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Abstract
The multivariate linear regression model with errors from a scale mixture of Gaussian den-

sities yields a complex likelihood function. Combining this likelihood with any nontrivial prior
distribution leads to a highly intractable posterior density. If a conditionally conjugate prior
is used, then there is a well-known and easy-to-implement data augmentation (DA) algorithm
available for exploring the posterior. Hobert et al. (2018) recently showed that, under an im-
proper conditionally conjugate prior (and weak regularity conditions), the Markov chain that
drives the DA algorithm converges at a geometric rate. Unfortunately, the model studied by
Hobert et al. (2018) can only be used in situations where the X matrix has full column rank.
In this note, analogous convergence rate results are established for a proper conditionally con-
jugate prior. An important advantage of using a proper prior is that, not only is the X matrix
allowed to be column rank deficient, but it can also have more columns than rows, i.e., our
model is applicable in cases where p > n. This is an important extension in the era of big data.

1 Introduction

Let Y1, Y2, . . . , Yn be independent d-dimensional random vectors from the multivariate linear re-
gression model

Yi = βTxi + Σ
1
2 εi , (1)

where xi is a p× 1 vector of known covariates associated with Yi, β is a p× d matrix of unknown
regression coefficients, and Σ is an unknown d × d positive definite scale matrix. The random
vectors ε1, . . . , εn are iid d-dimensional errors from a density taking the form

fh(ε) =

∫
R+

u
d
2

(2π)
d
2

exp
{
− u

2
εT ε
}
h(u) du ,

Key words and phrases. Data augmentation algorithm, Drift condition, Geometric ergodicity, Heavy-tailed distribu-
tion, Scale mixture
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where R+ := (0,∞), and h : R+ → [0,∞) is the density function of some positive random
variable. We shall refer to h as a mixing density. Heavy-tailed error densities can be produced
by choosing h with appropriate behavior near the origin (see, e.g., Andrews and Mallows, 1974;
Fernández and Steel, 2000; West, 1984). Some typical choices for h are the gamma, inverse gamma,
generalized inverse Gaussian, and log-normal densities. However, in principle, h can be taken to be
any density on the positive half-line. We assume throughout that∫ ∞

0
u
d
2h(u) du <∞ ,

and we refer to this as “conditionM.” As we shall see, this condition is required for the existence
of the data augmentation (DA) algorithm.

Denote the n equations in (1) collectively as

Y = Xβ + εΣ
1
2 , (2)

where Y is the n× d matrix whose ith row is Y T
i , X is the n× p matrix whose ith row is xTi , and

ε represents the n× d matrix whose ith row is εTi . Also, let y and yi denote the observed values of
Y and Yi, respectively. The joint density of the data from model (2) is given by

f(y|β,Σ) =

n∏
i=1

[ ∫ ∞
0

u
d
2

(2π)
d
2 |Σ|

1
2

exp
{
− u

2

(
yi − βTxi

)T
Σ−1

(
yi − βTxi

)}
h(u) du

]
.

Consider a Bayesian analysis with a proper conditionally conjugate prior that is defined sequen-
tially as follows: ω(β,Σ) = ω(β|Σ)ω(Σ), where β|Σ ∼ Np,d(θ,A,Σ) and Σ ∼ IWd(ν,Θ). Here,
Np,d and IWd denote the matrix normal and inverse Wishart distributions, respectively, and the as-
sociated densities are defined in the Appendix. The hyperparameters are θ (a p × d matrix), A (a
p × p positive definite matrix), ν > d − 1, and Θ (a d × d positive definite matrix). This prior is
standard in multivariate regression settings, and is often used in conjunction with model (2) (see,
e.g. Broemeling, 1985, Chapter 8). The highly intractable posterior density that results from this
model is, of course, given by

π(β,Σ|y) =
f(y|β,Σ)ω(β,Σ)

m(y)
,

where
m(y) =

∫
Sd

∫
Rp×d

f(y|β,Σ)ω(β,Σ) dβ dΣ ,

and Sd ⊂ R
d(d+1)

2 denotes the space of d × d positive definite matrices. Note that there are no
restrictions on X in our model. In particular, X is allowed to have more columns than rows.

We now introduce the latent data that is used to construct the DA algorithm. Conditional
on (β,Σ), let {(Yi, Zi)}ni=1 be independent pairs such that Yi|Zi, β,Σ ∼ Nd(β

Txi,Σ/Zi), and
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Zi|β,Σ ∼ h. Let f(y, z|β,Σ) denote the joint density of Y and Z := (Z1, . . . , Zn) given (β,Σ).
It’s easy to see that ∫

Rn+
f(y, z|β,Σ) dz = f(y|β,Σ) .

