order of the N-W kernel depends solely on m (order of penalty)

- this was surprising to us
- order of kernel is $2m$ in the interior
- order is m at boundaries
The spline degree p does not affect the asymptotic distribution, but

- p determines the type of binning and the minimum rate at which $K \to \infty$
- $p = 0 \implies$ usual binning
- $p = 1 \implies$ linear binning
- a higher value of p means that less knots are needed (because there is less binning bias)
Penalized least-squares

Penalized least-squares minimizes

\[
\sum_{i=1}^{n} \left\{ y_i - \sum_{k=1}^{K+p} \widehat{b}_k B_i(x_i) \right\}^2 + \lambda \sum_{k=m+1}^{K+p} \{ \Delta^m(\widehat{b}_k) \}^2,
\]

\(\Delta b_k = b_k - b_{k-1} \) and \(\Delta^m = \Delta(\Delta^{m-1}) \)

- \(m = 1 \) ⇒ constant functions are unpenalized
- \(m = 2 \) ⇒ linear functions are unpenalized
\begin{align*}
p = 0, \ m = 1
\end{align*}

Assume:

- \(x_1 = 1/n, x_2 = 2/n, \ldots, x_n = 1\)
- \(\kappa_0 = 0, \kappa_1 = 1/K, \kappa_2 = 2/K, \ldots, \kappa_K = 1\)
- \(B_k(x) = I\{\kappa_{k-1} < x \leq \kappa_k\}, 1 \leq k \leq K\) (\(k\)th bin indicator)
- assume that \(n/K := M\) is an integer
- then \(X^T X = MI_K\) where \(I_K\)
Assume further:

- $m = 1$

Then

$$D^T D = \begin{pmatrix}
1 & -1 & 0 & \cdots & 0 & 0 \\
-1 & 2 & -1 & \cdots & 0 & 0 \\
0 & -1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 2 & -1 \\
0 & 0 & 0 & \cdots & -1 & 1
\end{pmatrix},$$
\(p = 0, \ m = 1, \ \text{PLS estimator} \)

The Penalized LS estimator solves:

\[
\Lambda \hat{b} = z = \bar{y}/(1 + 2\lambda) \quad (\bar{y} = \text{bin averages})
\]

where

\[
\Lambda = \begin{pmatrix}
\theta & \eta & 0 & 0 & \cdots & 0 & 0 \\
\eta & 1 & \eta & 0 & \cdots & 0 & 0 \\
0 & \eta & 1 & \eta & \cdots & 0 & 0 \\
0 & 0 & \eta & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & \eta \\
0 & 0 & 0 & 0 & \cdots & \eta & \theta
\end{pmatrix}, \quad \eta = -\frac{\lambda}{1 + 2\lambda}
\]
Let $\rho \in (0, 1)$ be a root of

$$\eta + \rho + \eta \rho^2 = 0.$$

Then

$$\rho = \frac{1 - \sqrt{1 - 4\eta^2}}{-2\eta} = \frac{1 + 2\lambda - \sqrt{1 + 4\lambda}}{2\lambda}.$$

Define

$$T_i = (\rho^{i-1}, \rho^{i-2}, \ldots, \rho, 1, \rho, \rho^2, \ldots, \rho^{K-i})^T.$$

T_i is orthogonal to all columns of Λ except the first, last, and ith (so T_i is the ith row of Λ, except for a geometrically convergent error)
Finite-sample kernel defined by:

\[\hat{f}(x) = \sum_{j=1}^{K} H(x, \bar{x}_j) \bar{y}_i \]

\[\frac{T_i^T}{1 + 2\lambda} = \frac{(\rho^{i-1}, \rho^{i-2}, \ldots, \rho, 1, \rho, \rho^2, \ldots, \rho^{K-i})}{1 + 2\lambda} \]

is the finite-sample kernel (ignoring asymptotically negligible boundary effects).
Three kernels corresponding to first-order penalty

- finite-sample kernel is linear combination of three kernels
 - double exponential kernel centered at \(x \)
 - boundary kernels are \(\exp(-x) \) and \(\exp(x) \)
- weights for the boundary kernels are asymptotically negligible in interior

\(x \) is an “estimation point” (here fixed at 0.4)
Finite-sample kernels, first-order penalty

![Graph showing finite-sample kernels, first-order penalty](image)
Connection with smoothing splines

