Problem 1.1

mix <- function(x, e, u1, u2, sigma1, sigma2)
 (e*dnorm(x, mean=u1, sd=sigma1) + (1-e)*dnorm(x, mean=u2, sd=sigma2))
min <- function(x, u1, u2, sigma1, sigma2)
 ((1-pnorm((x-u1)/sigma1))/sigma2*dnorm((x-u2)/sigma2)
 + (1-pnorm((x-u2)/sigma2))/sigma1*dnorm((x-u1/sigma1)))

censplot <- function(e,u1,u2,sigma1,sigma2)
{
 lowpoint=pmin(u1,u2)-3*pmax(sigma1,sigma2)
 uppoint=pmax(u1,u2)+3*pmax(sigma1,sigma2)
 xplot <- seq(from=lowpoint, to=uppoint, length=1000)
 mixxplot <- mix(xplot, e, u1, u2, sigma2, sigma2)
 minxplot <- min(xplot, u1, u2, sigma1, sigma2)
 plot(xplot, mixxplot, xlim=c(lowpoint, uppoint), ylim=c(0,0.8),
 type="l", lty=1, ylab="density", col="blue")
 lines(xplot, minxplot, lty=2, col="red")
 legend(lowpoint, 0.8, c("mixed", "minimum"), lty=c(1,2), col=c("blue", "red"))
 mtext(bquote(paste("u", .(e),
 Normal("", .(u1),
 Normal("", .(u2),
 Normal("", .(sigma1), ""),
 Normal("", .(sigma2), "")))))
}

#library(lattice)
#trellis.device(pdf, file="HW1p1", height=20, width=17)
par(mfrow=c(3,2))
censplot(0.3,1,1,1,1)
censplot(0.3,-1,1,1,1)
censplot(0.3,1,1,2,1)
censplot(0.3,-3,1,3,1)
censplot(0.5,3,1,2,1)
censplot(0.5,-3,1,1,3)
Problem 1.4 In order to find an explicit form of the integral
\[\int_{\omega}^{\infty} \alpha \beta x^{\alpha-1} e^{-\beta x} \, dx, \]
we use the change of variable \(y = x^\alpha \). We have \(dy = \alpha x^{\alpha-1} \, dx \) and the integral becomes
\[\int_{\omega}^{\infty} \alpha \beta y e^{-\beta y} \, dy = e^{-\beta \omega}. \]

Problem 1.7 The density \(f \) of the vector \(Y_n \) is
\[f(y_n, \mu, \sigma) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^n \exp \left(-\frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} \right)^2 \right), \quad \forall y_n \in \mathbb{R}^n, \forall (\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+^* \]
This function is strictly positive and the first and second order partial derivatives with respect to \(\mu \) and \(\sigma \) exist and are positive. The same hypotheses are satisfied for the log-likelihood function
\[\log(L(\mu, \sigma, y_n)) = -n \log \sqrt{2\pi} - n \log \sigma - \frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu}{\sigma} \right)^2 \]
thus we can find the ML estimator of \(\mu \) and \(\sigma^2 \). The gradient of the log-likelihood is
\[\nabla \log (L) = \left\{ \frac{\partial \log(L(\mu, \sigma, y_n))}{\partial \mu}, \frac{\partial \log(L(\mu, \sigma, y_n))}{\partial \sigma} \right\} = \left\{ \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu), -\frac{n}{\sigma} + \frac{\sum_{i=1}^{n} (y_i - \mu)^2}{\sigma^2} \right\} \]
if we equate the gradient to the null vector, \(\nabla \log (L) = 0 \) and solve the resulting system in \(\mu \) and \(\sigma \), we find
\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}, \]
\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 = s^2. \]

