Monte Carlo Statistical Methods
Instructor: Prof. Casella
David Finlay
Assignment 1 # 1.29

(a) Given that the interval is to be minimized by increasing the average height, the shortest interval will contain the modal value. This area is given by:

\[\int_a^b f(x) \, dx = F(b) - F(a) \]

where \(b \) is a function of \('a' \). We need to minimize the range \(R = b(a) - a \).

\[F(b(a)) - F(a) = 1 - \alpha \]

\[\Rightarrow F'(b(a))b'(a) - F'(a) = 0 \]

\[\Rightarrow f(b(a))(1) - f(a) = 0, \text{ since derivative of } R \text{ is 0 at minimum.} \]

So, \(f(b) = f(a) \).

(b) If \(f \) is symmetric, then since \(f(x) = f(-x) \) for all \(x \) and \(f(x) = f(y) \) implies \(x = -y \) or \(y \), then \(f(a) = f(b) \) implies \(a = -b \) or \(b \). But since \(a \) and \(b \) are at opposite ends of the interval then \(a = -b \).

(c) From problem 1.28

(a) \(X/\sigma \sim N(0, \sigma^2) \) and \(1/\sigma^2 \sim \Gamma(1, 2) \)

Let \(w = 1/\sigma^2 \) so \(f(w) = 1/(\Gamma(1)2)w^{1/2}e^{-w/2} = 1/2e^{-w/2} \)

\(\sigma = 1/w^{1/2} \) so \(dw/\sigma = -2/\sigma^3 \)

By transformation \(f_\sigma(\sigma) = 1/\sigma^3 e^{-1/2\sigma^2} \)

So \(\pi(\sigma|x) = \int_0^\infty 1/\sqrt{2\pi\sigma} e^{-x^2/2\sigma^2} \frac{e^{-1/2\sigma^2}}{\sigma^3} d\sigma = \frac{8(\sigma^2 + 1)^{3/2} e^{-(x^2 + 1)/2\sigma^2}}{\sqrt{\pi} \sigma^3} \)

To find 90% highest posterior credible region we simultaneously solve for \(l \) and \(u \):

\(\pi(\sigma = u/x) = \pi(\sigma = l/x) \) and \(\int \pi(\sigma|x) \, d\sigma = 0.9 \) for limits \(l \) and \(u \).

(c)(b) Similarly, \(\pi(\lambda|x) = \int_0^\infty \frac{x!}{\lambda^{x+1}} e^{-2\lambda} d\lambda \)

\[e^{-2\lambda} \frac{x!}{\lambda^{x+1}} \frac{e^{-2\lambda}}{x!} = \frac{e^{-2\lambda} \lambda^{x+1} 2^{x+2}}{(x+1)!} \]

To find 90% highest posterior credible region we solve the simultaneous equations for \(u = u(x) \) and \(l = l(x) \).

\(\pi(\lambda = l/x) = \pi(\lambda = u/x) \) and \(\int \pi(\lambda|x) \, d\lambda = 0.9 \) for limits \(l \) and \(u \).

The integral is equivalent to \(e^{-2l} \sum_{n=0}^x \frac{(2l)^n}{n!} - e^{-2u} \sum_{n=0}^x \frac{(2u)^n}{n!} = 0.9 \)
(c) $\pi(p/x) = \frac{(1/\pi) p^{-1/2} (1-p)^{-1/2} \binom{10 + x + 1}{x} p^{10} (1-p)^{x}}{\int_0^1 (1/\pi) \frac{11 + x}{x} p^{9.5} (1-p)^{x-0.5} dp}

\frac{(x+10)!}{\Gamma(10.5)\Gamma(x+0.5)} p^{9.5} (1-p)^{(x-0.5)}$

The 90% highest posterior credible region is given by solving the simultaneous equations $\pi(p=1/x) = \pi(p=u/x)$ and the integral of $\pi(p/x)$ within the interval 1 to u.