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Preface

This manual provides the solutions to the odd numbered problems only. How-
ever, I am sure that it is only a matter of time until the solutions to the even
numbered problems are somewhere on the web.

But—do the problems! The only way to truly understand any subject is
to be able to solve the problems. Use the solutions as a guide and a learning
tool after you have made a serious attempt to solve the problem. If you just
copy the solution you are only fooling yourself.

Most of the calculations are done with R . We have not provided complete
programs (data entry, etc.) but have provided the key R code to generate the
correct anova.

Thanks to the students at Cornell - Stat 604- and at UF - Stat 6209 - for
their interest and questions, and thanks to all of my colleagues and consulting
clients who sometimes (unknowingly) provided examples and data sets.

Many people have contributed to solving these problems, although I alone
am responsible for errors and omissions. Special thanks to Jamie Jarabek,
Mihai Giurcanu, and Ruitao Liu, who proved many solution sets for the prob-
lems.

George Casella
Gainesville, Florida

September 1, 2009
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1

Basics

Essential

Exercise 1.1

Suppose that, in a greenhouse, each table has six pots, each with different
varieties. There are three plants for each pot. The anova is

Source df

Blocks 3
Varieties 5
T × V 15
Within 48

Total 71

The experimental unit is the pot, which is where the treatment is applied.
The plants in the plot are subsamples. Depending on what the experimenter
is willing to assume, the Within error may or may not be available to test the
T × B interaction. See Section 3.5.

Note also that we can remove a sum of squares for Pots (in Blocks) with
20 df, but this is then split into SS(Varieties) and SS(V × B).

Exercise 1.3

(1) The above example is a twoway CRD. We satisfy this exercise if we take
two plants per pot.

(2) We can modify the experiment in Exercise 1.1 to be a CRD in the following
way. Instead of having four tables, we can have one table. If it is a big
table and we cold put all 24 pots in it, then the anova would be
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Source df

Varieties 5
Pots (In Varieties) 18
Within(Plants in Pots) 48

Total 71

where here the test on Varieties is with the 18 df for Pots in Varieties. The
within is wasted.

Exercise 1.5

If all of the resources can be used we run all tanks and fish. Eight tanks per
diet and 6 fish per tank

Source df

Diets 2
Tanks (in Diets) 21
Fish (in Tanks) 120

If all tanks and fish cannot be run, to address (1) we need to have a
reasonable number of fish per tank, and can do with fewer tanks. In contrast,
(2) would want the number of tanks maximized, and the remaining funds to
be spent on fish per tank. Taking a stand, my feeling is that the number of
tanks should be maximized, but try to have at least 2-3 fish per tank.

Exercise 1.7

(a) Equation (1.4) follows directly from the two displays above it, and the fact
that the expectation of the difference is the difference of the expectations.

(b) (i) Since variance is unaffected by a constant,

Var
(

Ȳi· − ¯̄Y
)

= Var
(

Ȳi· − ¯̄Y − (τi − τ̄ )
)

= E
[

(Ȳi· − τi)− ( ¯̄Y − τ̄ )
]2

,

and expanding the square gives the expression.
(ii) From the model, Var(Yij) = σ2. The two expressions follow since these

are means of independent observations.
(iii) Using properties of covariance and the definition of ¯̄Y ,

Cov(Ȳi·,
¯̄Y ) =

1

t

t
∑

i′=1

Cov(Ȳi·, Ȳi′·)

where the fact that
∑

i τi = 0 allows use to change the mean. By
independence all the terms are zero expect when i = i′, which gives
the variance.

(c) Equation (1.6) follows directly from the display above it, and unbiasedness
follows by dividing by the df.
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Exercise 1.9

(a) The cross term is

E ([Y − E(Y |X)][E(Y |X)− E(Y )]) = E {E ([Y − E(Y |X)][E(Y |X)− E(Y )]) |X}

and evaluating the inner expectation gives

[E(Y |X)− E(Y |X)][E(Y |X)− E(Y )] = 0.

(b) Iterate the expectation in the first term to see that it is the variance of
E(Y |X). Iterating the expectation in the second term shows that it is the
expected value of Var(Y |X).

(c) Using the given probability model E(Y |X) = yi· and E(Y ) = y and we
can write

Var(Y ) =
1

rt

t
∑

i=1

r
∑

j=1

(yij − y)2

Var[E(Y |X)] =
1

t

t
∑

i=1

(yi· − y)2

E[Var(Y |X)] =
1

rt

t
∑

i=1

r
∑

j=1

(yij − yi·)
2.

Exercise 1.11

(a) Yes
(b) No
(c) (0, 0, 0, 0, 1,−1)

Exercise 1.13

Contrasts.

(a) The R program is on the web.
(b) The original Helmert contrasts are not uncorrelated because they do not

satsify
∑

i aibi/ri = 0, where the ri are in Example 1.15. The variation in
the example satisfies this condition. Note that there is a typo in the first
printing and the contrasts should be (the middle one is changed)

µ1 µ2 µ3 µ4

1 −8/19 −7/19 −4/19
0 1 −7/11 −4/11
0 0 1 −1

The treatment sum of squares in RehabTime2 can be partitioned with the
R code
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summary(aov(RehabTime~ConditionCode,data=aovdata))

#-------Treatment means - Be careful about the ordering

Rmean<-tapply(RehabTime, ConditionCode, mean)

nmean<-tapply(RehabTime, ConditionCode, length) #observations in each mean

#-------Contrast sums of squares\\

C1<-c(1,-8/19,-7/19,-4/19)\\

C2<-c(0,1,-7/11,-4/11)\\

C3<-c(0,0,1,-1)\\

SS1<-(Rmean%*%C1)\^ 2/(sum((C1\^2)/nmean))\\

SS2<-(Rmean%*%C2)\^2/(sum((C2\^2)/nmean))\\

SS3<-(Rmean%*%C3)\^2/(sum((C3\^2)/nmean))\\

print(c(SS1, SS2, SS3, SS1+SS2+SS3))

which produces the R output

Df Sum Sq Mean Sq F value Pr(>F)

ConditionCode 3 830.37 276.79 21.488 1.816e-06 ***

Residuals 20 257.63 12.88

---

467.1158 147.1388 216.1169 830.3714

(c) Multiplication verifies that they are uncorrelated. The three sums of
squares are

577.47929 16.05982 236.83232,

which can be obtained from the same R code as above.
In no situation would I advise and experimenter to use the uncorrelated
contrasts. They are an artifact of the unequal number of observations, and
provide no meaningful inference. The original Helmert contrasts should be
used.

Exercise 1.15

The data for the experiment described in Exercise 1.16 can be found in dataset
FishTissueMass. Using these data, complete the anova table that was started
in the exercise. Note that the data are unbalanced, so orthogonal contrasts
are not uncorrelated.

(a) Here is the R code for the anova and the contrasts.

aovdata <- data.frame(Y,Tissue,hCG)

#----------This gives the anova table----------------

summary(aov(Y~Tissue*hCG,data=aovdata))
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#----------Main Effect Polynomial Contrasts---------------------

Tmean<-tapply(Y,Tissue,mean)

n<-tapply(Y,Tissue,length)

PC<-contr.poly(4,score=1:4) #polynomial contrasts

SS1=(sum(Tmean*PC[,1]))^2/sum(PC[,1]^2/n)

SS2=(sum(Tmean*PC[,2]))^2/sum(PC[,2]^2/n)

SS3=(sum(Tmean*PC[,3]))^2/sum(PC[,3]^2/n)

print(c(SS1, SS2, SS3, SS1+SS2+SS3))

#-----------Cell means and observation numbers_------

aov1<-subset(aovdata,hCG=="N")

mean1<-tapply(aov1[,1],aov1[,2],mean)

n1<-tapply(aov1[,1],aov1[,2],length)

aov2<-subset(aovdata,hCG=="Y")

mean2<-tapply(aov2[,1],aov2[,2],mean)

n2<-tapply(aov2[,1],aov2[,2],length)

#-----------Interaction Polynomial Contrasts-----------------------

SS1=(sum(mean1*PC[,1]-mean2*PC[,1]))^2/(sum(PC[,1]^2/n1)+sum(PC[,1]^2/n2))

SS2=(sum(mean1*PC[,2]-mean2*PC[,2]))^2/(sum(PC[,2]^2/n1)+sum(PC[,2]^2/n2))

SS3=(sum(mean1*PC[,3]-mean2*PC[,3]))^2/(sum(PC[,3]^2/n1)+sum(PC[,3]^2/n2))

print(c(SS1, SS2, SS3, SS1+SS2+SS3))

Which gives the output

Df Sum Sq Mean Sq F value Pr(>F)
Tissue 3 1.67479 0.55826 0.7910 0.5589
hCG 1 0.43426 0.43426 0.6153 0.4767
Tissue:hCG 3 1.49048 0.49683 0.7039 0.5975
Residuals 4 2.82319 0.70580

0.12627 1.54825 0.00027 1.67479
0.33326 0.41810 0.73912 1.49048

The main effect contrasts have equal cell sizes, so there is no problem with
uncorrelated.

(b) It turns out (to my surprise) that with this pattern of unequal n all of the
polynomial contrasts remain uncorrelated, so we don’t need another set.

(c) Again, we want to use the orthogonal contrasts, even if the sum of squares
is not partitioned.

Exercise 1.17

(1) The first randomization is throughout. So for the first experiment, we
choose a variety and a treatment at random, and put them on a plot.
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For the other experiment, we choose a weight class and an age class at
random, and take the measure.

(2) Here the Fertilizer can be applied to a plot, and three levels of Variety are
randomized. Or we choose and age class at random, and measure three
people of different weights.

(3) Fertilizer is applied in one direction, and Varieties are planted in the other.
This is problematic for the other experiment, as the treatments are not
“applied”.

Exercise 1.19

(a) This R statement

summary(aov(Y~Block+Shipping+Storage+Shipping:Storage,data=aovdata))

will produce the “wrong” anova table

Df Sum Sq Mean Sq F value Pr(>F)
Block 2 2483.3 1241.7 9.8014 0.0001935 ***
Shipping 2 156.3 78.2 0.6170 0.5427454
Storage 1 703.2 703.2 5.5509 0.0215459 *
Shipping:Storage 2 3.8 1.9 0.0151 0.9850328
Residuals 64 8107.6 126.7

(b) This R statement

summary(aov(Y~Block*Shipping*Storage),data=aovdata))

will produce an anova table with all of the block × treatment interactions.
The tests have to be done by hand.

(c) This R statement

summary(aov(Y~Block+Shipping+Storage+Shipping:Storage

+Error(Block/Block:Shipping:Storage),data=aovdata))

will produce an anova where the treatment tests are done against the
pooled treatment × block interaction. The output is
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Error: Block
Df Sum Sq Mean Sq

Block 2 2483.3 1241.7

Error: Block:Shipping:Storage
Df Sum Sq Mean Sq F value Pr(>F)

Shipping 2 156.3 78.2 0.1095 0.8974
Storage 1 703.2 703.2 0.9849 0.3444
Shipping:Storage 2 3.8 1.9 0.0027 0.9973
Residuals 10 7139.7 714.0

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 54 967.82 17.92

Probably the best thing to do in this case is to pool the interactions into
one error term with 10 df - the individual errors have too few df.

(d) With 6 Shipments and the same number of crates we have

Anova
Source df

Blocks (Shipments) 5
Shipping Method 2
Storage 1
Shipping × Storage 2
Blocks × Trts 25
Residual 36
Total 71

and we can break the B × T term into its components. This is a much
better design as we now have adequate df for the important tests.
With 3 Shipments and half the number of crates we have

Anova
Source df

Blocks (Shipments) 2
Shipping Method 2
Storage 1
Shipping × Storage 2
Blocks × Trts 10
Residual 18
Total 35

which, as far as the treatment tests, is as good as the original design but
uses half the number of crates.
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Exercise 1.21

(a) The three cases are
a) r = 4, p = 1, s = 1, variance = .3125, power = .812
b) r = 2, p = 1, s = 2, variance = .5625, power = .312
c) r = 4, p = 2, s = 1, variance = .15625, power = .973

If we assume known variances, the power is (ignoring the lower tail)

P

(

Z ≥ 1.645−
√

r/2

σ

)

,

where Z is standard normal and σ is as above. Note that only r appears
in the expression, with both p and s being absorbed into σ.

(b) Clearly the subsampling is useless. Pooling does the best, but it did have
more experimental units. The advice is to replicate the EU as much as
possible, first through r and then through p. Especially in plant and animal
experiments, increasing p may be a plausible alternative.

(c) As the subsampling only replicates σ2
W but either r or p replicates σ2

B+σ2
W ,

the equation follows.

Accompaniment

Exercise 1.23

(a) The likelihood function can be written

1√
2πσ

exp{
∑

ij

[yij − (µ+ τi)]
2}.

Add ±ȳi· inside the square brackets, and the cross term is zero, giving
(1.14).

(b) From (1.14) it is clear that setting ȳi· = µ + τi maximizes the function,
as it minimizes the exponent. Differentiating (with respect to µ+ τi) will
give the same results, but then the second derivative needs to be checked.

(c) Starting from ȳi· = µ+ τi, add over i to get this.

Exercise 1.25

(a) As the contrasts are written
Helmert: The first contrast tests the difference of two treatments, and
the second contrasts the average of these two against a third treat-
ment.
Step: The first contrast tests the average of three against the remaining
treatment, and the second compares two sets of averages.
Basin: The first basin contrast is a linear trend, and the others com-
pare the average of treatments to a linear trend.
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(b) The Helmert contrasts are orthogonal, step and basin are not.
(c) H2 is most appropriate for the threshold dose problem
(d) Although Ruberg (1989) presents these three hypoteses and the three sets

of contrasts, the correspondence is not obvious. We could use the Helmert
contrasts for H1 and the step contrasts for H2. The basin contrasts do not
seem to cover H3, however.

(e) The data of Ruberg has 12 observations per group. His Table 4 gives the
calculations. (Note that the examples in this Exercise were based on four
groups, but the example has five groups.) The Ruberg table is

t-statistics for contrasts
p Helmert Step Basin

1 -.06 1.52 1.43
2 .42 2.55 3.64
3 1.65 3.36 3.74
4 3.36 3.36 3.36

Critical 2.294 2.268 2.225
Value

The critical values are the Ruberg experimentwise values.





2

Completely Randomized Designs

Essential

Exercise 2.1

Referring to Example 2.1

(a) A temperature is selected at random and set, and a random forage sample
is assigned to the temperature. Note that the temperature needs to be re-
set after every sample. If more than one sample is run for one temperature
setting, then the temperature becomes a block.

(b) Complete the anova table:

Source df SS MS F
Temp 3 5.86 1.95 12.95
Within 12 1.81 .151
Total 15 7.67

The p-value is 0.00045.
(c) Contrast (i) tests whether the effect of 17o is the same as the average of

the other three. Contrast (ii) tests for a linear trend in temperature.
(d) We can use the Helmert contrasts. Two orthogonal ones are (0,−2, 1, 1)

and (0, 0, 1,−1).
(e) The data are in IVD. The t statistic is 5.142 with two-sided p-value .0002.

The contrast sum of squares is 4.005, so the percent of variance not ex-
plained is (5.86− 4.005)/5.86 ≈ 32%.

Exercise 2.3

(a) The low temperatures have a similar effect, as do the high temperatures.
However, the is a significant difference between the effect of the low and
high temperatures.

(b) The anova table is in Exercise 2.1
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(i) The three contrast sums of squares are

0.211250, 0.005000. 5.6406255.856875

which sum to 5.86.

(ii)
t-statistics -1.1808 -0.1817 6.1018

p-value (two-sided) 0.2605 0.8589 5.3216e-05
(iii) The average of the squares of the t statistics is the F -statistic.

(c) The three contrast sums of squares are

Linear Quadratic Cubic
4.005125 0.140625 1.711125

with

t-statistics 5.1416 0.9634 -3.3607
p-value (two-sided) 0.0002 0.3543 0.0057

There is clearly a strong linear trend. The significant cubic term seems to
be more of a data artifact - look at a plot of the means.

Exercise 2.5

(a) This is essentially Exercise 1.23, where the likelihood estimates are de-
rived. They are the same as the least squares estimates.