If we now define the so-called complete data posterior density π : Rp×d × Sd × Rn+ → [0,∞) as

π(β,Σ, z|y) =
f(y, z|β,Σ)ω(β,Σ)

m(y)
,

then it’s clear that ∫
Rn+
π(β,Σ, z|y) dz = π(β,Σ|y) ,

which is our target posterior. The DA algorithm simulates a Markov chain, Φ = {(βm,Σm)}∞m=0,
with state space X := Rp×d×Sd, by alternating between draws from π(z|β,Σ, y) and π(β,Σ|z, y).
Two important facts about the conditional density π(z|β,Σ, y): (1) It does not depend on the prior,
and (2) it is a product of n univariate densities. We now describe its form in more detail. As
in Hobert et al. (2018) (HJK&Q), we define a parametric family of univariate density functions
indexed by s ≥ 0 as follows:

ψ(u; s) = b(s)u
d
2 e−

su
2 h(u) ,

where b−1(s) =
∫∞
0 v

d
2 e−

sv
2 h(v) dv. Using this notation, we can see that

π(z|β,Σ, y) =

n∏
i=1

ψ(zi; ri) ,

where ri = (βTxi− yi)TΣ−1(βTxi− yi). We must be able to draw from ψ(·; s) in order to run the
DA algorithm. When h is a density from a standard parametric family, ψ is often standard as well.
For example, when h is gamma, ψ is also gamma, and when h is inverse gamma, ψ is generalized
inverse Gaussian. If ψ is not a standard density, it can often be efficiently sampled using a rejection
sampler with h as the candidate. Because the prior on (β,Σ) is conditionally conjugate, the density
π(β,Σ|z, y) takes the same form as the prior, i.e., π(β|Σ, z, y) is matrix normal, and π(Σ|z, y) is
inverse Wishart.

In order to formally state the DA algorithm, we need to introduce a bit more notation. For
z = (z1, . . . , zn) ∈ Rn+, letQ be an n×n diagonal matrix whose ith diagonal element is z−1i . Also,
define Ω = (XTQ−1X+A−1)−1 and µ = (XTQ−1X+A−1)−1(XTQ−1y+A−1θ). We can now
formally state the DA algorithm. If the current state of the DA Markov chain is (βm,Σm) = (β,Σ),

then we simulate the new state, (βm+1,Σm+1), using the following three-step procedure.

Iteration m+ 1 of the DA algorithm:

1. Draw {Zi}ni=1 independently with Zi ∼ ψ
(
· ;
(
βTxi − yi

)T
Σ−1

(
βTxi − yi

))
, and call the

result z = (z1, . . . , zn).
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2. Draw
Σm+1 ∼ IWd

(
n+ ν,

(
Θ−1 + θTA−1θ + yTQ−1y − µTΩ−1µ

)−1)
.

3. Draw βm+1 ∼ Np,d

(
µ,Ω,Σm+1

)
HJK&Q considered the same likelihood function, but a different prior on (β,Σ). In particular,

they used an improper conditionally conjugate prior that takes the form ω∗(β,Σ) ∝ |Σ|−a ISd(Σ),
where a is a hyperparameter. Taking a = (d + 1)/2 yields the independence Jeffreys prior, which
is a standard default prior for multivariate location scale problems. Let Λ denote the n × (p + d)

matrix (X : y). That is, Λ is the matrix that results when the n× d matrix y is appended to the right
of the n× p matrix X . Under the prior ω∗, the following conditions are necessary for propriety:

(N1) rank(Λ) = p+ d ;

(N2) n > p+ 2d− 2a .

Clearly, (N1) cannot hold unless X has full column rank. This obviously rules out cases in which
p > n.

Not surprisingly, HJK&Q’s DA algorithm is quite similar to ours. Let Ω∗ = (XTQ−1X)−1 and
µ∗ = (XTQ−1X)−1XTQ−1y. If the current state of HJK&Q’s DA Markov chain is (β∗m,Σ

∗
m) =

(β,Σ), then we simulate the new state, (β∗m+1,Σ
∗
m+1), using the following three-step procedure.

Iteration m+ 1 of HJK&Q’s DA algorithm:

1. Draw {Zi}ni=1 independently with Zi ∼ ψ
(
· ;
(
βTxi − yi

)T
Σ−1

(
βTxi − yi

))
, and call the

result z = (z1, . . . , zn).

2. Draw
Σ∗m+1 ∼ IWd

(
n− p+ 2a− d− 1,

(
yTQ−1y − µT∗ Ω−1∗ µ∗

)−1)
.