We get the same equivalent kernels (Silverman, 1985) as for smoothing splines with a penalty on the first derivative.
Finding \hat{b}_i – interior case

- Suppose $i/K \to x \in (0, 1)$ (non-boundary case)
- After some algebra:
 \[
 \hat{b}_i \sim \frac{\sum_{j=1}^{K} \rho|i-j| \bar{y}_j}{\sum_{j=1}^{K} \rho|i-j|}.
 \]
- Note that
 \[
 \hat{f}(x) = \hat{b}_i
 \]
 for x in the ith bin
Equivalence to N-W kernel estimator

- After some more algebra
 \[\rho |i-j| \sim \exp \left\{ -\frac{|x_i - x_j|}{hn^{-1/5}} \right\} \]

- Thus, \(\hat{f}_n \) is asymptotically equivalent to the Nadaraya-Watson estimator with
 - double exponential kernel \(H(x) = (1/2) \exp(-|x|) \)
 - bandwidth \(hn^{-1/5} \)
Nadaraya-Watson kernel estimators

Model:

\[y_i = f(x_i) + \epsilon_i \]

Nadaraya-Watson estimator:

\[
\hat{f}(x) = \frac{\sum_{i=1}^{n} H\{ (x_i - x)/h_n \} y_i}{\sum_{i=1}^{n} H\{ (x_i - x)/h_n \}}
\]

- \(H(\cdot) \) is called the kernel function
- \(h_n \) is the bandwidth
Binned Nadaraya-Watson kernel estimators

Binned Nadaraya-Watson estimator:

- range of the x_i divided into K subintervals (bins)
- $\overline{x_j}$ is average of x_i in ith bin
- $\overline{y_j}$ is average of y_i such that x_i is in the ith bin

$$
\hat{f}(x) = \frac{\sum_{j=1}^{K} H\{(\overline{x_j} - x)/h_n\}\overline{y_j}}{\sum_{j=1}^{K} H\{(\overline{x_i} - x)/h_n\}}
$$
Thus, \(\hat{f}_n \) is asymptotically equivalent to a binned Nadaraya-Watson estimator with

- double exponential kernel \(H(x) = \frac{1}{2} \exp(-|x|) \)
- bandwidth \(hn^{-1/5} \)

Binning bias is negligible if \(K = Cn^\gamma \) for \(\gamma > 2/5 \) and \(C > 0 \)

“negligible” means \(o(n^{-2/5}) \)
Selecting λ to achieve desired bandwidth

To get bandwidth $hn^{-1/5}$ we need λ chosen as

$$\lambda \sim \{(Cn^\gamma)(hn^{-1/5})\}^2 = (\# \text{ knots} \times \text{bandwidth})^2$$
Asymptotic Distribution

For $x \in (0, 1)$, as $n \to \infty$ we have

$$n^{2/5} \{ \hat{f}_n(x) - f(x) \} \Rightarrow N \{ B(x), V(x) \}$$

where

- $B(x) = h^2 f^{(2)}(x)$
- $V(x) = 4^{-1} h^{-1} \sigma^2(x)$
Some folklore

- **Folklore:** The number of knots is not important, provided that it is large enough.
 - **Confirmation:**
 \[K \sim C n^\gamma \text{ with } C > 0 \text{ and } \gamma > 2/5. \] (3)

- **Folklore:** The value of the penalty parameter is crucial.
 - **Confirmation:**
 \[\lambda \sim C^2 h^2 n^{2\gamma - 2/5} = (\# \text{ knots} \times \text{ bandwidth})^2 \] (4)
 for some \(h > 0 \).

- **Folklore:** Modeling bias is small.
 - **Confirmation:** Modeling bias does not appear in asymptotic bias provided (3) and (4) hold.
Order of a kernel and bias

Moments: \(k \)-th moment is \(\int x^k H(x) \, dx \)

Order of kernel: A kernel is of \(k \)-th order if the first non-zero moment is the \(k \)-th

- Non-negative kernel: order is at most 2

Bias: \(\text{bias} = O\{(\text{bandwidth})^k\} \)

Variance:
\[
\text{variance} = O\left(\frac{1}{n \times \text{bandwidth}}\right)
\]

and
\[
\text{optimal RMSE} = O\left(n^{-k/(2k+1)}\right)
\]
2nd order-penalty gives 4th order kernel (in interior)