Var(τ̂i) = Var(ȳi· − ¯̄y)

= Var(ȳi·)− 2Cov(ȳi·, ¯̄y) + Var(¯̄y),

where Var(ȳi·) = σ2/r and Var(¯̄y) = σ2/(rt). The covariance is

Cov(ȳi·, ¯̄y) =
1

t

t
∑

i′=1

E(ȳi·ȳi′·)− µ(µ+ τi)

=
1

t

[

t
∑

i′=1

(µ+ τi)(µ+ τi′ ) +
σ2

r

]

− µ(µ+ τi)

Summing over i′ cancels µ(µ+ τi) because the τi′ sum to zero. Gathering
terms gives

Var(τ̂i) =
t− 1

rt
σ2.

By independence, Var(τ̂i − τ̂i′) = 2 t−1
rt σ

2.
(b) We can use the R code

summary(aov(Y~Protein,data=aovdata))

Ymean<-tapply(Y,Protein,mean)

Ymean-mean(Y)
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Df Sum Sq Mean Sq F value Pr(>F)
Protein 2 1228.27 614.14 110.43 1.873e-08
Residuals 12 66.74 5.56

High Low Medium
12.3567 -9.0614 -3.2954

wit variance (2/15) ∗ 5.56 = 0.741.

Exercise 2.7

(a) After reducing to ȳij·, the minimizer is clearly ȳij· = µ+ τi + γj + (τγ)ij .
Display (2.5) follows.

(b) The variance calculation is similar to that in Exercise 2.5. We have

Var(yi·· − ¯̄y) =

(

t− 1

t

)

σ2

tgr

Var(y·j· − ¯̄y) =

(

g − 1

g

)

σ2

tgr

Var(yij· − ¯̄y) = (tg − 1)
σ2

tgr

Cell means:
Sulphur

0 3 6 9
Nitrogen 0 4.5433 4.6400 5.24 5.9133

20 5.7533 7.0467 5.81 6.2967
Variance = (8− 1) ∗ (0.0036)/(24) = 0.00105

Sulphur means

0 3 6 9
5.1483 5.8434 5.5251 6.1051

Variance = ((4 − 1)/4) ∗ (0.0036)/(24) = 0.0001125

Nitrogen means
0 20

5.0842 6.2267
Variance = ((2 − 1)/2) ∗ (0.0036)/(24) = 7.5e− 05

Exercise 2.9

(i) We can use model (2.2) with τ=Tube.
(ii) Anova:



18 2 Completely Randomized Designs

Source df EMS

Tube 2 σ2 + (8/2)
∑

i τ
2
i

Within 21 σ2

Total 23

(iii) Depending on the meaning of “A, B, C” we could use pairwaise differences,
Helmert, or Polynomial. Helmert would be (2,−1,−1) and (0, 1,−1). We
can use the contrast test in the Inference subsection of Section 2.4.

Exercise 2.11

(a) The cross term is zero because the τi are fixed, so the expectation is zero.
Lemma 2.16 is then applied to the last term.

(b) Lemma 2.16 again.
(c) For part (a) this results in changing r to ri. For (b) the Within EMS is

(
∑

i ri − t)σ2. Note the typo in the first printing where the within EMS
should be t(r − 1)σ2.

Exercise 2.13

(a) The contrast coefficients are the linear, quadratic and cubic multiplied by
1 and −1 for the two levels of hCG. For example, for the linear interaction
we have

Tissue
hCG -3 -1 1 3

3 1 -1 3

(b) The contrast SS is calculated using Definition 1.14. Note that the unbal-
ance here does not affect the orthogonality.

Lin Quad Cubic
SS 0.3333 0.4181 0.7391
F 0.4722 0.5924 1.0472
p 0.5298 0.4844 0.3640

(c) For the main effect of tissue:

Lin Quad Cubic
SS 0.1263 1.5482 0.0003
F 0.1789 2.1936 0.0004
p 0.6941 0.2127 0.9853

(d) Although the picture is pretty, there is really not much going on here.
Neither factor, nor any contrast, has a significant effect.
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Exercise 2.15

(a) The six contrasts are obtained by multiplication of each of the three A
contrasts by each of the two B contrasts. For example, (1,−1/2,−1/2)×
(1,−1/3,−1/3,−1/3) gives

A
1 −1/3 −1/3 −1/3 1 0

B −1/2 1/6 1/6 1/6 −1/2 1
−1/2 1/6 1/6 1/6 −1/2 −1

1 −1/3 −1/3 −1/3
0 1 −1/2 −1/2
0 0 1 −1

(b) Again we have six multiplications. Here is (−1, 0, 1)× (−3,−1, 1, 3).

A
3 1 −1 −3 −1 1

B 0 0 0 0 0 −2
−3 −1 1 3 1 1
−3 −1 1 3
1 −1 −1 1
1 −3 3 −1

(c) Denote the cell means by ȳij , i = 1, 3, j = 1, 4. The contrast is

A
ȳ11 (−1/3)ȳ12 (−1/3)ȳ13 (−1/3)ȳ14

B (−1/2)ȳ21 (1/6)ȳ22 (1/6)ȳ23 (1/6)ȳ24
(−1/2)ȳ31 (1/6)ȳ32 (1/6)ȳ33 (1/6)ȳ34

and collapsing the table gives

A

Level 1 Average of
Levels 2-4

B Level 1 ȳ11 (−1/3)(ȳ12 + ȳ13 + ȳ14)
Average of (−1/2)(ȳ21 + ȳ31) (1/6)(ȳ22 + ȳ23 + ȳ24)
Levels 2-3 +(1/6)(ȳ32 + ȳ33 + ȳ34)

showing that we have a contrast in the collapsed means.
(d) The contrast is
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This contrast asks if the piece of the A × B interaction, that looks at the
mean differences of part (c), increases linearly in the levels of C.

Exercise 2.17

Referring to Example 2.13:

(a) The program for the ancova is on the web (Corn.R). The variances are
calculated using (2.18).

(b) and (c). We test the unadjusted means using the MSE from the anova,
which gives the standard error in the table in Example 2.13. For the ancova
means we can pool the standard errors in the table, use them without
pooling (which means we don’t assume equal variances and should get
the df with the Satterthwaite approximation - we won’t do that here) or
we can use the average variance from (2.23), which gives standard error
of the difference as

0.534 =

√

21.318

6

(

1 +
1

3

75.792

117.833

)

where the X sums of squares can be obtained with the R statement
summary(aov(Yield Trt,data=aovdata))

We summarize in the following table

Two-sided t-statistics

(360) (360) (360) (K-24) (K-24) (M-15)
-(K-24) -(M-15) - (M-4) -(M-15) -(M-4) -(M-4)

Unadjusted |10.617−11.733|√
2×.624

2.153 0.189 3.418 1.454 1.964

Mean = 1.265

Adjusted Mean |11.447−12.384|√
2×.255

6.053 1.239 7.365 2.551 4.814

(Pooled) = 1.312

Adjusted Mean |11.447−12.384|
.534 8.096 1.657 9.85 3.412 6.438

(2.23) = 1.755

The pooled error is ((0.496)2 + (0.486)2 + (0.563)2 + (0.469)2)/4 = 0.255.
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The ancova certainly paid off, highlighting the differences from M-15. The
1% two-sided t cutoff with 19 df is 2.86, so the ancova will have more
significant findings than the anova. The simultaneous inference can be
formalized with Bonferroni, FDR, or some other method.

Accompaniment

Exercise 2.19

(a) Expand the square as [(xij − x̄i) − (x̄j − x̄)]2 so the cross term is zero.
Then just multiply out.

(b) Follows directly

Exercise 2.21

(a) Let A be a set of orthogonal contrasts.

∑

A

(

∑

i

ai(ȳi − ¯̄y)

)2

= (ȳ− ¯̄y1)′
(

∑

A
aa′
)

(ȳ− ¯̄y1) = (ȳ− ¯̄y1)′(ȳ− ¯̄y1)

since
∑

A aa′ is the identity matrix (see Section 1.8.2). The result follows.
(b) (i) If all µi = µ,

∑

i aiµi = µ
∑

i ai = 0 by the definition of contrast.
If
∑

i aiµi 6= 0 for some contrast, there is one nonzero term which
implies one nonzero µi, a contradiction.

(ii) This follows directly.
(iii) If any are rejected, clearly the biggest will be rejected. The maxi-

mization follows from Lemma 11.2.7 in Casella and Berger Statistical

Inference, Second Edition 2001. Define bi = ai/(
∑

i a
2
i /ni)

1/2 so we
need to maximize (

∑

i biȳi)
2. Using Cauchy-Schwarz,

(
∑

i

biȳi)
2 = (

∑

i

bi√
ni

√
ni(ȳi − ¯̄y))2

≤
∑

i

b2i
ni

∑

i

ni(ȳi − ¯̄y))2 =
∑

i

ni(ȳi − ¯̄y))2,

since
∑

i b
2
i /ni = 1. Equality is obtained when

bi =
√
ni(ȳi − ¯̄y)/[

∑

i

ni(ȳi − ¯̄y)2]1/2.

Exercise 2.23

(a) The restrictions on the parameters result in

∑

tbcr

(ȳi − ¯̄y)2 =
∑

tbcr

(αi + ε̄i − ¯̄ε)2
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and the result follows from Lemma 2.16. Note a typo in the first printing,
we should have

E(MS(A)) = σ2 +
bcr

(t− 1)(b− 1)

t
∑

i=1

α2
i .

(b) Similar to part (a). There is also a typo here (First Printing)

E(MS(A × B)) = σ2 +
cr

(t− 1)(b− 1)

t
∑

i=1

b
∑

j=1

(αδ)
2

ij .

(c)

Source df EMS

Treatment A t− 1 σ2 + bcr
t−1

∑

i τ
2
i

Treatment B b− 1 σ2 + tcr
g−1

∑

j δ
2
i

Treatment C c− 1 σ2 + tbr
c−1

∑

j γ
2
i

A × B (t− 1)(b− 1) σ2 + cr
(t−1)(b−1)

∑

ij(αδ)
2
ij

A × C (t− 1)(cb− 1) σ2 + br
(t−1)(c−1)

∑

ik(αγ)2ik

B × C (b − 1)(c− 1) σ2 + tr
(b−1)(c−1)

∑

jk(δγ)2jk

A × B × C (t− 1)(b− 1)(c− 1) σ2 + r
(t−1)(b−1)(c−1)

∑

ijk(αδγ)2ijk

Within tbc(r − 1) σ2

(d)

H0 :
∑

j

δ2i = 0 and H0 :
∑

jk

(δγ)2jk = 0.

Exercise 2.25

(a) (aa′)2 = a(a′a)a′ = aa′, since a′a is the identity matrix.
(b) Part (a) is actually not needed. The result follows since

∑

i aiYi/(σ
2
∑

i a
2
i )

1/2

is N(0,1).

Exercise 2.27

This is easiest done with a modification of the matrices B1 −B4 of Technical
Note 3.8.2. Write the Y vector in the order

Y′ = {Y ijk}′

= (Y111, · · · , Y11r, · · · , Yt11, · · · , Yt1r, · · · , Y1g1, · · · , Y1gr , · · · , Ytg1, · · · , Ytbr),
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Define the matrices

B1 =
1

g







It
...
It







tg×t

(It · · · It)t×tg ,

B2 =
1

t











1t×1 0 · · · 0
0 1t×1 · · · 0
...

...
...

...
0 0 · · · 1t×1











tg×g











1′
1×t 0 · · · 0
0 1′

1×t · · · 0
...

...
...

...
0 0 · · · 1′

1×t











g×tg

, B3 =
1

tg
Jtg,

B4 =











11×r 0 · · · 0
0 11×r · · · 0
...

...
...

...
0 0 · · · 11×r











tg×tgr

.

The sums of squares are all of the form Y′AY using the matrices

A1 = (1/r)B′
4(B1 −B3)(1/r)B4 (for SST)

A2 = (1/r)B′
4(B2 −B3)(1/r)B4 (for SSG)

A3 = (1/r)B′
4(I −B1 −B2 +B3)(1/r)B4 (for SS T × G),

and take A4 = Block Diagonal(I − (1/r)J), where there are tg replications
of I − (1/r)J , so Y′A4Y is the within SS. Then matrix multiplication shows
that A1 − A4 satisfy Cochran’s Theorem, and the F -tests of Theorem 2.22
follow.

Exercise 2.29

Referring to Section 2.6:

(a) We need to minimize the residual sum of squares
∑

ij [yij−θi−β(xij−x̄)]2,
where θi = µ+τi. Differentiate with respect to θi to get θi = ȳi−β(x̄i−x̄),
and substitute this back into the residual sum of squares, which now
becomes

∑

ij [(yij−ȳi)−β(xij−x̄i)]
2. This is minimized by the LS estimate

given after (2.17), and substitution gives θ̂i = ȳi−β̂(x̄i−x̄), which is clearly
unbiased.

(b) Since Eθ̂i = µ + τi and E
∑

i θ̂i = tµ +
∑

i τi, if
∑

i τi = 0 then Eθ̂i −
(1/t)

∑

i θ̂i = τi, and θ̂i − (1/t)
∑

i θ̂i = yi − ¯̄y − β̂(xi − x̄).
If the ri are unequal, the least squares estimates of θ̂i and β are the same,
but now E

∑

i θ̂i does not produce an unbiased estimate of µ. However,

E
∑

θ̂i = µ
∑

i ri−β
∑

i(x̄i− x̄). From this we can construct the estimator

ȳi −
∑

i ȳi
∑

i ri
− β̂

[

(x̄i − x̄)−
∑

i(x̄i − x̄)
∑

i ri

]

,

which is an unbiased estimator of τi.
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(c) Same as (2.18) except replace r with ri.

Exercise 2.31

The following data are measurements on the strength index of three varieties of
cotton, where the treatments are pounds of potassium oxide per acre (dataset
Imbalance). Here we want to see the effect of imbalance on the anova.

Strength Index of Cotton
Varieties

Treatment 1 2 3
36 7.06 7.75, 8.22 7.95, 8.59
60 7.51, 7.5 8.08, 8.18 8.69, 8.39
84 7.27, 7.49 7.9 8.04
108 6.55, 6.47 7.26, 7.06 7.35
132 6.97, 7.14 7.52, 7.83 7.63, 7.2

(a) Verify the anova tables in Miscellanea 2.9.3. The anova tables can be
produced with the R commands
summary(aov(Strength Trt+Variety,data=aovdata))

and
summary(aov(Strength Variety+Trt,data=aovdata))

(b) Produce one anova table that contains the partial sums of squares. (You
can do this by combining the two tables from part (a) or by using the R

command drop1.)
Combine the tables as indicated or use the R commands
imb1<-aov(Strength Variety+Trt,data=aovdata)

drop1(imb1,test="F")

(c) In terms of the analysis of these data, explain why the table in part (b) is
most appropriate.
The partial SS measures the effect of a treatment after all of the other
treatments have been fit. This is most appropriate in a twoway, where both
treatments are of interest. For example, fitting Variety before Treatment
could mistakenly ascribe variation explained by Treatment to Variety.
This is different from a RCB, where we would always fit Blocks first.

(d) Calculate the contrast sum of squares for the linear effect of potassium
oxide and test its significance.

(e) Estimate the contrast and its standard error, and give a 95% confidence
interval.
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Complete Block Designs

Essential

Exercise 3.1

Referring to Example 3.3:

(a) The anova table is created with the R statement
summary(aov(yield block + trt,strawdata)).
To do the t-tests use t.test(A-B) and t.test(.5*A+.5*B-C)

(b) (c) and (d) The two component anova tables are created with
1. yield<-(sqrt(2)/sqrt(2))*c(A,B)

trt<-rep(c("A","B"),each=4)

block <- rep(c("1","2","3","4"),each=1,times=2)

2. yield<-(sqrt(2)/sqrt(1.5))*c(.5*A+.5*B,C)

trt<-rep(c(".5*A+.5*B","C"),each=4)

block <- rep(c("1","2","3","4"),each=1,times=2)

The residuals from these tables will add as in part (c), and the respective
F -tests will match the t-tests.

(e) For example

E
(

[(Y1j − Y2j)− (Ȳ1· − Ȳ2·)]
2
)

= Var(Y1j − Ȳ1·) + Var(Y2j − Ȳ2·)

−2Cov(Y1j − Ȳ1·, Y2j − Ȳ2·).