Problem 1.13
For \(X \sim \text{We}(\alpha, \beta, \gamma) \), where \(\alpha > 0 \) is the shape parameter, \(\beta > 0 \) is the scale parameter, and \(\gamma \) is the translation parameter, the density is given as:
\[f(x; \alpha, \beta, \gamma) = \frac{\alpha}{\beta} \left(\frac{x - \gamma}{\beta} \right)^{\alpha-1} e^{-\frac{x - \gamma}{\beta}}, \quad \text{for } x \geq \gamma \]
For X_1, \ldots, X_n are iid as $We(\alpha, \beta, \gamma)$, the likelihood function is given as:

$$L(\alpha, \beta, \gamma|x_1, \ldots, x_n) = \prod_{i=1}^{n} f(x_i|\alpha, \beta, \gamma)$$

$$= (\frac{\alpha}{\beta})^n \cdot \prod_{i=1}^{n} (\frac{x_i-r}{\beta})^{\alpha-1} \cdot \exp\{- \sum (\frac{x_i-r}{\beta})^\alpha\}$$

$$l(\alpha, \beta, \gamma|x_1, \ldots, x_n) = \log L(\cdot)$$

$$= n[\log \alpha - \log \beta] + (\alpha - 1) \cdot \sum [\log(x_i-r) - \log\beta] - \sum (\frac{x_i-r}{\beta})^\alpha$$

$$\frac{\partial}{\partial \alpha} l(\cdot) = \frac{n}{\alpha} - n\log\beta + \sum \log(x_i-r) - \sum [\log(\frac{x_i-r}{\beta}) \cdot (\frac{x_i-r}{\beta})^\alpha]$$

$$\frac{\partial}{\partial \beta} l(\cdot) = -\frac{n\alpha}{\beta} + \sum \alpha \beta^{-(\alpha+1)} \cdot (x_i-r)^\alpha$$

$$\frac{\partial}{\partial \gamma} l(\cdot) = (\alpha - 1) \cdot \sum (\frac{-1}{x_i-r}) + \sum \frac{\alpha}{\beta^\alpha} (x_i-r)^{\alpha-1}$$

1. $\gamma = 100, \alpha = 3$

\[n=19, \text{ in this case} \]

$$\frac{\partial}{\partial \beta} l(\cdot) = -\frac{19 \cdot 3}{\beta} + \sum 3(x_i-100)^3 \cdot \beta^{-4}$$

and we get $\hat{\beta} = 125.6846$

Also we could use the \textit{nlm} function in R to solve this problem. \textit{nlm} function carries out a minimization of the function using a Newton-type algorithm. Thus to find the maximum likelihood estimator for the parameter is equivalent to get the value minimizing the negative log-likelihood. The R code and the output is given as below:

```r
> logweib1 <- function (beta)
{ alpha=3; size=19;
 x <- c(143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 265, 304, 216, 244)
-(size*log(alpha)-size*alpha*log(beta)+(alpha-1)*sum(log(x-100))
 -sum(((x-100)/beta)^alpha))
}

> nlm(logweib1,100)
```
As we can see from the above, the two beta values are quite close, hence the fitted model is \textit{Weibull}(3, 125.6845, 100). We will use this method for the following steps.

2. $\gamma = 100$, α unknown;

\[
\log\text{weib2} \leftarrow \text{function} \ (p) \\
\{ \\
\ \ \ \text{size}=19; \\
\ \ \ \ x \leftarrow c(143, 164, 188, 188, 190, 192, 206, 209, 213, 216, \\
\ \ \ \ \ \ \ \ \ \ \ \ \ 220, 227, 230, 234, 246, 265, 304, 216, 244) \\
\ \ \ \ -(\text{size}\times \log(p[1]) - \text{size}\times p[1] \times \log(p[2]) + (p[1]-1) \times \text{sum}(\log(x-100)) \\
\ \ \ \ -\text{sum}(((x-100)/p[2])^p[1]) \\
\} \\
\text{nlm(}\log\text{weib2}, c(3, 125.6845)) \quad # \text{use the result from (a) as the initial value} \\
\]

$minimum$ \\
[1] 94.75059

$estimate$ \\
[1] 3.504232 128.104290

Hence the fitted model is \textit{Weibull}(3.504232, 128.104290, 100).

3. γ and α both unknown;

\[
\log\text{weib3} \leftarrow \text{function} \ (p) \\
\{ \\
\ \ \ \text{size}=19; \\
\ \ \ \ x \leftarrow c(143, 164, 188, 188, 190, 192, 206, 209, 213, 216, \\
\ \ \ \ \ \ \ \ \ \ \ \ \ 220, 227, 230, 234, 246, 265, 304, 216, 244) \\
\ \ \ \ -(\text{size}\times \log(p[1]) - \text{size}\times p[1] \times \log(p[2]) + (p[1]-1) \times \text{sum}(\log(x-p[3]))) \\
\}
\]
> nlm(logweib3,c(3.504232, 128.104290, 100))
use the result from (b) as the initial value
$minimum
[1] 94.59973

$estimate
[1] 2.849366 105.345531 121.425922

Hence the fitted model is $Weibull(2.849366, 105.345531, 121.425922).

