(1). Sarmanov (1966, Soviet Mathematics) proposed the following form for a bivariate distribution:

\[f(x, y) = f_1(x)f_2(y)[1 + \omega g_1(x)g_2(y)], \]

where \(f_i \) are density functions and \(g_i \) are bounded nonconstant functions satisfying

\[1 + \omega g_1(x)g_2(y) > 0 \quad \text{and} \quad \int g_i(t)f_i(t)dt = 0, \quad i = 1, 2. \]

(a) Show that \(f(x, y) \) is a joint density function.
(b) Show that \(f_1(x) \) and \(f_2(y) \) are the marginal distributions
(c) Let \(f_i \) be \(N(0,1) \) and let \(g_i(t) = \sin(t) \).
 i. Show that this is a legitimate joint density.
 ii. Find the conditional density of \(X \) given \(Y \), and graph the function
 iii. Show that \(\text{Cov}(X, Y) = \omega \).
(d) For \(f_i = N(0,1) \), find another function \(g_i(t) \) that gives a legitimate joint density.

(2). From the Book: 4.13, 4.20, 4.26, 4.33, 4.39, 4.41, 4.42, 4.44