Now compute

Var(Y1j − Ȳ1·) = Var(Y2j − Ȳ2·) =

(

1− 1

b

)

(σ2 + σ2
β)

and

Cov(Y1j − Ȳ1·, Y2j − Ȳ2·) = E
(

[(βj − β̄) + (ε1j − ε̄1·)][(βj − β̄) + (ε2j − ε̄2·)]
)

=

(

1− 1

b

)

σ2
β ,
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and put these together to get that

1

2

b
∑

j=1

E
(

[(Y1j − Y2j)− (Ȳ1· − Ȳ2·)]
2
)

= (b − 1)σ2.

A similar, but more involved calculation (with three covariances) will show
that the second sum of squares has the same expectation.

Exercise 3.3

(a) This gives the full anova table, wrong tests
summary(aov(Yield Variety+Block+Block:Variety,data=aovdata))

This gives the correct test on Variety
summary(aov(Yield Variety+Block+Error(Variety/Block:Variety),data=aovdata))

(b) Looking at the SS formulas in Table 3.3 will show that the test on Variety
only uses cell means.

(c) The 4 block experiment is in the example, the other two anovas follow;
note that the 8 block anova is unbalanced in the cells. The best design
is the 12 block experiment, giving the most df for the Variety test. The
eight block experiment could be appropriate if there is a lot of concern
about interaction. The 4 block experiment is a waste of effort.

Eight Blocks
Source df

Block 7
Variety 3
V × B 21
Within 16

Twelve Blocks
Source df

Block 11
Variety 3
V × B 33
Within 0

Exercise 3.5

(a) This gives the correct anova table with pooled error:
aov(Yield Block+Shading*Stage,data=aovdata)

Source df SS MS F p-value

Block 3 86.22 28.74 1.2400 0.3171054
Shading 2 622.89 311.44 13.4369 0.0001215
Stage 2 684.06 342.03 14.7564 6.623e-05
Shading:Stage 4 126.11 31.53 1.3602 0.2771167
Residuals 24 556.28 23.18

Of course, the test on blocks is nonsense.
The EMS table (calculations are easier using Exercise 2.19) is based on
the model

Yijkµ+ τi + βj + γk + (τγ)ik + (τβ)ij + (βγ)jk + (βτγ)ijk + εijk,

with τ = Shade and γ = Stage.
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Source df EMS
Blocks b− 1 σ2

ε + σ2
βτγ + tσ2

βγ + gσ2
βτ + tgσ2

β

Shade t− 1 σ2
ε + σ2

βτγ + gσ2
τβ + bg

t−1

∑

i τ
2
i

Stage g − 1 σ2
ε + σ2

βτγ + tσ2
βγ + bt

g−1

∑

k γ
2
k

Shade × Stage (t− 1)(g − 1) σ2
ε + σ2

βτγ + b
(t−1)(g−1)

∑

ik τγ
2
ik

B × Shade (b − 1)(t− 1) σ2
ε + σ2

βτγ + gσ2
βτ

B × Stage (b − 1)(g − 1) σ2
ε + σ2

βτγ + tσ2
βγ

B × Shade × Stage (b − 1)(t− 1)(g − 1) σ2
ε + σ2

βτγ

The tests of the treatments are against the respective interaction with
Blocks. In the analysis we pooled the Block interactions, which makes the
assumption that the twoway Block × Treatment interactions are zero.

(b) Because of the ordering on the treatments, polynomial contrasts are sug-
gested.

Contrast Linear Shade Quadratic Shade Linear Stage Quadratic Stage
F -statistic 26.756 0.117 16.914 12.599
p-value 0.00003 0.73480 0.00040 0.00163

Here is the R code

MSE<-sum((ShadeAov$residuals)2)/ShadeAov$df.residual #Mean Square

Residual

df<-ShadeAov$df.residual #df residual

A<- contr.poly(3, scores = 1:3, contrasts = TRUE)

YShade<-tapply(Yield, Shading, mean)

YStage<-tapply(Yield, Stage, mean)

nShade<-tapply(Yield,Shading,length) #number of obs in each mean

nStage<-tapply(Yield,Stage,length) #number of obs in each mean

LinShade<-(sum(A[,1]*YShade))2/(MSE*sum(A[,1]2/nShade))

QuadShade<-(sum(A[,2]*YShade))2/(MSE*sum(A[,2]2/nShade))

LinStage<-(sum(A[,1]*YStage))2/(MSE*sum(A[,1]2/nStage))

QuadStage<-(sum(A[,2]*YStage))2/(MSE*sum(A[,2]2/nStage))

Exercise 3.7

(a) The nested anova is

Source df

Category 3
Art (in Category) 36
Judges (in Art × Category) 440

Total 479



28 3 Complete Block Designs

In the nested design each factor is tested by the one below it. But all of
the anova assumptions are violated due to correlation in the cells - the
response of a Judge across the different pieces of Art are correlated.

(b) Whenever there are correlated observations, this suggests a blocking de-
sign. The RCB anova is

Source df

Judges (Blocks) 11
Category 3
Art (in Category) 36
Category × Judge 33
Art (in Category)× Judge 396

Total 479

Note that both Category and Art (in Category) are crossed with Judges.
The tests are against the respective interaction with Judges.

(c) Numerically, we have

SS(Judges (in Art × Category)) = SS(Judges) + SS(Category × Judge)

+SS(Art (in Category)× Judge),

where the left side is from the nested anova and the right side is from the
RCB anova. So we see that in the nested anova the error term contains
extraneous variation due to Judges, and is not tailored to the individual
components (and is, in fact, wrong because of the correlation).

Exercise 3.9

(a) Although the locations (edge of a dropoff, etc,) can be thought of as
random, it is probably best to model them as fixed and thus infer only to
the three subreefs. Then traps are nested in location and time is crossed.
Since the traps are reset there is no correlation across time.

(b) The anova table for the analysis is

Source df

Location 2
Traps (in Loc.) 12
Time 3
Time × Loc 6
Time × Trap (in Loc.) 36

Total 59

and we can get the EMS from Table 3.10 if we identify Location with Rep,
Traps with Blocks, and Time with Treatments. In that table Replications
are random, and have no test on Replication. If we model Locations as
fixed, the Location EMS will not have the σ2

τR term (the correlation with
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a fixed effect is zero), and can be tested with Traps (in Location). Time
is tested with Time × Loc and Time × Loc is tested with Time × Trap
(in Loc.)

(c) This variance comes from Traps (in Loc.), and is estimated by MS(Traps (in Loc.))/20.
(d) Doubling the number of cages.

Exercise 3.11

The solution here is contained in that of Exercise 3.5.

Exercise 3.13

(a) For each gene, this is a paired t test on Pre-Post, which is and RCB with
subjects as blocks. Thus a model is

log(Yij) = µ+ τi + βj + εij ,

with τ= Pre-Post and β = Blocks.
(b) The anova from R is

Source df SS MS F p-value

Block 4 0.199322 0.049831 0.7598 0.6017
Treatment 1 0.191240 0.191240 2.9161 0.1629
Residuals 4 0.262323 0.065581

There is no evidence that this gene has different expression levels. Of
course the test on Blocks is again nonsense.

(c) To loop the anova over the genes use
for(i in 1:nGene)

{GeneAov<-aov(log(ExpLevel[,i]) Block+Treatment,data=aovdata)

Pvalue[i]<-summary(GeneAov)[[1]][[5]][[2]]

}

The sorted p-values can be obtained with op<-order(Pvalue);Pvalue[op].
After calculating the Q-values, they cross at the 99th sorted gene. The sig-
nificant genes at the .05 FDR are sort(op[1:99])

10 14 46 48 49 53 54 55 56 57 58 61 63 71 80 82 83 85 88
90 93 96 99 100 104 105 106 107 110 117 119 120 123 125 126 128 131 133
134 135 136 137 138 141 142 146 147 148 149 150 152 156 157 162 164 165 167
168 169 171 172 176 177 178 180 181 187 188 189 190 192 194 195 197 200 201
205 206 208 212 214 215 216 217 221 222 224 225 228 230 231 232 235 237 240
241 248 249 250
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Exercise 3.15

(a) The R code
summary(aov(Yield ∼ Year*Block+Variety*Block+Variety*Year,data=aovdata))

will give the following anova table

Source df SS MS F p-value

Year 2 0.2624 0.1312 0.2942 0.74868
Block 3 4.3587 1.4529 3.2579 0.04578
Variety 3 31.2318 10.4106 23.3439 1.989e-06
Year:Block 6 5.9003 0.9834 2.2051 0.09046
Block:Variety 9 3.1190 0.3466 0.7771 0.63955
Year:Variety 6 2.6702 0.4450 0.9979 0.45642
Residuals 18 8.0274 0.4460

where the “Residuals” are the threeway interaction.
(b) From Table 3.11 we know that the tests on the interaction with Variety

are valid (the Year× Block test is nonsense), but we must assume that
the interactions are zero to get a valid test on Variety. SInce both tests
are very non-significant, we are comfortable in doing this.

(c) If the interactions with Variety are not zero, then the F-test numerator
is inflated and the test is anti-conservative, that is, you could make the
mistake of declaring significance falsely.

(d) The Variety means are

DuPuits Flamand Ladak Narrag
6.080 5.992 4.076 5.162

with standard error
√

.446/12 = .193. This leads us to conclude that
Ladak is worst, Narrag is next, and DuPuits and Flamand are best, and
equivalent.

Exercise 3.17

(a) (i) The anova R command is
summary(aov(Yield ∼ Row+Column+Treatment,data=aovdata)).

(ii) The treatment means are
1 2 3 4

24.700 27.775 25.525 24.975

with standard error
√

3.997/4 = .999. Treatment 2 seems to have a
significantly higher yield than the control. The t-statistic is (27.775−
24.7)/

√

3.997/2 = 2.175 with a p-value of 0.036.
(iii) With standard error ≈ 1, the power is approximately

P (Z > 1.645−
√

n/2δ),
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and for δ = .5 and n = 4 this is .174. To increase the power using
Latin squares we would need to replicate the squares. However, to get
a power of .9 we would need n ≈ 70, which is unrealistic.

(b) The anova table is produced with
summary(aov(Yield ∼ Rep*Row+Column+Treatment,data=aovdata))

and note how the data are coded to reflect the nesting.

Source df SS MS F p-value

Rep 2 15.83 7.92 0.9828 0.38884
Row 9 66.12 7.35 0.9121 0.53110
Column 9 530.76 58.97 7.3210 4.553e-05
Treatment 3 95.75 31.92 3.9620 0.01992
Residuals 24 193.33 8.06

The means are

1 2 3 4
24.458 27.825 24.958 24.392

With 12 observations in each mean, the standard error of a difference
is
√

2× 8.06/12 = 1.159. This leads us to believe that Treatment 2 is
significantly better.
It should be clear that this is a nested design, as the Rows and Columns
are in different locations - they are not crossed with locations.

(c) This is a consequence of the fact that SS(A) + SS(A × B) = SS(A (in B)).

Exercise 3.19

(a) The anova table comes from
Height=as.character(c("B","M","T","B","M","T","B","M","T"))

Depth=as.character(c("F","F","F","M","M","M","T","T","T"))

Trt=as.character(c("M","H","L","H","L","M","L","M","H"))

Intake=c(96,81,106,94,116,114,100,91,89)

aovdata <- data.frame(Intake,Height,Depth,Trt)

#--------Latin Square ANOVA ---------------------

LSAov<-aov(Intake ∼ Height+Depth+Trt,data=aovdata)

summary(LSAov)

Source df SS MS F p-value

Height 2 89.56 44.78 5.3026 0.15866
Depth 2 402.89 201.44 23.8553 0.04023
Trt 2 574.89 287.44 34.0395 0.02854
Residuals 2 16.89 8.44

(b) This is tested with the Treatment test in the anova. We see that the
intakes are significantly different after controlling for location
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(c) The contrasts can be estimated using similar R code to Exercise 3.5. For
example
MSE<-sum((LSAov$residuals)2̂)/LSAov$df.residual #Mean Square Residual

df<-LSAov$df.residual

HL=c(-1,.5,.5)

HLMean=sum(HL*YIntake)

HLSD=sqrt(MSE*sum(HL2̂/nIntake))

Linear Trend: 8.721± 2× 1.678
Low vs. Average of M and H: 15.833± 2× 2.055

Accompaniment

Exercise 3.21

Show details for the following calculations in Section 3.2.

(a) These follow directly from the model (3.5).
(b) If we condition on the βs, then the only random variables left in the

covariance are the εs.
(c) Cov(βj + εij , βj + εi′j) = E[(βj + εij)(βj + εi′j)], and then expand the

product.
(d) Verify the EMS calculations in Table 3.6. The EMS for blocks is given in

(3.11). The calculation for treatments is similarr

ESS(Trts) = E
∑

i

b(Ȳi − Ȳ )2 = bE
∑

i

[τi + ε̄i − ε̄]2

= b
∑

i

τ2
i + bE

∑

i

(ε̄i − ε̄)2

= b
∑

i

τ2
i + b(t− 1)

σ2
ε

b
,

where the β̄ terms cancel, τ̄ = 0 and the last equality is from Lemma 3.16.
The calculations for the interaction term are the same as in Exercise 3.23.

Exercise 3.23

The equality
∑

ij

(εij − ε̄i· − ε̄·j + ¯̄ε)2 =
∑

ij

ε2ij − b
∑

i

ε̄2i· − t
∑

j

ε̄2·j + bt̄ε̄2

is a direct consequence of Exercise 2.19. The expectations

E ε2ij = σ2
ε , E ε̄2i· =

σ2
ε

b
, E ε̄2·j =

σ2
ε

t
, E ¯̄ε2 =

σ2
ε

bt
,

are the variances of the respective random variables.
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Exercise 3.25

Here we will prove Theorem 3.18.

(a) Note that Y is block diagonal with b t × t blocks σ2
εI + σ2

βJ . The vector
Y is clearly multivariate normal, and from (3.5), in each block

Var(Yij) = σ2
β + σ2

Cov(Yij , Yi′j) = Cov(βj + εij , βj + εi′j) = σ2
β .

(b) Matrix multiplication will establish that B1, B2, and B3 are all idempo-
tent, and B1B3 = B2B3 = B1B2 = B3. The idempotency of I − B1 −
B2 +B3 and B1 − B3 now follows. The sums of squares formulas can be
obtained from the idempotency and Ȳi· = B1Y , Ȳ·j = B2Y , ¯̄Y = B3Y ,
which also can be obtained from matrix multiplication.

(c) This is again matrix multiplication.
(d) Now that we have all of the matrices straight, we can use Theorem 2.20.

We can assume that µ = 0 because the A matrices mean center Y .

Exercise 3.27

(a) Recall that ε̂ij = εij− ε̄i·− ε̄·j +¯̄ε. Clearly Tlm has mean zero. Its variance
is

Var(Tlm) = E





t
∑

i=1

r
∑

j=1

alm
ij ε̂ij





2

=
t
∑

i=1

r
∑

j=1

t
∑

i′=1

r
∑

j′=1

alm
ij a

lm
i′j′E(ε̂ij ε̂i′j′ ).

To evaluate the expectation we need to be careful about whether i = i′,
etc. First, for all i and j

E(εij¯̄ε) = E(ε̄i¯̄ε) = E(ε̄j¯̄ε) = E(̄ε̄¯̄ε) = σ2/bt.

Next,
E(ε̄2i ) = σ2/b, E(ε̄2j) = σ2/t, E(ε̄iε̄j) = σ2/bt,

the last for i 6= j. Finally,

E(εij ε̄i) = σ2/b, E(εij ε̄j) = σ2/t,

and all other expectations are zero (these are mostly with εij). To sum-
marize,

E(ε̂ij ε̂i′j′ ) =
σ2

bt
− σ2

b
I(i = i′)− σ2

t
I(j = j′) + σ2I(i = i′, j = j′).

When we now substitute this into Var(Tlm) and use the fact that the alm
ij

sum to zero over either index, the first three terms in the expectation are
zero. For example,
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t
∑

i=1

r
∑

j=1

t
∑

i′=1

r
∑

j′=1

alm
ij a

lm
i′j′

σ2

b
I(i = i′) =

σ2

b

t
∑

i=1

r
∑

j=1

alm
ij

r
∑

j′=1

alm
ij′ = 0,

and hence

Var(Tlm) =
t
∑

i=1

r
∑

j=1

t
∑

i′=1

r
∑

j′=1

alm
ij a

lm
i′j′σ

2I(i = i′, j = j′) = σ2
t
∑

i=1

r
∑

j=1

(alm
ij )2 = σ2.

