Intrinsic Bayes’ procedures as p grows with n

Andrew J. Womack

21 November 2013

Abstract

The intrinsic prior is defined as the prior that is as “close” to the flat prior as possible while providing well-defined Bayes’ factors. In the context of linear models, the Bayes’ factor from intrinsic priors has been shown to be pairwise consistent for any finite true model — even when the number of covariates p increases with the sample size n. However, pairwise consistency is not sufficient for the posterior probability of the true model to converge to 1 asymptotically. In this talk, we develop a family of automatic priors on the space of linear models that provides consistent model selection of a fixed true model when $p \approx n$.