3. Draw β∗m+1 ∼ Np,d

(
µ∗,Ω∗,Σ

∗
m+1

)
Under conditions (N1) and (N2), this algorithm is well-defined.

2 The Main Result

The Markov transition density (Mtd) of Φ is given by

k(β,Σ|β̃, Σ̃) =

∫
Rn+
π(β,Σ|z, y)π(z|β̃, Σ̃, y) dz .
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It is easy to show that Φ is Harris ergodic (irreducible, aperiodic and positive Harris recurrent),
and that π(β,Σ|y) is the stationary density. The chain Φ is geometrically ergodic if there exist
M : X→ [0,∞) and ρ ∈ [0, 1) such that, for all m ∈ N,∫

Sd

∫
Rp×d

∣∣∣km(β,Σ|β̃, Σ̃)− π(β,Σ|y)
∣∣∣ dβ dΣ ≤M(β̃, Σ̃)ρm ,

where km is the m-step Mtd. The importance of using geometrically ergodic Markov chains in
MCMC has been well-documented (see, e.g. Flegal et al., 2008).

In order to state our main result concerning the convergence rate of Φ, we must introduce several
classes of mixing densities that were defined in HJK&Q. Let Z denote the set of mixing densities
that are zero near the origin, that is, h ∈ Z if there exists δ > 0 such that h(u) = 0 for all u ∈ (0, δ).
Similarly, let P denote the set of mixing densities that are strictly positive near the origin, that is,
h ∈ P if there exists δ > 0 such that h(u) > 0 for all u ∈ (0, δ). If h ∈ P and there exists a c > −1

such that
lim
u→0

h(u)

uc
∈ R+ ,

then we say that h is polynomial near the origin with power c. Finally, if h ∈ P and, for every
c > 0, there exists an ηc > 0 such that the ratio h(u)

uc is strictly increasing in (0, ηc), then we say
that h is faster than polynomial near the origin. HJK&Q demonstrated that every mixing density
that is a member of a standard parametric family is either polynomial near the origin, or faster than
polynomial near the origin. Here is our main result.

Proposition 1. Let h : R+ → [0,∞) be a mixing density that satisfies conditionM. If any one of
the following conditions holds, then the DA Markov chain Φ is geometrically ergodic.

1. h ∈ Z .

2. h is faster than polynomial near the origin.

3. h is polynomial near the origin with power c > n+ν
2 .

Proposition 1 is an extension of the following result.

Theorem 1 (HJK&Q). Assume that (N1) and (N2) hold. Let h : R+ → [0,∞) be a mixing
density that satisfies conditionM. If any one of the following conditions holds, then the posterior
distribution is proper and the DA Markov chain Φ∗ = {(β∗m,Σ∗m)}∞m=0 is geometrically ergodic.

1. h ∈ Z .

2. h is faster than polynomial near the origin.

3. h is polynomial near the origin with power c > n−p+2a−d−1
2 .

We reiterate that HJK&Q’s model cannot be used unless X has full column rank.
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3 Proof of Proposition 1

Recall that the Mtd of Φ is given by

k(β,Σ|β̃, Σ̃) =

∫
Rn+
π(β,Σ|z, y)π(z|β̃, Σ̃, y) dz .

The Mtd of the DA Markov chain studied in HJK&Q takes the form

k∗(β,Σ|β̃, Σ̃) =

∫
Rn+
π∗(β,Σ|z, y)π(z|β̃, Σ̃, y) dz .

Note that π(z|β,Σ, y) appears in both integrands. (Recall that this density does not depend on the
prior.) Because the improper prior is conditionally conjugate, π∗(β,Σ|z, y) has the same form as
π(β,Σ|z, y), i.e., it is the product of a matrix normal and an inverse Wishart. Due to the similarities
between k and k∗, we are able to reuse many of the calculations in HJK&Q’s proof of Theorem 1.

As in HJK&Q, we prove our result by establishing drift and minorization conditions with the
following drift function:

V (β,Σ) =

n∑
i=1

(yi − βTxi)TΣ−1(yi − βTxi) .

For an introduction to this method, see Jones and Hobert (2001). The minorization condition follows
immediately from a calculation in HJK&Q. Indeed, fix l > 0 and define

Bl =
{

(β,Σ) : V (β,Σ) ≤ l
}
.

HJK&Q construct ε ∈ (0, 1) and a density function f̂ : Rn+ → [0,∞) such that, for all (β̃, Σ̃) ∈ Bl,

π(z|β̃, Σ̃, y) ≥ εf̂(z) .

