STA6934 Problem 5.22abc Solution by Joseph Powers

(a) Be warned, I'm of the opinion that there are several typos in this problem. Clearly, \(\{X_i\} \) is an iid sequence since, for a fixed value of \(i \), \(X_i \) depends only on \(Z_i \), and \(\{Z_i\} \) is iid. The iidness of the \(Z \)'s also means that the success probability will be constant. Hence, the \(X \)'s really are Bernoulli random variables. Below, let \(\theta \) be the vector \((\zeta, \sigma^2)\). First compute the success probability:

\[
P(X_i = 1 \mid \theta) = P(Z_i > u) = P(z > \frac{u - \zeta}{\sigma}) = \Phi\left(\frac{u - \zeta}{\sigma}\right) = p \tag{1}
\]

(b) Consider \(\{z_i\} \) to be the complete date (since given the \(z \)'s the \(x \)'s are redundant). The computation of the complete data likelihood is then easy, thanks to independent normality.

\[
L_c(\theta \mid z) = \prod_{i=1}^{n} f(Z_i \mid \theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(z_i-\zeta)^2}{2\sigma^2}} \tag{2}
\]

\[
\ln(L_c(\theta \mid z)) = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Z_i - \zeta)^2 \tag{3}
\]

\[
Q(\theta \mid \theta_0, \bar{z}) = \mathbb{E}_{\theta_0}\{\ln L_c(\theta \mid \bar{z}) \mid \theta_0, \bar{z}\} = -\frac{n}{2} \ln(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} \mathbb{E}\{(Z_i - \zeta)^2 \mid \theta_0, \bar{z}\} \tag{4}
\]

(c) Remember that the EM sequence is generated by maximizing the previous expectation. So substitute \(\hat{\zeta}_{(j)} \) and \(\hat{\sigma}^2_{(j)} \) into \(\theta_0 \), and then the MLEs are the conditional expectations given on page 224.