(b) This calculation is almost the same as in part (a), except that the last
piece is

σ2
t
∑

i=1

r
∑

j=1

alm
ij a

l′m′

ij = 0,

since the two contrasts are orthogonal.
(c)

t−1
∑

l=1

r−1
∑

m=1

(Tlm)2 =

t−1
∑

l=1

r−1
∑

m=1





t
∑

i=1

r
∑

j=1

alm
ij ε̂ij





2

=
∑

i,j,i′,j′

(

t−1
∑

l=1

r−1
∑

m=1

alm
ij a

lm
i′j′

)

ε̂ij ε̂i′j′ .

Now we use the product construction of the alm
ij to evaluate the inner sum.

From Table 3.14, the alm
ij are constructed by taking products of rows from

the first set of contrasts in Table 3.14 with columns from the second set.
Specifically, let cℓ be the ℓth row in the first set of contrasts, and dm be
the mth column in the second set. Then alm

ij = cℓid
m
j , where we are picking

out the elements from the c row and d column. Then

t−1
∑

l=1

r−1
∑

m=1

alm
ij a

lm
i′j′ =

t−1
∑

l=1

r−1
∑

m=1

cℓic
ℓ
i′d

m
j d

m
j′

=

(

t−1
∑

l=1

cℓic
ℓ
i′

)(

r−1
∑

m=1

dm
j d

m
j′

)

Within each of the parentheses, the quantity is the inner product of two
rows (for the cs) or columns (for the ds). By construction, each of these
sets are orthogonal contrasts, so the sum is zero unless i = i′ or j = j′. If
i = i′ and j = j′ the sum is 1, so we have

t−1
∑

l=1

r−1
∑

m=1

(Tlm)2 =

t
∑

i=1

r
∑

j=1

ε̂2ij .

Note that the this proof works for any set of contrasts obtained from a
product construction.
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(d) Since Tlm/σ are iidN(0, 1), their squares are χ2
1 and the sum is χ2

(r−1)(t−1).
Formally, we can use Theorem 2.18 or Theorem 2.20

Exercise 3.29

(a) Matrix multiplication will establish (i)-(v). For (ii), note that (1/r)B4Y =
{Ȳij} (Section 3.8.3).

(b) This follows from (iv) and (v).
(c) Lemma 3.20 is established by verifying the multiplication. Theorem 3.21

(1) and (2) follow from Theorem 2.20, and (3) is from the properties of
the F distribution.

Exercise 3.31

(a) Since
∑

i γij = 0,

Var(
∑

i

γij) = tσ2
m + t(t− 1)ρσ2

m = 0⇒ ρ = −1/(t− 1).

(b) Similarly

Var(
∑

i

(τβ)ij) = tσ2
τβ + t(t− 1)ρτβσ

2
τβ = 0⇒ ρτβ = −1/(t− 1).

Exercise 3.33

(a) The matrix ZZ ′ is block diagonal with blocks Jt, the t× t matrix of ones,
so the result follows.

(b) This is straightforward matrix multiplication. Use the fact that V ∗−1 is
block diagonal with t× t blocks

1

σ2

(

I −
σ2

β

σ2 + tσ2
β

J

)

(c) Matrix multiplication again.
(d)

Cov(Y, β) = EY β′ = E[E(Y |β)β′] = E[(Xθ + Zβ)β′] = ZE[ββ′] = σ2
βZ.

Exercise 3.35

(a) From Table 3.6

Eσ̂2
ε = E[MS(T × B)] = σ2

ε

Eσ̂2
β =

1

t
E[MS(Blocks)−MS(T × B)] =

1

t
[σ2

ε + tσ2
β − σ2

ε ] = σ2
β .

(b) σ̂2
ε = .476, σ̂2

β = (1/4)(1.327− .476) = 0.213.
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(c) Unfortunately, this is not straightforward because of the replication. If
you just read in the data, the REML estimates don’t match the anova
estimates (at least I can’t get them to match). Here is what works: After
reading in the data, use the following R

tab<-list(Block,Variety)

Yield<-sqrt(3)*c(tapply(Yield,tab,mean))

Block<-as.character(c("1", "2", "3", "4" ,"1", "2", "3", "4",

"1", "2", "3" ,"4", "1", "2", "3" ,"4"))

Variety<-as.character(c("L","L","L","L","N","N","N",

"N","D","D","D","D","F","F","F","F"))

aovdata <- data.frame(Yield,Variety,Block)

summary(aov(Yield Variety+Block,data=aovdata))

library(nlme)

alfmodel<-lme(Yield ∼ 1+Variety,aovdata,random=∼1|Block)
summary(alfmodel)

VarCorr(alfmodel)

(The
√

3 makes the sums of squares match Example 3.4. The last part of
the R output is

Variance StdDev

(Intercept) 0.2129218 0.4614345

Residual 0.4756873 0.6897008

and the variances match part (a).
(d)

σ̂2
ε = .253

σ̂2
τβ = (1/3)(.476− .253) = 0.0743

σ̂2
β = (1/12)(1.327− .476) = 0.0709

(e) Since the anova estimates are positive, they will match the REML esti-
mates. At this time I can’t produce the R code to get the REML estimates!
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Interlude: Assessing the Effects of Blocking

Essential

Exercise 4.1

Referring to Example 4.2:

(a) The fertilizer is applied to the pot, so the pot is the experimental unit.
(b) To get the correct test use the R code

aov(Height Bench+Fertilizer,data=aovdata)

and “Residuals” is the interaction term.
(c) There are three observations for each treatment, so the variance of a dif-

ference is estimated with

V̂ar(τ̂i − τ̂i′ ) = 2×
√

32.10

3
= 6.542.

(d) The contrasts can be calculated with contr.helmert or you can just type
them in.

> TrtMean=tapply(Height,Fertilizer,mean)

> A=c(3,-1,-1,-1,0,2,-1,-1,0,0,1,-1)

> A=matrix(A,nrow=4)

> A\%*\%TrtMean

gives the vector of contrast estimates 37.180,−5.917,−28.823.
(e) The relevant R code is

> Tstat=(t(A)%*%TrtMean)^2/(32.10*apply(A^2,2,sum))

> 1-pf(Tstat,1,6)

gives the p-values 0.818, 0.130, 0.0450.This tells us, somewhat surprisingly,
that the average of Fertilizers 2-4 is not different from the control. The
only significant difference is between Fertilizers 3 and 4. It is obvious that
4 is a winner.
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(f) If we assume known variances, the power is (ignoring the lower tail)

P

(

Z ≥ Zα −
1.5

√

2σ2/n

)

= P

(

Z ≥ 1.645− 1.5
√

2× 32.10/3

)

= 0.0933,

where Z is standard normal. This is rotten power. Either the size of the
desired difference needs to be bigger, or the number of blocks needs to be
increased.

Exercise 4.3

(a) The anova table is

Source df

Brand 2
Power 1
Time 2
Power × Time 2
Brand × Power 2
Brand × Time 4
Brand × Power × Time 4
Within 18

The following R code produces an anova table with the treatments tested
against the pooled interaction.

> aov(Texture~Brand+Power*Time+Error(Brand/Brand:Power:Time)

Source df SS MS F p-value

Brand 2 819.71 409.85
Power 1 495.88 495.88 3.2786 0.10029
Time 2 1460.68 730.34 4.8289 0.03407
Power:Time 2 63.72 31.86 0.2107 0.81356
Residuals (Interactions) 10 1512.45 151.24
Residuals (Within) 18 1823.86 101.33

R calls everything “Residuals”.
(b) The following R code produces an anova table with everything tested

against within error.

> aov(Texture~Brand*Power*Time,data=aovdata)
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Source df SS MS F p-value

Brand 2 819.71 409.85 4.0449 0.035417
Power 1 495.88 495.88 4.8939 0.040119
Time 2 1460.68 730.34 7.2079 0.005019
Brand:Power 2 163.29 81.65 0.8058 0.462210
Brand:Time 4 1321.37 330.34 3.2602 0.035447
Power:Time 2 63.72 31.86 0.3144 0.734130
Brand:Power:Time 4 27.79 6.95 0.0686 0.990646
Residuals (Within) 18 1823.86 101.33

An interesting difference is that here the factor Power becomes significant.
This is clearly a case of using too small an error term. In the RCB the
error term takes the Brand variation into account and, when that is done,
the differences due to Power are too small to be significant.

(c) (i) and (ii). If we consider the six treatment combinations to be ”Samples”
within the brands, then we get the anova table

Source df SS

Brand 2 819.71
Sample(in Brands) 15 3532.73
Residuals (Within) 18 1823.86

where

SS(Samples in Brands) = SS(Samples) + SS(Samples × Brands)

= SS(Trts) + SS(Trts × Brands).

In the anova table in part (b), if you sum all of the degress of freedom for
the factors involving Power or Time, they add to 15. We could pull out of
this the sums of squares for Power in Brands, Time in Brands, and Power
× Time in Brands, but this is an inferior (and incorrect) analysis. This
is a fully nested design so the tests should be clear. In particular, things
like “Power in Brands” are tested against within error.

Exercise 4.5

Continuing from Exercise 4.4:

(a) The least square estimate for τi− τ̄ is yi·−y··. Since yij = µ+τi +βj + ǫij ,
we have

yi· = µ+ τi + β̄ + ǭi· and y·· = µ+ τ̄ + β̄ + ǭ··.

Therefore

E(yi· − y··) = E ((τi − τ̄ ) + (ǭi· − ǭ··)) = τi − τ̄ .

Similarly, The least square estimate for βj − β̄ is y·j − y··, and y·j =
µ+ τ̄ + βj + ǭ·j . Therefore
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E(y·j − y··) = E
(

(βj − β̄) + (ǭi· − ǭ··)
)

= βj − β̄.

Finally,
E(y··) = E

(

µ+ τ̄ + β̄ + ǭ··
)

= µ+ τ̄ + β̄.

(b) Because of the correlation structure, we know

V ar

(

∑

i

aiτ̂i

)

=
σ2

b

∑

i

a2
i +

2ρσ2

b

∑

i>i′

aiai′

Therefore, we have

V ar(yi· − y··) =
(1 − ρ)σ2

b

(

(

t− 1

t

)2

+ (t− 1)

(

1

t

)2
)

=
(1− ρ)σ2

b

t− 1

t
,

V ar(y·j − y··) = V ar(ǭ·j − ǭ··) =
(b − 1)σ2

bt
[1 + (t− 1)ρ],

V ar(y··) = V ar(ǭ··) = V ar

(

∑

i

ǭi·
t

)

=
(1− ρ)σ2

b

∑

i

(

1

t

)2

+
ρσ2

b
=

(1 − ρ+ tρ)σ2

bt
.

Exercise 4.7

(a) As stated this is a terrible experiment:

Ozone Level
1 2 3 4

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

Ozone level and chamber are completely confounded, so the only hope is
to ignore chamber and treat this as a oneway anova. If the experiment
could be re-run four times then we could do 12 observations at each time:
Put 3 observations in each of the four chambers, having the chambers at
the four levels of ozone. This is an RCB (because of the correlation in the
chambers) with three subsamples.

(b) The experimental unit is the chamber, which is where the treatment is
applied. We could argue for either fixed or random chambers, but if we
account for the correlation as in Section 4.2 the tests will be the same.
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(c) It is better to analyze plants from all four chambers on each day. This
would unconfound any day-to-day bias with the chamber effect.

Exercise 4.9

We can understand the treatments in the following table:

Before Now
A Wheat Wheat
B Soy Wheat
C Wheat or Triticale

Triticale
D Soy Triticale

(a) Reasonable contrasts are

µA µB µC µD

1) 1 1 −1 −1
2) 1 −1 0 0
3) 0 0 1 −1

where
1) Wheat v. Triticale Now
2) The effect of previous planting on Wheat
3) The effect of previous planting on Triticale

(b) We can get the correct anova table with the R command

summary(aov(Meas~Lab+Material+Error(Lab/Lab:Material)))

and the contrasts can be obtained with

MSE<-0.80418/6 #Mean Square Residual

df<-6 #df residual

YMat=tapply(Meas,Material,mean)

nMat=tapply(Meas,Material,length)

C1<- c(1,1,-1,-1)

F1= (sum(C1*YMat))^2/(MSE*sum(C1^2/nMat))

This can be summarized in the anova table

Source df SS MS p-value

Lab 2 0.43251 0.21625
Material 3 219.020 73.007 1.070e-07
C1 1 184.10 184.10 0.00000
C2 1 34.39 34.39 0.00000
C3 1 0.53 0.53 0.09379

Residuals 6 0.804 0.134
(L × M)
Within 24 1.02587 0.04274
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(c) With the usual formulas for contrasts and their standard errors

Contrast Mean SE
C1 -9.0456 0.2441
C2 -2.7644 0.1725
C3 -0.3433 0.17258

So we see that there is a big effect of Wheat vs. Triticale (C1), and a big
effect of the previous planting before Wheat (C2), but no effect of the
previous planting before Triticale.

Exercise 4.11

(a) We calculate

Cov(ε̄ij , ε̄i′j) = ρBσ
2, Var(ε̄ij) =

σ2

r
[1 + (r − 1)ρε].

Now, since Corr(ε̄ij , ε̄i′j) ≤ 1, the inequality follows.
(b) From the variance in part (a) we must have 1 + (r − 1)ρε ≥ 0, and so

1 + (r − 1)ρε + r(t − 1)ρB ≥ 0 as long as

1 + (r − 1)ρε

r(t− 1)
≥ ρB .

The left side is a decreasing function of r, and we have for all r

ρε

t− 1
≤ 1 + (r − 1)ρε

r(t − 1)
≤ 1

t− 1
,

so ρB ≥ −1/(t− 1), which could only happen if ρε = 1.

Accompaniment

Exercise 4.13

(a) In text.
(b) As noted in the text, the argument is virtually the same used to verify

Theorem 3.18. Details of that ar in the solution to Exercise 3.25
(c) Under the null hypothesis in (4.10), both mean squares have the same

expectation so, from Cochran, we have a valid F -test.
(d) From (4.20) we know that (4.21) has the form of a N(0, 1) divided by the

square root of a chi-square over its degrees of freedom. The fact that it has
Student’s t will follow if the numerator and denominator are independent,
that is, if we verify condition (3) in Lemma 3.17. If a denotes the contrast
vector in the numerator of (4.21), then apply Lemma 3.17 with (ignoring
the σs) A∗

1 = aa′ and A∗
2 = I−B1−B2+B3, the latter being the matrix for

MS(T × B). For Σ of the form (1− ρ)I + ρJ direct matrix multiplication
shows that aa′Σ(I − B1 − B2 + B3) = 0 for any contrast a, which then
shows that (4.21) is Students t.
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Exercise 4.15

(a) For example

Var(ε̄ij) = Var

(

1

r

∑

k

εijk

)

=
1

r2
(rσ2 + r(r − 1)ρεσ

2)

=
σ2

r
(1 + (r − 1)ρε)

Var(ε̄i) = Var





1

b

∑

j

ε̄ij



 =
1

b2



b(σ2/r)(1 + (r − 1)ρε) + 2
∑

j>j′

E(ε̄ij ε̄ij′ )





=
σ2

rb
(1 + (r − 1)ρε),

since E(ε̄ij ε̄ij′ = 0 for j 6= j′.
(b) Analogous to the calculations for Table 4.1.

Exercise 4.17

(a) All row sums are equal to 1 + (t− 1)ρ.
(b) The matrices are block diagonal, so we only need do the calculations for

one block. So, suppressing σ2, which cancels itself,

X = It, V = (1− ρ)It + ρJt, V −1 =
1

1− ρ

(

It −
ρ

1 + (t− 1)ρ
Jt

)

where the inverse can be directly verified. Next, matrix multiplication
shows

X ′V −1X =
1

1− ρ

(

It −
ρ

1 + (t− 1)ρ
Jt

)

,

(X ′V −1X)−1 = (1− ρ)
(

It +
ρ

1 + ρ
Jt

)

,

and finally, (X ′V −1X)−1X ′V −1 = It, implying the equality of the least
squares and generalized least squares estimates.

(c) The same thing happens here. For Z = 1t,

Z ′V −1Z =
t

1 + (t− 1)ρ
,

(Z ′V −1Z)−1 =
1 + (t− 1)ρ

t

1

1− ρ

(

1′ − ρ

1 + (t− 1)ρ
1′Jt

)

=
1

t
1′ = (Z ′Z)−1Z ′
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(d) The definition of V ∗ is in Section 3.8.4. We have, just looking at one block
of the block diagonal matrix,

V ∗ = σ2
εI + σ2

βJ

V = (1− ρ)σ2I + ρσ2Jt.