Thus, for all (β̃, Σ̃) ∈ Bl, we have

k
(
β,Σ

∣∣β̃, Σ̃) =

∫
Rn+
π(β,Σ|z, y)π(z|β̃, Σ̃, y) dz ≥ ε

∫
Rn+
π(β,Σ|z, y) f̂(z) dz = εf∗(β,Σ) .

This is the required minorization condition. Now we move on to the drift condition. We must show
that there exists λ ∈ [0, 1) and L <∞ such that∫

X
V (β,Σ)k(β,Σ|β̃, Σ̃) dβ dΣ ≤ λV (β̃, Σ̃) + L ,

for all (β̃, Σ̃) ∈ X. Note that∫
X
V (β,Σ)k(β,Σ|β̃, Σ̃) dβ dΣ

=

∫
Rn+

[ ∫
X
V (β,Σ)π(β,Σ|z, y) dβ dΣ

]
π(z|β̃, Σ̃, y) dz

=

∫
Rn+

[ ∫
Sd

[ ∫
Rp×d

V (β,Σ)π(β|Σ, z, y) dβ

]
π(Σ|z, y) dΣ

]
π(z|β̃, Σ̃, y) dz . (3)
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We attack (3) using an argument similar to one found in Roy and Hobert (2010). The innermost
integral can be expressed as

E

[
n∑
i=1

yTi Σ−1yi − 2

n∑
i=1

xTi βΣ−1yi +

n∑
i=1

xTi βΣ−1βTxi

∣∣∣ Σ, z, y

]
,

where β|Σ, z, y ∼ Np,d

(
µ,Ω,Σ

)
. Standard results for the matrix normal distribution (see, e.g.,

Arnold, 1981, Chapter 17) imply that

E(βΣ−1βT |Σ, z, y) = dΩ + µΣ−1µT .

It follows that∫
Rp×d

V (β,Σ)π(β|Σ, z, y) dβ =

n∑
i=1

yTi Σ−1yi − 2

n∑
i=1

xTi µΣ−1yi +

n∑
i=1

xTi
[
dΩ + µΣ−1µT

]
xi

=
n∑
i=1

(yi − µTxi)TΣ−1(yi − µTxi) + d
n∑
i=1

xTi Ωxi .

Now recall that Σ|z, y ∼ IWd

(
n + ν,

(
Θ−1 + θTA−1θ + yTQ−1y − µTΩ−1µ

)−1). Hence, we
have

E(Σ−1|z, y) = (n+ ν)
(
Θ−1 + θTA−1θ + yTQ−1y − µTΩ−1µ

)−1
.

Therefore,∫
Sd

[ ∫
Rp×d

V (β,Σ)π(β|Σ, z, y) dβ

]
π(Σ|z, y) dΣ

=
n∑
i=1

(yi − µTxi)TE(Σ−1|z, y)(yi − µTxi) + d
n∑
i=1

xTi Ωxi

≤ (n+ ν)

n∑
i=1

(yi − µTxi)T
(
θTA−1θ + yTQ−1y − µTΩ−1µ

)−1
(yi − µTxi) + d

n∑
i=1

xTi Ωxi ,

where we have used the fact that Θ, and hence Θ−1, is positive definite. Note that we were able to
compute the first two conditional expectations exactly. Unfortunately, we are not able to compute
the outer-most expectation in closed form. Instead, we will compute the expectation of a simple
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upper bound. First, observe that

yTQ−1y − µTΩ−1µ+ θTA−1θ

= yTQ−1y + µTΩ−1µ− 2µTΩ−1µ+ θTA−1θ

=

n∑
i=1

ziyiy
T
i + µT (XTQ−1X +A−1)µ− 2µT (XTQ−1y +A−1θ) + θTA−1θ

=
n∑
i=1

ziyiy
T
i + µT

(
n∑
i=1

zixix
T
i

)
µ− 2µT

n∑
i=1

zixiy
T
i + µTA−1µ− 2µTA−1θ + θTA−1θ

=
n∑
i=1

zi(yi − µTxi)(yi − µTxi)T + (µ− θ)TA−1(µ− θ) .

It follows that

(yi − µTxi)T
(
yTQ−1y − µTΩ−1µ+ θTA−1θ

)−1
(yi − µTxi) =

1

zi
(yi − µTxi)T

( n∑
j=1

zj
zi

(yj − µTxj)(yj − µTxj)T +
1

zi
(µ− θ)TA−1(µ− θ)

)−1
(yi − µTxi) .