Now let \(m = 2 \) (2nd order difference penalty)

- Assume:
 - \(K \sim Cn^{\gamma} \) with \(C > 0 \) and \(\gamma > 4/9 \)
 - \(\lambda \sim 4C^4h^4n^{4\gamma-4/9} \sim 4(Khn^{-1/9})^4. \)

Then for any \(x \in (0, 1) \), when \(n \to \infty \), we have

\[
n^{4/9}\{ \hat{f}_n(x) - f(x) \} \Rightarrow N\{B_1(x), V_1(x)\},
\]

where

- \(B_1(x) = (1/24)h^4f^{(4)}(x) \int x^4 T(x) \, dx \)
- \(V_1(x) = h^{-1} \{ \int T^2(x) \, dx \} \sigma^2(x) \)
 - \(T(x) \) is a fourth order kernel
Mathematical approach

Main technical device uses roots of the polynomial

\[w(\xi) = \lambda(1-4\xi+6\xi^2-4\xi^3+\xi^4) + \xi^2 = \lambda(1-\xi)^4 + \xi^2, \quad \lambda > 0 \]

- No real roots and no roots of modulus one
- Roots are: \(r, \text{conj}(r), r^{-1}, \text{conj}(r)^{-1} \) (all distinct)
- Use the conjugate pair with modulus less than one
The asymptotic kernel is a linear combination of

\[\exp(-|x|) \cos(x) \quad \text{and} \quad \exp(-|x|) \sin(|x|) \]

Same equivalent kernel (Silverman, 1985) as for smoothing splines with a penalty on the second derivative.
Finite-sample kernels, second-order penalty
Linear splines need less knots

Assume $m = 1$ (1st-order difference penalty).

- If $p = 1$ (linear), then require
 \[K \sim Cn^\gamma \text{ with } C > 0 \text{ and } \gamma > 1/5 \]

- When p was 0 (piecewise constant), we required
 \[\gamma > 2/5 \]

- Otherwise, results are the same as for 0-degree and linear splines

A similar result holds for $m = 2$.
Conjectures

- **Conjecture**: For x in the interior:

 \[P\text{-spline} \sim \text{N-W estimator with an } 2m\text{-order kernel} \]

 - Recall: m is order of difference penalty
 - Kernel order independent of $p = \text{degree of spline}$
 - Shown to hold for $m = 1, 2$ and $p = 0, 1$

 - $p = 1$ requires less knots than $p = 0$
 - What happens for $p > 1$?
 - **Conjecture**: Still less knots are needed

- Conjectures are nearly proved: Li, Apanosovich, Ruppert (2009)
Unequally spaced X

- Assume $G(x_t) = t/n$ for a smooth G with $g = G'$
- Fit a spline to (Y_t, u_t) with regression function $f \circ G^{-1}$
 - evaluate this estimate at $G(x)$ to estimate $f(x)$
- Equally spaced knots for (Y_t, u_t) implies knots at sample quantiles for (Y_t, x_t)
- Asymptotic bias is
 \[
 h^2 (f \circ G^{-1})^{(2)} \{ G(x) \} = \frac{h^2}{g^2(x)} \left\{ f^{(2)}(x) - \frac{f'(x)g'(x)}{g(x)} \right\}
 \]
- Nadaraya-Watson bias is
 \[
 h^2 \left\{ f^{(2)}(x) + \frac{2f'(x)g'(x)}{g(x)} \right\}
 \]
We use only one of two potential smoothing parameters

Both \(K \) and \(\lambda \) are potential smoothing parameters

- In our asymptotic theory, only \(\lambda \) plays the role of a smoothing parameter
- Could develop a theory where only \(K \) plays this role
 - would be similar to regression spline (\(\lambda = 0 \)) theory
- One could also choose \(K \) and \(\lambda \) so that both have a non-negligible effect
- Our theory mimics actual practice
Summary (asymptotics)

- P-spline estimators \(\approx \) binned N-W kernel estimators
- The number of knots unimportant if above a minimum
- Degree of spline
 - determines minimum convergence rate for number of knots
 - does not affect rate of convergence
- Order of penalty determines
 - order of equivalent kernel
 - convergence rate of estimator
- \(m \)th order penalty \(\iff \) smoothing spline with penalty on \(m \)th difference
Thanks for your attention