The relationship in (4.9) equates σ2
ε = (1 − ρ)σ2 and σ2

β = ρσ2. Direct
multiplication verifies the the estimate of β.

Exercise 4.19

(a) (i) Here is R code that will generate the F -statistics

m<-1000

Fstat<-array(0,dim=c(m,1))

for(i in 1:m)

{

Yp<-sample(Y)

Yi<-tapply(Yp,Trt,mean)

MSTrts <- 4*sum((Yi-mY)^2)/2

MSWithin <-sum((Yp-rep(Yi,times=4))^2)/9

Fstat[i] <-MSTrts/MSWithin

}

You then find the p-value by counting how many of these F -statistics
are greater than the observed F -statistic.

(ii) Since the randomization is throughout the table, and the table has rt
entries, the probability is 1/rt. Of course, since we are sampling with
replacement this probability changes for the next yk, aince there are
only rt− 1 slots left.

(b) Repeat part (a) for the RCB of Example 4.4 of Miscellanea 4.9.1. Re-
member that here the permutation must respect the blocks, and with t
treatments and b blocks we will have P (δijk = 1) = 1/t. The usual anova
is

Df Sum Sq Mean Sq F value Pr(>F)

Block 3 102.00 34.00 1.3645 0.34030

Trt 2 408.50 204.25 8.1973 0.01923 *

Residuals 6 149.50 24.92

The randomization is similar to the above; here is the relevant R code:

for(i in 1:m)

{

Yp=sample(Y[1:3]);for(j in 1:3)Yp=c(Yp,sample(Y[(3*j+1):(3*j+3)]))
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Yi<-tapply(Yp,Trt,mean)

Yj<-tapply(Yp,Block,mean)

SSB=3*sum((Yj-mY)^2)

SST=4*sum((Yi-mY)^2)

SSResid<-SSTot-SSB-SST

Fstat[i]<-(SST/2)/(SSResid/6)

}

We can find the randomization p-value with the R statement

mean((Fstat>8.1973))

which gives a value of 0.0391.
The randomization variable picks the first observation with probability
1/t, then 1/(t− 1), etc.

(c) The R code is similar to that of part (b), with the randomization p-value
of 0.0288. For this experiment the randomization test seems reasonable,
and the fact that the p values are similar is always nice - less to worry
about.





5

Split Plot Designs

Essential

Exercise 5.1

(a) The anova table is:

Sourse df SS MS F p-value
A(WP Trt) 1 4.083 4.083 0.6125 0.4776
WP Error 4 26.667 6.667
B(SP Trt) 1 10.083 10.083 30.25 0.0053

A × B (WP Trt × SP Trt) 1 0.083 0.083 0.25 0.6433
SP Error 4 1.333 0.333

So there appears to be an effect for B, but not for A or for the A× B inter-
action.

(b) Test for effect of A:

Two sample t test, A = 0 vs. A = 1, using the whole plot means as ob-
servations. t = 0.7826, p-value=0.4776. (This test assumes equal variance for
the two groups).

Test for effect of B:

Paired t test, six observations, consisting of each whole plot’s B = 1 mea-
surement minus its B = 0 measurement. t = −5.9656, p-value=0.0019. (This
test assumes equal variance for the two groups).

(c) The t test for the effect of A yields exactly the same value as the F test.
However, the t test for the effect of B does not yield the same value as the



48 5 Split Plot Designs

F test. This is because the split plot ANOVA is able to partition out the
variability due to a possible A×B interaction, while the paired t test cannot.

To see this, we can run an RCB on B only, with the six reps being the
blocks. This yields

Source df SS MS F p-value

Rep 5 30.7500 6.1500 21.706
B 1 10.0833 10.0833 35.588 0.001894
Residuals 5 1.4167 0.2833

The interesting thing is that B is more significant here than in the Split
Plot. This is because there is almost no variability in A × B, and losing the
degree of freedom cost us.

Exercise 5.3

(a) The split plot anova can be done with the R command

aov(Y ~Trt+Error(Subject/Trt)+Time*Trt)

and yields the anova table

Source df SS MS F p-value

Trt 1 847.5 847.5 3.6266 0.07212
Residuals 19 4440.0 233.7
(Subjects in Trt)
Time 1 542.88 542.88 15.142 0.0009823
Trt × Time 1 407.41 407.41 11.363 0.0032085
Residuals 19 681.21 35.85
(Sub × Time in Trt)

The assumptions for the design seem plausible; we might be suspect of the
normality assumption since the response is a maximum. Some diagnostics,
and maybe a log or other transformation should be considered.

(b) (i) The R code is

Y1=Y[Trt =="Sel" & Time =="Post"]+Y[Trt =="Sel" & Time =="Pre"]

Y2=Y[Trt =="Nsel" & Time =="Post"]+Y[Trt =="Nsel" & Time =="Pre"]

t.test(Y1,Y2,var.equal=T)

which gives output

t = 1.9044, df = 19, p-value = 0.07212

(ii) Similar to part (i), the R t-test output is

t = 3.3709, df = 19, p-value = 0.003209

(iii) t = -2.9767, df = 19, p-value = 0.00775

In the unbalanced case the anova sums of squares are gotten by sub-
traction, so the direct formulas do not apply.
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Exercise 5.5

Let O denote the Organ duct, C the Catheter type, S the Sensor location and
P the patient.

(a) In design (1), the randomization is throughout the 8 treatment combina-
tions, and P acts as blocks. Therefore (1) is a randomized complete block
(RCB) design.
The randomization in design (2) is throughout the C×S combinations in
O. This implies a split plot design with whole plots in an RCB, where P
acts as blocks. Therefore O is the whole plot treatment, and C × S is the
split plot treatment.
Design (3) is a split split plot design with whole plots in an RCB, where
P acts as blocks. It can be seen that C is the whole plot treatment, O is
the split plot treatment, and S is the split split plot treatment.

(b) Design (1) is an RCB, and the anova table is

Source df
P 29
O 1
C 1
S 1
O × C 1
O × S 1
C × S 1
O × C × S 1
P ×O 29
P × C 29
P × S 29
P ×O × C 29
P ×O × S 29
P × C × S 29
P ×O × C × S 29

In an RCB, all treatment effects are tested against their respective inter-
action with blocks (P). Since there are 30 blocks there does not seem to
be any need for pooling the interaction terms.
Design (2) is split plot design with whole plot treatment in blocks P . The
anova table is
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Source df
P 29
O 1
P ×O 29
C 1
S 1
C × S 1
C ×O 1
S ×O 1
C × S ×O 1
P × C 29
P × S 29
P × C × S 29
P × C ×O 29
P × S ×O 29
P × C × S ×O 29

Above the line O is tested against P × O. Below the line each effect is
tested against its interaction with P . Again, with 30 blocks there is no
need to pool interactions.
Design (3) is split split plot with whole plot in blocks P . The anova table
is

Source df
P 29
C 1
P × C 29
O 1
O × C 1
O × P 29
O × C × P 29
S 1
S × C 1
S ×O 1
S ×O × C 1
S × P 29
S × C × P 29
S ×O × P 29
S ×O × C × P 29

As before, everything is tested against its interaction with P .
(c) If the experimenter is interested in all treatments equally, then design (1)

is recommended, as there is equal information on all treatments
(d) If the experimenter is interested in the sensor effects most, then design

(3) is recommended. Sensor location is the split split plot treatment and
hence gets the best precision
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(e) It is not recommended to use design (3) if the experimenter is interested
in testing catheters. One should still use split split plot design but put
catheters as the split split plot treatment as that will get better precision.

Exercise 5.7

(a) If j 6= j′ then the observations are in different blocks, and they are inde-
pendent observations.

(b) Same SP, different WP:

Cov(Yijk, Yi′jk)

= Cov(βj + εij + (βγ)jk + δijk, βj + εi′j + (βγ)jk + δi′jk)

= σ2
β + σ2

βγ

Different SP, Same WP:

Cov(Yijk, Yijk′ )

= Cov(βj + εij + (βγ)jk + δijk, βj + εij + (βγ)jk′ + δi′jk′ )

= σ2
β + σ2

ε

Different SP, Different WP:

Cov(Yijk , Yi′jk′ )

= Cov(βj + εij + (βγ)jk + δijk, βj + εi′j + (βγ)jk′ + δi′jk′ )

= σ2
β

The whole plot error is typically greater, so we expect σ2
β + σ2

ε to be the
greatest.

Exercise 5.9

(a) If the experiment design is CRD, then different oven temperatures and
baking times must be randomly selected and assigned to each electronic
component. After any observation is obtained, the temperature must be
reset to the original setting and restarted under the same conditions as
the previous ones. This is time-consuming, so it may not be a good way
to run this experiment.

(b) If this is a RCB, then the experiments are run individually two times,
with Rep 1 and Rep 2 as blocks. Within blocks the oven temperatures
and baking time are crossed.
If this is split plot, then it means either oven temperature or baking time
is set to be the whole plot treatment, and the levels of other one, the
split plot treatment, are randomized within. From a practical standpoint,
taking Temperature as the whole plot treatment is most sensible; it avoids
much heating and cooling of the ovens.
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Source df

T 1

B 1

T × B 1

Within 4

Source df

R 1

T 2

B 2

T × B (in R) 2

(c) Here we call T the temperature, B the baking time and R the replicates.
The anova table for the CRD case is
The anova table for the RCB case is
The anova table for the split plot case with T as whole plot treatment is

Source df

Blocks(Reps) 1

WP Trt(T ) 1

Reps × T (WP Err) 1

SP Trt(B) 1

Temp × B 1

Rep × B 1

Reps × B × T 1

The split plot design is the most practical, and only the experimenter can
tell us if it is appropriate. Also, below the line we would typically pool
the two interactions with Reps.

(d) (i) Same time, different temp:
(1) CRD: ρ = 0.

(2) RCB: different blocks ⇒ ρ = 0.

(3) Split Plot: Use model in Section 5.3.1 of the text.
Case 1. Same block(rep).

Cov(Yijk , Yi′jk) = σ2
β + σ2

βγ , ρ =
σ2

β + σ2
βγ

σ2
β + σ2

βγ + σ2
ǫ + σ2

δ

.

Case 2. Different block(rep).
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Cov(Yijk , Yi′j′k) = 0, ρ = 0.

(ii) Same temp, different time:
(1) CRD: ρ = 0.

(2) RCB: same blocks ⇒ ρ =
σ2

β

σ2

β
+σ2

ǫ

.

(3) Split Plot: Use model in Section 5.3.1 of the text.
Case 1. Same block(rep).

Cov(Yijk , Yijk′ ) = σ2
β + σ2

ǫ , ρ =
σ2

β + σ2
ǫ

σ2
β + σ2

βγ + σ2
ǫ + σ2

δ

.

Case 2. Different block(rep).

Cov(Yijk , Yij′k′) = 0, ρ = 0.

This information will not change the answer in (b).

Exercise 5.11

(a) For estimating µ, τi, or γk, the contrast will always zero out the subtracted
mean. For example, the ith cell mean is estimated with ȳi, and the effect
is ȳi − ¯̄y . If (a1, . . . , at) is a contrast, then

∑

i ai(ȳi − ¯̄y) =
∑

i aiȳi.
(b) For all comparisons except the third one, we are in Case (3) of the split

plot comparisons, so we use (5.10). For the third contrast we are in Case
(4), so we use (5.12). For the effects we use (5.24). We have

Contrast Variance-Cell Means Variance - Effects

1 16.17
3 ×

(

12 + (−1)2
)

= 10.78 16.17
3 ×

(

(3/4)2 + (−3/4)2
)

= 6.064
2 16.17

3 ×
(

4× 12
)

= 21.56 16.17
3 ×

(

4× (1/2)2
)

= 5.39
3 16.17

3 ×
(

2× 12
)

+ 7.33
3 ×

(

2× 12
)

= 6.064 16.17
3 ×

(

2× 12
)

= 2.70
4 16.17

3 ×
(

4× 12
)

= 21.56 16.17
3 ×

(

4× 12
)

= 21.56

(c) Note that the full contrast specification for the first contrast is

Main Effect of K
vs. A and G
pk pK Pk PK

A 1 −1 1 −1
G 1 −1 1 −1
K 0 0 0 0
N 0 0 0 0
O 0 0 0 0
R 0 0 0 0
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and we are in Case (4). The second contrast is also Case (4), but has a
smaller variance since the column sums are all zero. For the cell means
contrast variances we use (5.19) and (5.21).

Contrast Variance

1-Cell Means .170
2 ×

(

2× 4× (2/3)2 + 4× 4× (1/3)2
)

+ .249
2×6 ×

(

4× 22
)

= 0.785

1-Effects .170
2 ×

(

2× 4× (2/3)2 + 4× 4× (1/3)2
)

= 0.453
2-Cell Means .170

2 ×
(

2× 4× 12
)

= 0.68
2-Effects .170

2 ×
(

2× 4× 12
)

= 0.68

Exercise 5.13

(a) The test of Variety V should be against the whole plot error. The test of
Gene G should be against the split plot error G × A (in V ). The test of
Probe P should be against the split split plot error, (P in G)× (A in V ).

(b) The R code to produce the anova for this Array split split plot design is

aovdata <- data.frame(logY, Gene, Variety, Array, Probe)

aov( logY ~ Variety*Gene*Probe + Error(Array/Gene))

where we took logs of the data. The output verifies the anova table.
(c) To estimate the variance of V × P interaction contrast, that is, the inter-

action of whole plot treatment and split split plot treatment, we use the
formula from Section 5.5,

Var

(

∑

iℓ

aiℓȲiℓ

)

=
σ2

ω

rg

∑

iℓ

a2
iℓ +

σ2
δ + gσ2

ε

rg

∑

i

(

∑

ℓ

aiℓ

)2

,

where we can estimate σ2
ω with the SSP error and σ2

δ + gσ2
ǫ with the WP

error.
(d) The anova table:

Source df EMS
Variety (v − 1) σ2

ξ + pσ2
δ + gpσ2

ǫ + rgp
v−1

∑

i V
2
i

WPErr v(r − 1) σ2
ξ + pσ2

δ + gpσ2
ǫ

Gene (g − 1) σ2
ξ + pσ2

δ + vrp
g−1

∑

k G
2
k

V×G (g − 1)(v − 1) σ2
ξ + pσ2

δ + rp
(g−1)(v−1)

∑

ik(V G)2ik
SP Err (g − 1)(r − 1)v σ2

ξ + pσ2
δ

Probe (p− 1)g σ2
ξ + vr

(p−1)g

∑

kl P
2
kl

V× P (p− 1)(v − 1)g σ2
ξ + r

(p−1)(v−1)g

∑

ikl(V P )2ikl

SSP Err (p− 1)(r − 1)gv σ2
ξ

Exercise 5.15

(a) The model equation is (5.26) with Lab as Blocks, Solution as the WP
treatment, Day as the SP treatment, and Assay as the SSP treatment.
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(b) The relevant R code to produce all of the correct error terms is

aov( Y ~ Solution*Day*Assay + Error(Lab/Solution/Day))

(c) The relevant R code is

aov( Y ~ Lab*Solution*Day*Assay + Error(Lab/Solution/Day))

This gives all the mean squares but no F tests or p-values - it just groups
the treatments. You can also use

aov( Y ~ Lab*Solution*Day*Assay)

since you have to do the F -ratios and p-values yourself.
The test of the interaction S × L is 9.29/19.33 = 0.48 < 3.00 = F6,12, so
it is not significant which indicates that pooling to get one split plot error
is not a terrible thing to do.
Similarly, it can be shown that the interactions A × L, A × S × L and
A × D × L sre all non-significant when tested against A × S × D × L.
Again, pooling to get one split split plot error is not terrible.

Exercise 5.17

(a) Clearly, if one of the treatments is ignored, the other is completely ran-
domized in each block.

(b) The relevant R code is

summary(aov(Y~K*P+Error(Block/(K:Block+P:Block))))

and the anova table is

Source df SS MS F p-value

Blocks 2 85.778 42.889
K 2 925.78 462.89 21.811 0.007055
K × B 4 84.89 21.22
P 1 162 162 0.4426 0.5743
P × B 2 7 732 366
K × P 2 49.333 24.667 1.3962 0.3468
K × P × B 4 70.667 17.667

From the output we can see that the only significant treatment is Potas-
sium K.

