Analysis of Covariance

- Combines linear regression and ANOVA
- Can be used to compare g treatments, after controlling for quantitative factor believed to be related to response (e.g. pre-treatment score)
- Can be used to compare regression equations among g groups (e.g. common slopes and/or intercepts)
- Model: $(X \text{ quantitative, } Z_1,\ldots,Z_{g-1} \text{ dummy variables})$

$$E(Y) = \alpha + \beta X + \beta_1 Z_1 + \cdots + \beta_{g-1} Z_{g-1}$$
Tests for Additive Model

- Relation for group i ($i=1,...,g-1$): $E(Y) = \alpha + \beta X + \beta_i$
- Relation for group g: $E(Y) = \alpha + \beta X$
- H_0: $\beta_1 = ... = \beta_{g-1} = 0$ (Controlling for covariate, no differences among treatments)
Interaction Model

- Regression slopes between Y and X are allowed to vary among groups

\[E(Y) = \alpha + \beta X + \beta_1 Z_1 + \cdots + \beta_{g-1} Z_{g-1} + \gamma_1 XZ_1 + \cdots + \gamma_{g-1} XZ_{g-1} \]

- Group i ($i=1,...,g-1$): $E(Y) = \alpha + \beta X + \beta_i + \gamma_i X = (\alpha + \beta_i) + (\beta + \gamma_i) X$
- Group g: $E(Y) = \alpha + \beta X$
- No interaction means common slopes: $\gamma_1 = \cdots = \gamma_{g-1} = 0$
Inference in ANCOVA

- **Model:** \(E(Y) = \alpha + \beta X + \beta_1 Z_1 + \cdots + \beta_{g-1} Z_{g-1} + \gamma_1 XZ_1 + \cdots + \gamma_{g-1} XZ_{g-1} \)
- **Construct 3 “sets” of independent variables:**
 - \(\{X\} , \{Z_1, Z_2, \ldots, Z_{g-1}\} , \{XZ_1, \ldots, XZ_{g-1}\} \)
- **Fit Complete model, containing all 3 sets.**
 - Obtain \(SSE_C \) (or, equivalently \(R_C^2 \)) and \(df_C \)
- **Fit Reduced, model containing \(\{X\} , \{Z_1, Z_2, \ldots, Z_{g-1}\} \)**
 - Obtain \(SSE_R \) (or, equivalently \(R_R^2 \)) and \(df_R \)
- **\(H_0: \gamma_1 = \cdots = \gamma_{g-1} = 0 \) (No interaction). Test Statistic:**
 \[
 F_{obs} = \begin{bmatrix}
 \frac{SSE_R - SSE_C}{df_R - df_C} \\
 \frac{SSE_C}{df_C}
 \end{bmatrix} = \begin{bmatrix}
 \frac{R_C^2 - R_R^2}{df_R - df_C} \\
 1 - R_C^2
 \end{bmatrix} \]
Inference in ANCOVA

- Test for Group Differences, controlling for covariate
 \[E(Y) = \alpha + \beta X + \beta_1 Z_1 + \cdots + \beta_{g-1} Z_{g-1} \]

- Fit Complete, model containing \{X\} , \{Z_1,Z_2,...,Z_{g-1}\}
 - Obtain \(SSE_C \) (or, equivalently \(R_C^2 \)) and \(df_C \)

- Fit Reduced, model containing \{X\}
 - Obtain \(SSE_R \) (or, equivalently \(R_R^2 \)) and \(df_R \)

- \(H_0: \beta_1=...=\beta_{g-1}=0 \) (No group differences) Test Statistic:
 \[
 F_{obs} = \left[\frac{SSE_R - SSE_C}{df_R - df_C} \right] = \left[\frac{R_C^2 - R_R^2}{1 - R_C^2} \right] \]
Inference in ANCOVA

- Test for Effect of Covariate controlling for qualitative variable
 \[E(Y) = \alpha + \beta X + \beta_1 Z_1 + \cdots + \beta_{g-1} Z_{g-1} \]

- \(H_0 : \beta = 0 \) (No covariate effect) Test Statistic:
 \[t_{obs} = \frac{\hat{b}}{\hat{\sigma}_b} \]
Adjusted Means

• Goal: Compare the g group means, after controlling for the covariate

• Unadjusted Means: $\bar{Y}_1, \ldots, \bar{Y}_g$

• Adjusted Means: $\bar{Y}_1', \ldots, \bar{Y}_g'$ Obtained by evaluating regression equation at $X = \bar{X}$

• Comparing adjusted means (based on regression equation):

$$b_i = \bar{Y}_i' - \bar{Y}_g'$$

$$b_i - b_j = \bar{Y}_i' - \bar{Y}_j'$$
Multiple Comparisons of Adjusted Means

• Comparisons of each group with group g:

$$b_i \pm t_{\alpha/2, N-g-1} \sigma_{b_i} \quad i = 1, \ldots, g-1$$

• Comparisons among the other $g-1$ groups:

$$\left(b_i - b_j\right) \pm t_{\alpha/2, N-g-1} \sqrt{\sigma_{b_i} + \sigma_{b_j} - 2COV(b_i, b_j)}$$

• Variances and covariances are obtained from computer software packages (SPSS, SAS)