Title: Record Values, Poisson Mixtures, and the Joint Distribution of Counts of Strings in Bernoulli Sequences

Abstract: Let U_1, U_2, U_3, \ldots be iid continuous random variables and Y_1, Y_2, Y_3, \ldots be Bernoulli rv's which indicate the position of the record values in this sequence, that is, $Y_j = 1$ if $U_i < U_j$ for all $i < j$. Let Z_1 be the number of occurrences of consecutive record values in the infinite sequence U_1, U_2, U_3, \ldots, and, more generally, Z_k be the number of occurrences of two record values separated by exactly $k - 1$ non-record values. It is a well known but still quite surprising fact that Z_1, Z_2, Z_3, \ldots are independent Poisson rv's with $EZ_k = 1/k$ for all k. We show how this may be proved by embedding the record sequence in a marked Poisson process. If we have only a finite sequence of trials U_1, U_2, \ldots, U_N, then the record counts Z_1, Z_2, \ldots will no longer be exactly Poisson or exactly independent. But if N is random with an appropriately chosen distribution, we can retain these properties exactly. This also can be proved by embedding in a marked Poisson process. This is joint work with Jayaram Sethuraman and Sunder Sethuraman.