(c) The cell means are

P/K 25 50
0 41.333 50.000
25 54.000 62.000
50 62.000 63.333
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with standard error of a difference
√

2× 17.667

3
= 3.432.

You can run your favorite multiple comparisons procedure now. But con-
sider that two standard deviations is about 7, which suggest that the three
highest means are are similar to each other and different from the others.

(d) The split plot anova can be obtained with

summary(aov(Y ~K+Error(Block/K)+P*K))

or realize that the anova will be the same as above with the exception
that the split plot error is P × B + K × P × B. The conclusions are the
same.

Exercise 5.19

(a) The R code

summary(aov( UrRibo ~ Order + Error(Order/Subject) +Order*Period))

produces the anova table in Example 5.14. If we run the oneway anova

summary(aov( UrRibo ~ Treatment, data=aovdata ))

we get the output

Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 835.44 835.44 8.0827 0.009462 **

Residuals 22 2273.96 103.36

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

which shows that the treatment sum of squares is 835.44, and equals the
P × O interaction sum of squares.

(b) The effect of Order is not significant, suggesting that there is no carryover.
(c) No evidence of a time trend = Period is not significant.
(d) Since treatment is significant, there is an effect of exercise on urinary

riboflavin. The test for carryover is not significant, which says that, in
particular, the effect of exercise does not carry over - one needs to continue
exercise to maintain the effect.

(e) The following R code does the anova for Period 1:

aovdata1 <- subset(aovdata, Period=="1")

summary(aov( UrRibo ~ Treatment, data=aovdata1 ))

with output
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Df Sum Sq Mean Sq F value Pr(>F)

Treatment 1 952.30 952.30 5.7853 0.03698 *

Residuals 10 1646.07 164.61

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

So the difference is significant.
(f) and (g) If we want to maintain the within subject comparison, there is not

much that we can do other than a crossover with 12 per group. Otherwise,
we could do a oneway CRD on E/NE. The increased number of subjects
might overcome the fact that this is a between-subjects rather than within-
subjects design. The anova and tests are straightforward.

Exercise 5.21

(a) There would be six squares, accounting for 5 df. Period is crossed with
Squares, and crossed with Subjects within squares. The R code is

aov(Y ~Square+Error(Subject/Square)+Period*Square)

producing the anova table

Source df SS MS F p-value

Square 5 545.88 109.18 0.5801 0.7167
Subject (in Square) 6 1129.26 188.21

Period 1 3.53 3.53 0.0208 0.8900
Square × Period 5 415.21 83.04 0.4906 0.7741
SP Error 6 1015.51 169.25

where the SP Error is Period × Subjects in Square.
(b) The easiest was to do this is to run the full crossed anova

summary(aov(Y ~Order*Period*Square))

resulting in

Df Sum Sq Mean Sq

Order 1 217.20 217.20

Period 1 3.53 3.53

Square 5 545.88 109.18

Order:Period 1 835.44 835.44

Order:Square 5 912.06 182.41

Period:Square 5 415.21 83.04

Order:Period:Square 5 180.07 36.01
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Now the relevant terms can be added together.
(c) We note that nothing is gained, in either df or confounding, by running the

experiment in Latin squares. The reason to do it is when it is difficult to
keep the conditions the same for all of the subjects. By running the squares
we only have to make sure that the pairs of subjects are under identical
conditions, other than the treatment. This could be an advantage.

Exercise 5.23

First note that you have to add a column to the dataset for the variable
“Square”. Upon doing that, the R command

summary(aov(Y ~Square+Error(Subject/Square)+Period+Drug+Period*Square))

produces the output

Error: Subject

Df Sum Sq Mean Sq F value Pr(>F)

Square 1 18.0 18.0 0.0115 0.9196

Residuals 4 6234.4 1558.6

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Period 2 1053.8 526.9 0.5208 0.6186

Drug 2 2276.8 1138.4 1.1252 0.3846

Square:Period 2 4709.3 2354.7 2.3275 0.1786

Residuals 6 6070.1 1011.7

Above the line are the 5 df for Order, here broken in to Square and Resid-
uals (WP error). Below the line we have Period and Drug as before, but now
we have taken the Residual form the anova in Example 5.15 and broken it
into two pieces, removing the Period × Square variability from the Residual.
This would be advantageous if the Period × Square variability is large; here it
doesn’t make much of a difference. Note also that we can only do this anova
if the experiment were actually run in Latin squares.

Exercise 5.25

(a) Here we are only interested in the treatments A and A+B, so we should
choose among the orders A → A + B → A and A + B → A → A + B.
With 4 subjects in each order, we have two groups with one order and one
group with the other. Then the anova is
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Source df

Groups 2
Order (in Groups) 1
Subjects (in Groups) 9

Period 2
P × G 4
Treatment 1
Residual 17

where the residual is the SP error with the treatment SS removed. The
P ×O interaction will be a piece of P ×G.
The problem required a three-period crossover and 4 subjects per order.
However, it seems that there are two better designs. First, we could do
a two-period crossover with A → A + B and A + B → A. Or, if we do
the three-period we could use 3 subjects per order and then balance the
orders.

(b) Now we are interested in all six orders, and we should choose three at
random. The anova is

Source df

Order 2
Subjects (in Order) 9

Period 2
P × O 4
Treatment 1
Residual 17

Exercise 5.27

(a) The oneway analysis yields the same F statistic (1.5981) and p-value
(0.2418) as the test on treatments in the original split plot design. Note
that SS(Trt) and SS(Res) are equal to 1/3 of their values from the origi-
nal analysis, since we have replaced the three time observations with their
average.

(b) Since this is a trend over time, it is reasonable to look at linear and
quadratic trend. The anova is

Source df SS MS F p-value

Treatment 1 1153.2 1153.2 1.5981 0.2418
WP Err 8 5772.9 721.6
Time 2 343.3 171.6
Linear 1 211.3 211.3 1.9083 0.1861
Quadratic 1 132.0 132.0 1.1926 0.2910

Trt × Time 2 5028.2 2514.1
SP Err 16 1771.9 110.7
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(c) (i) To run the CRD we must treat the subjects in a totally random order,
assigning a subject to a treatment and a time period. The anova is

Source df

Trt 1
Time 2
Trt × Time 2
Within 24

(ii) If you run the CRD in R the within SS is 7544.8. This is partitioned
as

SS(Within) = 7544.8 = 5772.9+ 1771.9 = SS(WP Err) + SS(SP Err),

with the df also partitioning.
(iii) The CRD might be preferable if we are interested in comparing the

two treatments, since then we would have 24 df for the test.

Accompaniment

Exercise 5.29

(a) Under the identifiable condition that

τ̄ = γ̄ = (τ̄γ)i· = (τ̄γ)·k = 0,

we have
Yijk = µ+ τi +ǫij+ γk +(τγ)ik +δijk,
Yij = µ+ τi +ǫij+ +(τγ)i· +δij·,
Yi·k = µ+ τi +ǫi·+ γk +(τγ)ik +δi·k,
Yi·· = µ+ τi +ǫi·+ +(τγ)i· +δi··,
Yk = µ+ +ǫ··+ γk +(τγ)·k +δ··k,
Y··· = µ+ +ǫ··+ +δ···,

and therefore the calculations for the expectations of the sum of squares
are as follows

ESS(WP) = rgE
∑

i

(yi.. − y...)
2 = rgE

∑

i

(τi + ǫi − ǫ+ δi − δ)2

= rg

(

∑

i

τ2
i + (t− 1)

σ2
ǫ

r
+ (t− 1)

σ2
δ

gr

)

= (t− 1)

(

rg

t− 1

∑

i

τ2
i + gσ2

ǫ + σ2
δ

)

,

ESS(Reps in WP) = gE
∑

i

(yij. − yi..)
2 = gE

∑

i

(ǫij − ǫi + δij − δi)2

= g

(

t(r − 1)σ2
ǫ + t(r − 1)

σ2
δ

g

)

= t(r − 1)
(

gσ2
ǫ + σ2

δ

)

,
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ESS(SP) = rtE
∑

i

(y.k. − y...)
2 = gE

∑

i

(γk + δk − δ)2

= rt

(

∑

k

γ2
k + (g − 1)

σ2
δ

rt

)

= (g − 1)

(

rt

g − 1

∑

i

γ2
k + σ2

δ

)

,

ESS(SP × WP) = rE
∑

ik

(yi.k − yi.. − y..k + ȳ...)
2

= rE
∑

ik

((τγ)ik + δik − δi − δk + δ)2

= r

(

∑

ik

(τγ)2ik + r(g − 1)(t− 1)
σ2

δ

r

)

= (g − 1)(t− 1)

(

r

(g − 1)(t− 1)

∑

i

(τγ)2ik + σ2
δ

)

,

ESS(SP × Rep in WP) = E
∑

ijk

(yijk − yij. − yi.k + yi..)
2

= E
∑

ijk

(δijk − δij − δik + δ)2

= t(g − 1)(r − 1)σ2
δ .

By dividing their corresponding df, the anova table with MS can be easily
verified.

(b) We start with

Yijk = µ+ τi +βj+ +ǫij+ γk +(τγ)ik +(βγ)jk +δijk,
Yij = µ+ τi +βj+ +ǫij+ +(βγ)j· +δij·,
Yjk = µ+ +βj+ +ǫij+ γk +(βγ)jk +δ·jk,
Yik = µ+ τi +β̄+ +ǫi·+ γk +(τγ)i· +(βγ)·k +δi·k,
Yi = µ+ τi β̄ +ǫi·+ +(βγ)·· +δi··,
Yj = µ+ +βj+ +ǫ·j+ +(βγ)j· +δ·j·,
Yk = µ+ +β̄+ +ǫ··+ γk +(βγ)·k +δ··k,
Y = µ+ +β̄+ +ǫ··+ +(βγ)·· +δ···,

and the calculation of the expectations of the sums of squares are

ESS(Blocks) = gtE
∑

j

(yj − y)2 = gtE
∑

j

(βj − β̄ + ǫ·j − ǫ·· + (βγ)j· − (βγ)·· + δj − δ)2

= gt

(

(b− 1)σ2
β + (b− 1)

σ2
ǫ

t
+ (b− 1)

σ2
βγ

g
) + (b− 1)

σ2
δ

gt

)

= (b− 1)
(

gtσ2
β + gσ2

ǫ + tσ2
βγ + σ2

δ

)

,
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ESS(WP) = bgE
∑

i

(yi − y)2 = bgE
∑

j

(τi + ǫ·i − ǫ·· + δi − δ)2

= bg

(

∑

i

τ2
i + (t− 1)

σ2
ǫ

b
+ (t− 1)

σ2
δ

gb

)

= (t− 1)

(

bg

t− 1

∑

i

τ2
i + gσ2

ǫ + σ2
δ

)

,

ESS(B × WP) = gE
∑

ij

(yij − yi − yj + y)2

= gE
∑

ij

(ǫij − ǫi· − ǫ·j + ǫ·· + δij − δi − δj + δ)2

= g

(

(b − 1)(t− 1)σ2
ǫ + (b− 1)(t− 1)

σ2
δ

g

)

= (t− 1)(b − 1)
(

gσ2
ǫ + σ2

δ

)

,

ESS(SP) = btE
∑

k

(yk − y)2

= btE
∑

k

(γk + +(βγ)·k − (βγ)·· + δk − δ)2

= bt

(

∑

k

γ2
k + (g − 1)

σ2
βγ

b
+ (g − 1)

σ2
δ

bt

)

= (g − 1)

(

bt

g − 1

∑

k

γ2
k + tσ2

βγ + σ2
δ

)

,

ESS(SP × WP) = bE
∑

ik

(yik − yi − yk + y)2

= bE
∑

ij

((τγ)ik + δik − δi − δk + δ)2

= b

(

∑

ik

(τγ)2ik + (t− 1)(g − 1)
σ2

δ

b

)

= (t− 1)(g − 1)

(

b

(t− 1)(g − 1)

∑

ik

(βγ)2ik + σ2
δ

)

,

ESS(B × SP) = tE
∑

jk

(yjk − yj − yk + y)2
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= tE
∑

jk

((βγ)jk − (βγ)j· − (βγ)·k + (βγ) + δjk − δj − δk + δ)2

= t

(

(g − 1)(b− 1)
σ2

βγ

t
+ (g − 1)(b − 1)σ2

δ

)

= (b − 1)(g − 1)
(

tσ2
βγ + σ2

δ

)

,

ESS(B × SP × WP) = E
∑

ijk

(yijk − yij − yjk − yik + yi + yj + yk − y)2

= E
∑

ijk

(δijk − δij − δjk − δik + δi + δj + δk − δ)2

= (t− 1)(g − 1)(b− 1)σ2
δ ,

By dividing by the corresponding df, the EMS table can be verified.

Exercise 5.31

(a) The microarray model is a split plot design with model equation

yijk = µ+ Ti +Aij +Gk + (TG)ik + ǫijk,

where i = 1, · · · , t, j = 1, · · · , r and k = 1, · · · , g. The least square estimate
of (TG)ik is

ˆ(TG)ik = ȳi.k − ȳi.. − ȳ..k + ȳ...

and the least square estimate of (TG)i′k is

ˆ(TG)i′k = ȳi′.k − ȳi′.. − ȳ..k + ȳ...

and hence the least square estimate of (TG)ik − (TG)i′k is

(ȳi·k − ȳi··)− (ȳi′·k − ȳi′··) .

(b) We have

Var (ȳi·k − ȳi··) = V ar (ǭi·k − ǭi··) =

(

1− 1

g

)

σ2

r
= (g − 1)

σ2

gr

for all i = 1, · · · , t, and ȳi·k − ȳi·· and ȳi′·k − ȳi′·· are independent if i 6= i′,
thus

Var ((ȳi·k − ȳi··)− (ȳi′·k − ȳi′··)) = 2V ar (ȳi·k − ȳi··) =
g − 1

g

(

2

r

)

σ2.
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Exercise 5.33

(a) First, we have

∑

k

a2
ik =

∑

k

(aik − āi + āi)
2 =

∑

k

(aik − āi)
2 + gā2

i .

Then (5.12) can be rewritten as

Var

(

∑

ik

aikȲik

)

=
σ2

δ

r

∑

ik

a2
ik +

σ2
ǫ

r

∑

i

(

∑

k

aik

)2

=
σ2

δ

r

∑

i

(

∑

k

(aik − āi)
2

+ gā2
i

)

+
σ2

ǫ

r

∑

i

(

∑

k

aik

)2

=
σ2

δ

r

∑

ik

(aik − āi)
2 +

gσ2
δ

r

∑

i

ā2
i +

σ2
ǫ

r

∑

i

(

∑

k

aik

)2

=
σ2

δ

r

∑

ik

(aik − āi)
2
+
σ2

δ

gr

∑

i

(

∑

k

aik

)2

+
σ2

ǫ

r

∑

i

(

∑

k

aik

)2

=
σ2

δ

r

∑

ik

(aik − āi)
2
+
σ2

δ + gσ2
ǫ

gr

∑

i

(

∑

k

aik

)2

.

(b) Since Mi are independent and

Mi ∼
χ2

νi

νi
, i = 1, · · · , k,

we have E(Mi) = 1 for all i = 1, · · · , k, and hence

E

(

∑

i

aiMi

)

=
∑

i

aiE (Mi) =
∑

i

ai.

(c)

E

(

χ2
ν

ν

)2

= Var

(

χ2
ν

ν

)

+

(

E

(

χ2
ν

ν

))2

=
1

ν2
· 2ν + 1 =

2

ν
+ 1.

Equating second moments we have

E

(

∑

i

aiMi

)2

= E

(

χ2
ν

ν

)2

=
2

ν
+ 1,
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and solving for ν gives

ν =
2

E (
∑

i aiMi)
2 − 1

.

We now substitute (
∑k

i=1 aiYi)
2 for the expected value above, to get ν̂,

which could be negative.

Exercise 5.35

(a) This follows from the fact that

Ȳi = β̄ + ε̄i + (τ̄β) + δ̄i

(b) This follows from the fact that

Ȳk = β̄ + ε̄+ (τ̄β)k + δ̄k

(c) Similarly, write
Ȳik = β̄ + ε̄i + (τ̄β)k + δ̄ik

to get variances and covariances. We then get

Var

(

∑

k

akȲik

)

=
σ2

δ + σ2
βγ

b

∑

k

a2
k +

1

b
(σ2

ε + σ2
β)

(

∑

k

aik

)2

,

but the sum in the second term is zero because this is a within WP
contrast.