Problem 1.22

(a). Since $L(\delta, h(\theta)) \geq 0$ by using Fubini’s theorem, we get

\[r(\pi, \delta) = \int_\Theta \int_X L(\delta, h(\theta)) f(x|\theta) \pi(\theta) dx d\theta \]
\[= \int_X \int_\Theta L(\delta, h(\theta)) f(x|\theta) \pi(\theta) d\theta dx \]
\[= \int_X \int_\Theta L(\delta, h(\theta)) m(x) \pi(\theta|x) d\theta dx \]
\[= \int_X \varphi(\pi, \delta|x) m(x) dx , \]

where m is the marginal distribution of X and \(\varphi(\pi, \delta|x) \) is the posterior average cost.

The estimator that minimizes the integrated risk r is therefore, for each x, the one that minimizes the posterior average cost and it is given by

\[\delta^\pi(x) = \arg \min_\delta \varphi(\pi, \delta|x) . \]

(b). The average posterior loss is given by:

\[\varphi(\pi, \delta|x) = \mathbb{E}^\pi [L(\delta, \theta)|x] \]
\[= \mathbb{E}^\pi [||h(\theta) - \delta||^2|x] \]
\[= \mathbb{E}^\pi [||h(\theta)||^2|x] + \delta^2 - 2 < \delta, \mathbb{E}^\pi [h(\theta)|x] > \]

A simple derivation shows that the minimum is attained for

\[\delta^\pi(x) = \mathbb{E}^\pi [h(\theta)|x] . \]
(c). Take \(m \) to be the posterior median and consider the auxiliary function of \(\theta, s(\theta) \), defined as

\[
s(\theta) = \begin{cases}
-1 & \text{if } h(\theta) < m \\
+1 & \text{if } h(\theta) > m
\end{cases}
\]

Then \(s \) satisfies the propriety

\[
E\pi [s(\theta)|x] = -\int_{-\infty}^{m} \pi(\theta|x)d\theta + \int_{m}^{\infty} \pi(\theta|x)d\theta
\]

\[
= -\mathbb{P}(h(\theta) < m|x) + \mathbb{P}(h(\theta) > m|x) = 0
\]

For \(\delta < m \), we have \(L(\delta, \theta) - L(m, \theta) = |h(\theta) - \delta| - |h(\theta) - m| \) from which it follows that

\[
L(\delta, \theta) - L(m, \theta) = \begin{cases}
\delta - m = (m - \delta)s(\theta) & \text{if } \delta > h(\theta) \\
m - \delta = m - \delta & \text{if } m < \delta \\
2h(\theta) - (\delta + m) > (m - \delta)s(\theta) & \text{if } \delta < h(\theta) < m
\end{cases}
\]

It turns out that \(L(\delta, \theta) - L(m, \theta) > (m - \delta)s(\theta) \) which implies that

\[
E\pi [L(\delta, \theta) - L(m, \theta)|x] > (m - \delta)E\pi [s(\theta)|x] = 0.
\]

This still holds, using similar argument when \(\delta > m \), so the minimum of \(E\pi [L(\delta, \theta)|x] \) is reached at \(\delta = m \).

Problem 1.23

(a). When \(X|\sigma \sim N(0, \sigma^2) \), \(\frac{1}{\sigma^2} \sim Ga(1, 2) \), the posterior distribution is

\[
\pi (\sigma^{-2}, X) \propto f(x|\sigma)\pi(\sigma^{-2})
\]

\[
\propto \frac{1}{\sigma} e^{-\frac{(x^2/2+2)}{\sigma^2}}
\]

\[
= (\sigma^{-2})^{\frac{1}{2}} - 1 e^{-\frac{(x^2/2+2)}{\sigma^2}},
\]

which means that \(1/\sigma^2 \sim Ga(\frac{3}{2}, 2 + x^2/2) \). The marginal distribution is

\[
m(x) = \int f(x|\sigma)\pi(\sigma^{-2})d(\sigma^{-2}) \propto \left(\frac{x^2}{2} + 2\right)^{-\frac{3}{2}},
\]

that is, \(X \sim T(2, 0, 2) \).

