These problems are intended as review problems; they are to help you brush up on some of the calculus you may have forgotten. If you are a little rusty, these problems may take you a bit longer than usual to complete, but it will be time well spent because we need these concepts and techniques throughout the course.

(1). Evaluate the following limits

(a) \(\lim_{x \to 2} \frac{2x^2 - 6}{x^2 + 1} \)
(b) \(\lim_{x \to \infty} \frac{x^2 - 2x + 3}{2x^2 + 5x - 1} \)
(c) \(\lim_{x \to 0} x^n \log a, \quad a > 0 \)
(d) \(\lim_{x \to 0} \frac{\log x}{\log(\sin x)} \)

(2). Differentiate

(a) \(5(x^3 - 3x + 4)^6 \)
(b) \(3\tan^2(2x) \)

(3). Sketch to a reasonable degree of accuracy:

(a) \(y = x + |x| \)
(b) \(y = (1 - x^2)^2 \)

Be sure all extrema are clearly indicated

(4). Integrate:

(a) \(\int_0^1 (1 - x)^n dx, \quad n > -1 \)
(b) \(\int_{\pi/2}^{\pi/6} \sin^3 \theta d\theta \)
(c) \(\int_0^\infty x^2 e^{-x} dx \) (Try integration by parts)

(5). Find the area

(a) between one arc of the curve \(y = A \sin \omega x \) and the \(x \)-axis where \(A \) and \(\omega \) are positive constants;
(b) inside the curve \(y^2 = x^2 - x^4 \);
(c) inside the curve \((x^2 + y^2)^2 = 2a^2xy, a \) constant. (This curve is called a \textit{lemniscate} for reasons totally unknown to me.) Try to draw a picture of it. Note that transforming to polar coordinates will simplify the integration.

(6). For each of the following series, decide if it converges or diverges

(a) \(\sum_{k=1}^{\infty} \frac{1}{k^{2k}} \)
(b) \(\sum_{k=1}^{\infty} \frac{1}{k^{1/3}} \)
(c) \(\sum_{k=2}^{\infty} \frac{1}{k \log k} \)

(7). Sum the following series

(a) \(\sum_{i=1}^{n} i^2 \)
(b) \(\sum_{k=0}^{\infty} p^k, \ |p| < 1 \)
(c) \(\sum_{k=0}^{\infty} kp^{k-1}, \ |p| < 1 \)
(d) \(\sum_{k=0}^{\infty} \frac{a^k}{k!}, \ a \) an arbitrary constant