Now,

1

zi
(yTQ−1y−µTΩ−1µ+θTA−1θ) =

n∑
j=1

zj
zi

(yj−µTxj)(yj−µTxj)T +
1

zi
(µ−θ)TA−1(µ−θ) ,

is positive definite, and

n∑
j=1

zj
zi

(yj − µTxj)(yj − µTxj)T +
1

zi
(µ− θ)TA−1(µ− θ)− (yi − µTxi)(yi − µTxi)T

=
∑
j 6=i

zj
zi

(yj − µTxj)(yj − µTxj)T +
1

zi
(µ− θ)TA−1(µ− θ) ,

is positive semi-definite. It then follows from Lemma 3 in Roy and Hobert (2010) that

(yi − µTxi)T (yTQ−1y − µTΩ−1µ+ θTA−1θ)−1(yi − µTxi) ≤
1

zi
.

Therefore,

(n+ ν)
n∑
i=1

(yi − µTxi)T (yTQ−1y − µTΩ−1µ+ θTA−1θ)−1(yi − µTxi) ≤ (n+ ν)
n∑
i=1

1

zi
.

We now focus on bounding the term d
∑n

i=1 x
T
i Ωxi. Since the matrix A is positive definite,

1

zi
XTQ−1X +

1

zi
A−1 =

n∑
j=1

zj
zi
xjx

T
j +

1

zi
A−1
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is positive definite. Similarly,

1

zi
XTQ−1X +

1

zi
A−1 − xixTi =

∑
j 6=i

zj
zi
xjx

T
j +

1

zi
A−1

is also positive definite. Another application of Lemma 3 from Roy and Hobert (2010) yields

zix
T
i Ωxi = xTi

(
1

zi
XTQ−1X +

1

zi
A−1

)−1
xi = xTi

 n∑
j=1

zj
zi
xjx

T
j +

1

zi
A−1

−1 xi ≤ 1 .

Thus,

d
n∑
i=1

xTi Ωxi ≤ d
n∑
i=1

1

zi
.

Putting all of this together, we have∫
Sd

[ ∫
Rp×d

V (β,Σ)π(β|Σ, z, y) dβ

]
π(Σ|z, y) dΣ ≤ (n+ ν + d)

n∑
i=1

1

zi
,

and hence∫
X
V (β,Σ)k(β,Σ|β̃, Σ̃) dβ dΣ ≤ (n+ ν + d)

∫
Rn+

( n∑
i=1

z−1i

)
π(z|β̃, Σ̃, y) dz

= (n+ ν + d)
n∑
i=1

b(r̃i)

∫ ∞
0

u
d−2
2 e−

r̃iu

2 h(u) du ,

where r̃i = (yi − β̃Txi)T Σ̃−1(yi − β̃Txi). Now, in conjunction with our assumptions about h, the
results in Section 4 of HJK&Q imply the existence of λ ∈ [0, 1

n+ν+d) and L ∈ R such that∫∞
0 u

d−2
2 e−

su
2 h(u)du∫∞

0 u
d
2 e−

su
2 h(u)du

≤ λs+ L

for every s ≥ 0. Therefore, we have∫
X
V (β,Σ)k(β,Σ|β̃, Σ̃) dβ dΣ ≤ (n+ ν + d)

(
λ

n∑
i=1

r̃i + nL

)
= λ(n+ ν + d)V (β̃, Σ̃) + (n+ ν + d)nL

=: λ′V (β̃, Σ̃) + L′ ,

where λ′ = λ(n + ν + d) ∈ [0, 1) and L′ = (n + ν + d)nL ∈ R. Hence, the drift condition has
been established. Since the minorization condition holds for all l > 0, the proof is complete.
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Appendix

A Matrix Normal and Inverse Wishart Densities

Matrix Normal Distribution Suppose Z is an r × c random matrix with density

fZ(z) =
1

(2π)
rc
2 |A|

c
2 |B|

r
2

exp

[
−1

2
tr
{
A−1(z − θ)B−1(z − θ)T

}]
,

where θ is an r × c matrix, and A and B are r × r and c × c positive definite matrices. Then Z is
said to have a matrix normal distribution and we denote this by Z ∼ Nr,c(θ,A,B) (Arnold 1981,
Chapter 17).

Inverse Wishart Distribution SupposeW is an r×r random positive definite matrix with density

fW (w) =
|w|−

ν+r+1
2 exp

{
−1

2 tr
(
Θ−1w−1

)}
2
νr
2 π

r(r−1)
4 |Θ|

ν
2
∏r
i=1 Γ

(
1
2(ν + 1− i)

)ISr(w),

where ν > r − 1 and Θ is an r × r positive definite matrix. Then W is said to have an inverse
Wishart distribution and this is denoted by W ∼ IWr(ν,Θ).
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