(b). When \(X|\lambda \sim P(\lambda) \), \(\lambda \sim Ga(2, 1) \), the posterior distribution is

\[
\pi(\lambda) \propto f(x|\lambda)\pi(\lambda) \propto \lambda^{x+1}e^{-2\lambda}
\]

which means that \(\lambda \sim Ga(x + 2, 2) \). The marginal distribution is

\[
m(x) = \int f(x|\lambda)\pi(\lambda)d\lambda \propto \frac{\Gamma(x + 2)}{\sqrt{\pi}^{x+2}x!} = \frac{(x+1)}{\sqrt{\pi}2^{x+2}}.
\]
Problem 1.24

(a). Let the interval \([a, b]\) satisfy \(\int_a^b f(x)dx = 1 - \alpha\) and \(f(a) = f(b) > 0\). Also let \(x^* \in [a, b]\) be the mode of \(f(x)\). We will show that for any interval \([a', b']\) such that \(b' - a' < b - a\), \(\int_{a'}^{b'} f(x)dx < 1 - \alpha\), thus proving that \([a, b]\) is the shortest interval. WLOG, assume \(a' \leq a\) and split the problem into two cases.

Case 1. Suppose \(b' \leq a\). Then \(a' \leq b' \leq a \leq x\) and
\[
\int_{a'}^{b'} f(x)dx \leq f(b')(b' - a') < f(a)(b - a) \leq \int_a^b f(x)dx = 1 - \alpha.
\]

Case 2. Otherwise, assume \(b' > a\). Then \(b' < b\) and
\[
\int_{a'}^{b'} f(x)dx = \int_a^b f(x)dx + \int_{a'}^a f(x)dx - \int_b^{b'} f(x)dx
\]

Hence we only need to show that \(\int_{a'}^a f(x)dx - \int_b^{b'} f(x)dx < 0\). Note that \(a' \leq a \leq b' \leq b\), which implies \(\int_{a'}^a f(x)dx \leq f(a)(a - a')\) and \(\int_b^{b'} f(x)dx \geq f(b)(b - b')\). Hence
\[
\int_{a'}^a f(x)dx - \int_b^{b'} f(x)dx \leq f(a)(a - a') - f(b)(b - b')
\]
\[
= f(a)(a - a' - b + b')
\]
\[
= f(a)[(b' - a') - (b - a)] < 0.
\]

(b). If \(f\) is strictly monotone on either side of its mode, which we take to be 0, then \(f(x) = f(-x)\) for any \(x \in \mathbb{R}\). If \([a, b]\) is the shortest interval such that \(\int_a^b f(x)dx = 1 - \alpha\), then
\[
f(a) = f(b) = f(-a) = f(-b)\quad \text{where } a < 0 < b.
\]

Now that \(f(a) = f(-b)\) for \(a, -b < 0\) and \(f\) is strictly monotone, \(a = -b\) must hold.

Problem 1.28

(a). If \(X \sim \mathcal{G}(\theta, \beta)\), then
\[
\pi(\theta|x, \beta) \propto \pi(\theta) \times (\beta x)^\theta / \Gamma(\theta)
\]
and a family of functions \(\pi(\theta)\) that are similar to the likelihood is given by
\[
\pi(\theta) \propto \xi^\theta / \Gamma(\theta)\alpha,
\]
where \(\xi > 0\) and \(\alpha > 0\) (in fact, \(\alpha\) could even be restricted to be an integer). This distribution is integrable when \(\alpha > 0\) thanks to the Stirling approximation,
\[
\Gamma(\theta) \approx \theta^{\theta - 1/2} e^{-\theta}.
\]
(b). When $X \sim B(e, 1), \theta \in \mathbb{N}$, we have

$$f(x|\theta) = \frac{(1 - x)^{\theta - 1}}{B(1, \theta)} = \frac{\Gamma(1 + \theta) (1 - x)^{\theta - 1}}{\Gamma(\theta)} = \theta (1 - x)^{\theta - 1}$$

and this suggest using a gamma-like distribution on θ,

$$\pi(\theta) \propto \theta^m e^{-\alpha \theta},$$

where $m \in \mathbb{N}$ and $\alpha > 0$. This function is clearly summable, due to the integrability of the gamma density, and conjugate.