(d) Part (c) can be used for the first term since the different WP treatments
have independent observations. To calculate the covariance write

Cov

(

∑

k

aikȲik,
∑

k

ai′kȲi′k

)

= E

(

∑

k

aik(β̄ + ε̄i + (τ̄γ)k + δ̄ik)
∑

k′

ai′k′(β̄ + ε̄i′ + (τ̄γ)k′ + δ̄i′k′)

)

= E

(

∑

k

∑

k′

aikai′k′ [β̄2 + ¯(βγ)k
¯(βγ)k′ ]

)

=
σ2

β

b

∑

kk′

aikai′k′ +
σ2

βγ

b

∑

k

aikai′k.

Now combining everything gives

Var

(

∑

ik

aikȲik

)

=
∑

i





σ2
δ + σ2

βγ

b

∑

k

a2
ik +

σ2
ε + σ2

β

b

(

∑

k

aik

)2




+
∑

i>i′

[

σ2
β

b

∑

k

aik

∑

k′

ai′k′ +
σ2

βγ

b

∑

k

aikai′k

]

.
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Now doing the algebra to combine all of the aik will give (5.20).

Exercise 5.37

Everything above the split split level is the same as in the split plot anova, Ta-
ble 5.3. The only difference is that the calculations use Ȳijk, where Var(Ȳijk) =
σ2

ε +σ2
δ + 1

sσ
2
ω. The split split calculations are also reminiscent of prvious ones.

For example

ESS(SSP Trt) = rgt
∑

ℓ

E(Ȳℓ − ¯̄Y )2 = rgt
∑

ℓ

E(ψℓ + ω̄ℓ − ω̄)2

= rgt
∑

ℓ

ψ2
ℓ + rgt(ℓ− 1)

σ2
ω

rgt
,

ESS(SSP Trt × WP Trt) = rg
∑

iℓ

E((τψ)iℓ + ω̄iℓ − ω̄i − ω̄ℓ + ω̄)2

= rg
∑

iℓ

(τψ)2iℓ + σ2
ω

[

1

rg
− 1

srg
− 1

trg
+

1

tsrg

]

= rg
∑

iℓ

(τψ)2iℓ + σ2
ω

(t− 1)(s− 1)

tsrg
.

Exercise 5.39

Referring to Technical Note 5.8.2:

(a) Since the observations in different whole plots are independent, the co-
variance matrix must be in diagonal blocks. Within a whole plot we have
equicorrelation, which resluts in blocks of the form σ2

δI + σ2
εJ .

(b) All of the matrix properties are established by careful matrix multiplica-
tion. No tricks.

(c) Application of Cochran’s theorem is straightforward.

Exercise 5.41

(a) From (5.27), we see that

Cov(Yijk , Yi′j′k′ )

= Cov(βj + (βτ )ij + (βγ)jk + (βτγ)ijk + εijk, βj′ + (βτ)i′j′ + (βγ)j′k′ + (βτγ)i′j′k′ + εi′j′k′ ).

Unless j = j′ the observations are in different blocks and are independent.
Note that the covariance terms only come from variances, which only
appear if the indices are the same. If i = i′ but k 6= k′, we have

Cov(Yijk , Yijk′ ) = Cov(βj + (βτ)ij , βj + (βτ)ij) = σ2
β + σ2

βτ .

The other case, where i 6= i′ but k = k′ is similar.
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(b) Here all of the indices i, j, k match, so we get all variance components
with those indices. The calculation is almost the same as in part (a).





6

Confounding in Blocks

Essential

Exercise 6.1

(a) This is a balanced incomplete block design (BIBD), with 3 treatments A,
B and C and 2 blocks. The A×B×C interaction is completely confounded
with the block effect. The R code used to generate the anova table is

summary(aov(Y ~ Block + A*B*C, data = aovdata))

which gives the anova table

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 97.5 97.5 2.4481 0.12330

A 1 8625.8 8625.8 216.5505 < 2e-16 ***

B 1 22312.9 22312.9 560.1667 < 2e-16 ***

C 1 10480.6 10480.6 263.1172 < 2e-16 ***

A:B 1 159.4 159.4 4.0015 0.05032 .

A:C 1 9.8 9.8 0.2452 0.62244

B:C 1 15.0 15.0 0.3770 0.54172

Residuals 56 2230.6 39.8

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

so everything is, by default, tested against “Residual”, which is a mixture
of the Block × Treatment interactions. We see that the A, B and C main
effects are all significant, the A × B interaction is borderline significant,
and the other two interactions are not significant.
The 95% confidence interval for the B × C interaction is (−8.26, 4.38).
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(b) From the effects listed in Example 6.1, we see that the threeway interaction
is completely comfounded with blocks, so we can just say “the sums of
squares MUST be the same”, which is true. But lets see this precisely.
The cell means are

Effect
Block Trt. Comb A B C AB AC BC ABC Cell Mean

1 a + − − − − + + 107.75
1 b − + − − + − + 168.500
1 c − − + + − − + 154.375
1 abc + + + + + + + 166.750
2 (1) − − − + + + − 129.50
2 ab + + − + − − − 145.375
2 ac + − + − + − − 136.000
2 bc − + + − − + − 196.375

So the sum of squares for the threeway interaction contrast is

(107.75+168.50+154.375+166.750−129.5−145.375−136.0−196.375)2 = 97.5,

which agrees with the anova table.
(c) The anova table is given in Example 6.2

Exercise 6.3

(a) The easiest way to see this is to look at the effect table in Example 6.3,
and make sure that the block pairs have two pluses and two minuses for
each effect.

Effect Block Pairs
A × Block B, C, BC
B × Block A, C, AC
C × Block A, B, AB
AB × Block C, AC, BC
AC × Block B, AB, BC
BC × Block A, AB, AC
ABC × Block A, B, C

(b) b = 14, t = 8, k = 4, r = 7, λ = 3
(c) With eight treatments we have 8r = bk and 7λ = r(k − 1). Eliminating

r gives 56λ = bk(k − 1). We now check this for k = 1, . . . , 7 (k = 8 is an
RCB).

k λ b
2 1 28
3 3 28
4 3 14
5 5 14
7 3 4
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There is no solution for k = 6. The most interesting is k = 7, where we
only need 4 blocks and 28 observations.

Exercise 6.5

(a) Specific case.

(i)

A B C D E F G
B C D E F G A
C D E F G A B
D E F G A B C
E F G A B C D
F G A B C D E
G A B C D E F

(ii)
A B C D E F G
B C D E F G A
D E F G A B C

Yes. b = 7, t = 7, k = 3, r = 3, λ = 1

(iii)

C D E F G A B
E F G A B C D
F G A B C D E
G A B C D E F

Yes. b = 7, t = 7, k = 4, r = 4, λ = 2
(b) General case.

If you write out the standard cyclic square and drop any column, then
clearly t = b = p−1. We also have k = p−1 by construction, and r = p−1
because of the Latin square. Lastly, λ = p− 1.

Exercise 6.7

(a) b = 4, t = 4, k = 3, r = 3, λ = 2
(b) The following table gives the contrasts for the effects and the blocking

structure. We see that no effect is confounded with blocks (there is never
the same sign in a block). However, there is confounding with the Trt ×
Block interactions.
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Effect
Block Trt. Comb A B AB

1 (1) − − +
1 a + − −
1 b − + −
2 (1) − − +
2 a + − −
2 ab + + +
3 (1) − − +
3 b − + −
3 ab + + +
4 a + − −
4 b − + −
4 ab + + +

The anova table is

Source df

Blocks 3
A 1
B 1
AB 1
Trts × Blocks 5

The full RCB would have 9 df for the Trts × Blocks interaction. The
confounding is here.

Exercise 6.9

(a) The easiest way to answer this question is to stare at the effect table in
Example 6.1.

Rep Confounded

1 AB
2 AC
3 BC
4 ABC

(b) It was mean not to put the data online, but it is instructive to go from
the data layout in the book to the data file ABCdata. which is online. The
relevant R code is

summary(aov(Y ~Rep+Block+A*B*C,data=aovdata))

giving the anova

Df Sum Sq Mean Sq F value Pr(>F)

Rep 3 123.750 41.250 5.9302 0.005845 **
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Block 4 125.750 31.438 4.5196 0.011398 *

A 1 200.000 200.000 28.7526 5.174e-05 ***

B 1 8.000 8.000 1.1501 0.298516

C 1 4.500 4.500 0.6469 0.432316

A:B 1 22.042 22.042 3.1688 0.092938 .

A:C 1 15.042 15.042 2.1624 0.159687

B:C 1 1.500 1.500 0.2156 0.648270

A:B:C 1 16.667 16.667 2.3961 0.140056

Residuals 17 118.250 6.956

Of course we only have partial information on the interactions, and the
residual is a mixture of all of the Trt × Block interactions.

(c) The main effects can be estimated with

tapply(Y,A,mean)-mean(Y)

which gives

0 1
A -2.5 2.5
B 0.5 -0.5
C 0.375 -0.375

with variance estimate (1.5)

σ̂2

r

(

1− 1

t

)

=
6.956

16

(

1− 1

3

)

= 0.2898.

This was probably not the right variance to ask for, the variance of a
difference is more useful.

Exercise 6.11

(a) The parameters of the BIBB are b = 10, t = 5, k = 3, r = 6, λ = 3. The
blocks are

1
2
3

1
2
4

1
2
5

1
3
4

1
3
5

1
4
5

2
3
4

2
3
5

2
4
5

3
4
5

(b) The anova and treatment means come from the R code

summary(aov(Force~Block+Trt,data=aovdata))

tab<-list(Trt)

tapply(Force,tab,mean)

yielding
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Df Sum Sq Mean Sq F value Pr(>F)

Block 9 1097669 121963 13.892 5.526e-06 ***

Trt 4 2033580 508395 57.906 2.577e-09 ***

Residuals 16 140474 8780

---

1 2 3 4 5

1316.943 1503.112 1941.830 1928.415 2045.550

(c) Using (6.2), the least squares means are

Treatment
1 2 3 4 5

−505.263 −304.105 320.481 126.296 362.593

with estimated variance, from (6.5)

3

15

4

5
× 8780 = 1404.8.

I don’t know how to get these means out of R . Using the code

> bone=lm(Force~Block+Trt,data=aovdata)

> bone$coefficients

gives the output

(Intercept) Block10 Block2 Block3 Block4 Block5

1476.7358 -68.7060 -184.5753 -117.3949 -472.4056 138.4482

Block6 Block7 Block8 Block9 Trt2 Trt3

-322.8271 -113.4076 -175.8038 -136.4391 147.6460 580.4067

Trt4 Trt5

668.0727 682.6013

which are not the above least squares means. They may be using a different
normalization.

(d) The standard deviation of a difference is
√

2 ∗ 1404.8 = 53.01, so it appears
that treatments 3 and 5 are superior. The dip in treatment 4 is strange.
The test for linear trend can be done with

(sum(contr.poly(5)[,1]*tapply(Force,Trt,mean)))^2

/sum(contr.poly(5)^2)/8780

giving a value of 10.09074 with a p-value of 0.00586, showing a significant
linear trend.

(e) This is a very strange plan. First, allocating observations based on the data
results in a bias that is not controllable and, second, they are unbalancing
the BIBD and thus introducing the block variation into the contrasts.
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The BIBD eliminates the block variability form the contrasts, and they
are putting it back!
A better strategy might be to run two experiments. After the first, using
30 observations, they can eliminate a treatment. With t = 4 they only
need 4 blocks (b = 4, t = 4, k = 3, r = 3, λ = 2) taking 12 observations.

Exercise 6.13

(a)

Effect
Array Trt. Comb P T PT Confounded

1 (1) − − + T
p + − −

2 p + − − P
pt + + +

3 (1) − − + P
t − + −

4 (1) − − + PT
pt + + +

(b) The parameters in this case are

(t, b, k, r, λ) = (4, 6, 2, 3, 1).

We can add two blocks, (p, t) and (t, pt), to get a BIBD.

Using the notation

Array 1 1 2 2 3 3 4 4 5 5 6 6
Trt (1) p p pt (1) t (1) pt p t t pt

Label y111 y121 y221 y222 y311 y312 y411 y422 y521 y512 y612 y622,

from (6.2) the treatment effect estimates are

τ̂(1) =
1

4
(y111 + y311 + y411 − y121 − y312 − y422)

τ̂p =
1

4
(y121 + y221 + y521 − y111 − y222 − y512),

τ̂t =
1

4
(y312 + y512 + y612 − y311 − y521 − y622),

τ̂pt =
1

4
(y222 + y422 + y622 − y221 − y411 − y612),

and we can estimate the treatment effect differences with

Effect of P :
τ̂p + τ̂pt

2
− τ̂t + τ̂(1)

2

Effect of T :
τ̂t + τ̂pt

2
− τ̂p + τ̂(1)

2
Effect of PT : τ̂pt − τ̂p − τ̂t + τ̂(1).
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(c) As there is no (assumed) interaction, and the model equation is

Yijk = µ+Ai + Pj + Tk + ǫijk,

we have

Y222 − Y221 = T2 − T1 + ǫ222 − ǫ221,

which is an estimate of T2−T1, as is Y312−Y311. Also, Y121−Y111 estimates
P2 − P1. There are others to be found.

(d) The anova comes from the R code

summary(aov(Y ~Rep*TrtComb+Array,data=aovdata))

and we can also get the individual sums of squares with

summary(aov(Y ~Rep*P*T+Array,data=aovdata))

For standard errors of the differences in part (c), it seems that the best
that we can do is to estimate the variance of each mean with 0.3626/3,
and then use the variance of the difference.

(e) The best design is a BIBD, and with 12 arrays we can only run two of
them, as part (b) shows that we need six arrays. An alternative would be
a loop such as

P
ր ց
PT← T

which could do all three tissues with nine arrays.
(f) In the statement of the problem there may be some confusion between true

replication (running the same experiment) and replicating the experiment
for different tissues. In part (d) the reference is to true replication, but in
part (f) the replication is actually different tissues. This was the exper-
iment that was actually done. However, since these are different tissues,
we should analyze each “replication” separately.
We do the analysis for Rep=1, one of the tissue types, using the R code

if(Rep==1)

{

summary(aov(Y ~P*T+Error(Array/P:T)+Gene*P*T,data=aovdata))

}

This gives the output

Error: Array

Df Sum Sq Mean Sq F value Pr(>F)

P 1 22.041 22.041 183.71 8.434e-07 ***
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T 1 31.577 31.577 263.19 2.096e-07 ***

P:T 1 144.573 144.573 1204.97 5.188e-10 ***

Residuals 8 0.960 0.120

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: Array:P:T

Df Sum Sq Mean Sq F value Pr(>F)

P 1 11.1882 11.1882 127.545 1.289e-06 ***

T 1 5.8985 5.8985 67.242 1.816e-05 ***

P:T 1 1.9551 1.9551 22.288 0.001088 **

Residuals 9 0.7895 0.0877

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Gene 149 5519.9 37.0 296.2086 < 2.2e-16 ***

P:Gene 149 49.7 0.3 2.6674 < 2.2e-16 ***

T:Gene 149 91.9 0.6 4.9333 < 2.2e-16 ***

P:T:Gene 149 27.5 0.2 1.4782 0.0002079 ***

Residuals 2980 372.7 0.1

which shows that all of the interactions are wildly significant. At this point
there are many choices, but perhaps the easiest is to run an anova for each
gene to get the individual interaction sum of squares. The question is then
what to use for the denominator of the test. To use the overall split plot
error .1 with 2980 degrees of freedom makes the strong assumption that
there is homogeneity across genes. But not to pool at all, and do the
individual tests, loses power. The best answer is still unknown, but is
probably in the middle somewhere. See, for example, Cui et al. (2005).

Exercise 6.15

(a)

A with ABC
x2 + x3 = 0 x2 + x3 = 1

000
011
100
111

=

(1)
bc
a

abc

001
010
101
110

=

c
b
ac
ab
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C with ABC
x1 + x2 = 0 x1 + x2 = 1

000
001
110
111

=

(1)
c
ab
abc

010
011
100
101

=

b
bc
a
ac

(b) We have seven effects to confound with blocks.
(c) There are 2 distinct fractions
(d) There are 2p−q distinct fractions

Exercise 6.17

(a) The intrablock subgroup is

x1 + x2 + x3 + x4 + x5 = 0
and x1 + x2 + x3 + x4 = 0

00000
00110
01010
01100
10010
10100
11000
11110

=

(1)
cd
bd
bc
ad
ac
ab

abcd

Note that the subgroup given in the text is not this one; this is the correct
one. The other three blocks are

x1 + x2 + x3 + x4 + x5 = 0
and x1 + x2 + x3 + x4 = 1

00001
00111
01011
01101
10011
10101
11001
11111

=

e
cde
bde
bce
ade
ace
abe

abcde
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x1 + x2 + x3 + x4 + x5 = 0
and x1 + x2 + x3 + x4 = 0

00011
00101
01001
01111
10001
10111
11011
11101

=

de
ce
bc

bcde
ae

acde
abde
abce

x1 + x2 + x3 + x4 + x5 = 0
and x1 + x2 + x3 + x4 = 0

00010
00100
01000
01110
10000
10110
11010
11100

=

d
c
b

bcd
a

acd
abd
abc

(b) Write

0 = x1 + x2 + x3 + x4 + x5 = x1 + x2 + x3 + x4 = x5

and then successively add x1, x2, x3, x4, x1 + x2, x1 + x3, x1 + x4 to all
sides of the equation.

(c) The intrablock subgroup is

x1 + x2 + x3 + x4 = 0
and x2 + x3 + x4 + x5 = 0

00000
00110
01010
01100
10011
10101
11001
11111

=

(1)
cd
bd
bc
ade
ace
ade

abcde

For the alias sets write

0 = x1 + x2 + x3 + x4 = x2 + x3 + x4 + x5 = x1 + x5

and proceed as above to get
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{(1), ABCD,BCDE,AE} {A,BCD,ABCDE,E}
{B,ACD,CDE,ACE} {C,ABD,BDE,ACE}
{D,ABC,BCE,ADE} {AB,CD,ACDE,BE}
{AC,BD,ADE,CE} {AD,BC,ABCE,DE}.

This is probably a better set of aliases, as the main effects tend to be
confounded with higher order terms, although we do confound A with E.
However, with such a small fraction there is really no good way out - there
will always be lots of confounding!

Exercise 6.19

(a)

{(1), ABCDE} {A,BCDE} {B,ACDE} {C,ABDE}
{D,ABCE} {E,ABCD} {AB,CDE} {AC,BDE}
{AD,BCE} {AE,BCD} {BC,ADE} {BD,ACE}
{BE,ACD} {CD,ABE} {CE,ABD} {DE,ABC}

(b) If we assume that there are no threeway or higher interactions, we can
write the data as (using the aliases)

c 26 b 25 (1) 36 ac 46

ab 29 be 35 cd 23 a 32

ce 40 ae 28 d 35 de 27

bd 22 e 21 ad 37 bc 39

We can estimate main effects like:

C effect:(c− (1)) + (ce− e) + (cd− d) + (ac− a) + (bc− b)

and interactions such as

AC interaction:(c− (1))− (ac− a).

(c) We can actually get out sums of squares for all main effects and twoway
interactions, but then we would have no degrees of freedom for error. So
we only get to specify some of the twoway interactions, and leave the rest
for ”residual”. The R code

summary(aov(Y ~ A+B+C+D+E+A*B+A*C+A*D+A*E,data=aovdata))

gives the anova

Df Sum Sq Mean Sq F value Pr(>F)

A 1 3.06 3.06 0.0747 0.79373

B 1 33.06 33.06 0.8068 0.40367

C 1 27.56 27.56 0.6726 0.44350

D 1 351.56 351.56 8.5791 0.02632 *
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E 1 1.56 1.56 0.0381 0.85163

A:B 1 45.56 45.56 1.1118 0.33228

A:C 1 3.06 3.06 0.0747 0.79373

A:D 1 18.06 18.06 0.4408 0.53142

A:E 1 68.06 68.06 1.6609 0.24494

Residuals 6 245.87 40.98

(d) For the model specified in (c), we can test all main effect differences, and
differences involving the specified interactions. However we specify the
model tells what assumptions that we are making about interactions -
which ones we are assuming to be zero and which effects we will estimate.

Exercise 6.21

(a) If we ignore columns, then every treatment is in every row (block). As
long as the randomization is properly dome, this is an RCB.

(b) Explain why, if we ignore rows, we have a BIBD. Identify the BIBD pa-
rameters.
Without rows, the treatments are balanced with b = 4, t = 4, k = 3, r =
3, λ = 2.

(c) The model is straightforward, but we have to be careful about the indices.
The development of the Latin square model, see (3.30), is probably the
most similar. Write

yijk
= µ+ τi + Cj +Rk + εjk,

where R and C are the row and column effects, j = 1, . . . , 4, k = 1, . . . , 3,
and

ijk ∈ Ii = {(j, k)yijk
is from treatment i}.

(d) We can (naively) estimate τi with

τ̃i = ȳi − {mean of columns containing treatment i}

= ȳi −
1

3× 3

∑

(j,k)∈Ii

yijk
,

where the 3× 3 comes from the fact that we know that treatment i is in
3 columns and 3 rows. We can calculate the expected value of τ̃i (make a
table like the one after model (3.30) to be

E(τ̃i) =

(

1− 1

9

)

τi,

showing us that τ̃i is biased, and τ̂i = 9
8 τ̃i is unbiased and, in fact, must

be the least squares estimator. For the general least squares estimator
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see Dean and Voss (1999, Section 12.4.2) but be aware that they have
swapped the definition of rows and columns.
Since τ̃i is free of R and C effects, as they cancel out, the only variability
comes from the εjk, so all contrasts are free of row and column effects.

(e) It is, in fact, a Latin square.

Exercise 6.23

(a) Here we have, in BIBD notation, k = 5 and t = 25. Since rt = bk we get
r = 6, b = 30, and λ = 1. If we specify k and t = k2, then algebra shows
r = k + 1, b = k(k + 1) and λ = 1.

(b) The model is a variation on (6.12), and is also similar to the model in
Exercise 6.21. Write

yijℓ
= µ+ τi +Rj + βjℓ + εjℓ,

where R and β are the rep and block effects. Here the number of blocks
is b = k(k + 1), so j = 1, . . . , k + 1, ℓ = 1, . . . , k, and

ijℓ ∈ Ii = {(j, ℓ) : yijℓ
is from treatment i}.

The anova table is

Source df

Reps k
Blocks (in Reps) (k + 1)(k − 1)
Treatments k2 − 1
Residual (k + 1)× (k − 1)2

Total k2 × (k + 1)− 1

The residual term is pieces of the T × R and T × B interactions. Note
that if this were and RCB nested in Reps, the error term for treatments
would be T × R (see Table 3.10 ).

(c) This is a BIBD so the treatment contrasts are free of blocks. We can use
the model (6.1) to see that the least squares estimates are

τ̂i =
1

k



(k + 1)ȳi −
∑

j∈Ji

ȳj



 .

If we partition the blocks into Reps and Blocks in Reps, and use the model
in part (b), we find

ȳi = µ+ τi +
1

k + 1

k+1
∑

j=1

Rj +
∑

(j,ℓ)∈Ji

βjℓ

∑

j∈Ji

ȳj =

k+1
∑

j=1

∑

(j,ℓ)∈Ji

ȳjℓ
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= (k + 1)µ+ (k + 1)τi +
∑

i′ 6=i

τi′ +

k+1
∑

j=1

Rj +

k+1
∑

j=1

∑

(j,ℓ)∈Ji

βjℓ,

and we see the the Rj cancels out of τ̂i.
(d) The relevant R code is

aov(Yield ~ Rep+Block/Rep+Variety)

which produces the anova table

Df Sum Sq Mean Sq F value Pr(>F)

Rep 5 3.2953 0.6591 4.5642 0.0008889 ***

Block 24 11.2118 0.4672 3.2353 2.410e-05 ***

Variety 24 10.7547 0.4481 3.1034 4.581e-05 ***

Residuals 96 13.8618 0.1444

(e) Our estimate of MSE is 0.1444, and the standard error of a treatment
difference is

√
2× 0.1444 = 0.537. The R command

sort(round(tapply(Yield,Variety,mean),3))

produces a sorted table of treatment means

7 23 1 9 11 15 21 16 25
3.963 3.973 4.002 4.005 4.053 4.082 4.127 4.130 4.255

5 20 3 19 6 13 12 2
4.288 4.345 4.362 4.385 4.390 4.405 4.460 4.513
10 8 18 24 14 22 17 4

4.517 4.573 4.587 4.612 4.678 4.680 4.747 4.808

and with 96 degrees of freedom we can use a normal cutoff. The LSD
procedure would declare two means significantly different at α = .05if
their difference is greater than 1.96 × .537 = 1.053. Unfortunately, no
pairs are significantly different.

Exercise 6.25

(a) The relevant R code is

aov(ExpLevel~Array+Tissue+Gene+Tissue*Gene)

The anova table is

Df Sum Sq Mean Sq F value Pr(>F)

Array 1 0.874 0.874 62.601 3.701e-12 ***

Tissue 2 36.723 18.361 1315.790 < 2.2e-16 ***

Gene 99 129.949 1.313 94.063 < 2.2e-16 ***

Tissue:Gene 198 59.990 0.303 21.712 < 2.2e-16 ***

Residuals 99 1.382 0.014
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Note that we did not specify a split plot error - there are no degrees of
freedom to estimate it. The tests on Array and Tissue are nonsense, but
the interaction text is OK.

(b) The Dye effect is the contrast

Array
Dye 1 2
Red -1 -1
Green 1 1

and the treatment effect has 2 degrees of freedom, but is confounded with
Array. We can partition the treatment effect into two orthogonal 1 df
contrasts: (Liver +Muscle) - 2Placenta, which is given by

Array
Dye 1 2
Red -1 -1
Green 1 1

and Liver - Muscle, which is given by

Array
Dye 1 2
Red 0 0
Green 1 -1

So we see that the Dye effect is confounded with the average effect of the
treatment vs. the control.
If we use the R code

aov(ExpLevel~Array+Dye+Gene+Tissue*Gene)

we can get the SS for Dye. In fact, the anova is

Df Sum Sq Mean Sq F value Pr(>F)

Array 1 0.874 0.874 62.601 3.701e-12 ***

Dye 1 32.493 32.493 2328.495 < 2.2e-16 ***

Gene 99 129.949 1.313 94.063 < 2.2e-16 ***

Tissue 1 C 4.229 303.086 < 2.2e-16 ***

Gene:Tissue 198 59.990 0.303 21.712 < 2.2e-16 ***

Residuals 99 1.382 0.014

so we see that the Dye effect, or trt vs. control, is the big part of the
treatment effect. The 1 df Tissue here is the difference between Muscle and
Liver. Note also the the Tissue SS of the first anova has been partitioned

32.493 + 4.229 = 36.722.
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(c) This is just the least squares estimate (τγ)ij expressed on the log scale.
The variance is calculated according to Section 5.2.3, and is estimated
with the Residual term in the anova.

Exercise 6.27

(a) The original design was to divide each of the six mouse RNA into four,
and run the treatments: Control, Chemical, GFP, and GFP+transplant.
So the subject is a block and the treatments are in a CRD. To run the six
pairs would mean splitting the RNA into six parts. So within each subject
would be a BIBD with six arrays (blocks). The parameters of the BIBD
are b = 6, k = 2, t = 4, r = 3, λ = 1. The anova on the six mice, using
6× 6 = 36 arrays is

Source df

Subjects 5
Arrays (in Subjects) 30
Treatments 3
Residual 18

Total 71

where the residual contains the pieces of the T × A interaction.
(b) We can loop with

Control→ Chemical
↑ ↓

GFP ← GFP+transplant

or some other arrangement of the treatments in the loop. This will take
four arrays. To balance for dye swap would need eight arrays per subject.

(c) Clearly the BIBD is preferred, as the treatment comparisons will be free
of the array effects. The loop variance is given in (6.17), so the better
comparisons are for the treatments on the same array, but they will never
bee as good as the BIBD.

Accompaniment

Exercise 6.29

(a) DIfferentiating

∂

∂µ

∑

i

∑

j∈Ji

(yij − µ− τi − βj)
2 = 2



rtȳ − rtµ −
∑

i

∑

j∈Ji

τi −
∑

i

∑

j∈Ji

βj



 ,

and we assume that both double sums are zero so µ̂ = ȳ. Continuing,
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∂

∂τi

∑

i

∑

j∈Ji

(yij − µ− τi − βj)
2 = 2



rȳi − rµ − rτi −
∑

j∈Ji

βj



 ,

∂

∂βj

∑

j

∑

i∈Ij

(yij − µ− τi − βj)
2 = 2



kȳj − kµ−
∑

i∈Ij

τi − βj



 .

Now substitute for βj in the τi derivative to get

rȳi − rȳ − tτi −
∑

j∈Ji



ȳj − ȳ −
1

k

∑

i∈Ij

τi



 = 0.

Now the terms involving ȳ cancel, and the double sum is equal to (r−λ)τi.
Using the BIBD parameter relations results in (6.2).

(b) From the definition,

EȲi =
1

r

∑

j∈Ji

EYij = µ+ τi

EȲj =
1

k

∑

i∈Ij

EYij = µ+
1

k

∑

i∈Ij

τi.

Noting that the µs cancel,

E



rȲi −
∑

j∈Ji

Ȳj



 = rτi −
1

k

∑

j∈Ji

∑

i∈Ij

τi = τi

(

r − r − λ
k

)

,

and rearrangement yields unbiasedness.

Exercise 6.31

(a) The model (6.1) is

Yij = µ+ τi + βj + ǫij ,

where i = 1, · · · , t and j = 1, · · · , Ji, or j = 1, · · · , b and i = 1, · · · , Ij .
Therefore, we have

∑

j∈Ji

V ar



Yij −
1

k

∑

i′∈Ij

Yi′j



 =
∑

j∈Ji

V ar



βj + ǫij −
1

k

∑

i′∈Ij

(βi′j + ǫi′j)





=
∑

j∈Ji

V ar(βj + ǫij − βj − ǭ·j)

=
∑

j∈Ji

V ar(ǫij − ǭ·j).
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(b) Starting from

V ar(ǫij − ǭ·j) =

(

1− 1

k

)

σ2
ǫ ,

using the fact that errors in different blocks are independent, we have

∑

j∈Ji

V ar(ǫij − ǭ·j) = r

(

1− 1

k

)

σ2
ǫ .

(c) Write

V ar (τ̂i) =

(

k

λt

)2
∑

j∈Ji

V ar(ǫij − ǭ·j)

=

(

k

λt

)2

r

(

1− 1

k

)

σ2
ǫ

=
kr(k − 1)

λ2t2
σ2

ǫ .

Using λ(t− 1) = r(k − 1), we have

V ar (τ̂i) =
kr(k − 1)

λ2t2
σ2

ǫ =
k

λt

(

t− 1

t

)

σ2
ǫ .

Exercise 6.33

(a) The expectation of the first term is

E[(Y212 + Y221)/2] =
1

2
E[τ2 + β1 + γ2 + ε212 + τ2 + β2 + γ1 + ε221].

The γs sum to zero, and the βs and εs have mean zero. Note that the βs
do not cancel.

(b) The second term is

E[(Y111 + Y122)/2] =
1

2
E[τ1 + β1 + γ1 + ε111 + τ1 + β2 + γ2 + ε122].

Comparing to the above shows that the βs now cancel, and we have an
unbiased estimate of τ2 − τ1
The estimate of the γ effect is

1

2
(Y122 + Y221)−

1

2
(Y111 + Y212).

In expectation the τs sum to zero and the βs and εs have mean zero. The
expectation is γ2 − γ1.
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(c) Deviating from our usual notation, write the model as

yijkℓ = µ+ αi + βj + γk +Bℓ + εijlℓ,

where B is the block effect and the rest are treatment effects. With this
notation the data are

(1) = y1111
ab = y2211
ac = y2121
bc = y1221

a = y2112
b = y1212
c = y1122
abc = y2222

The expected value, keeping tack of the blocks, is

1

4
(α2 + β1 + γ1 +B2 + α2 + β2 + γ1 +B1)

+
1

4
(α2 + β1 + γ2 +B1 + α2 + β2 + γ2 +B2)

−1

4
(α1 + β1 + γ1 +B1 + α1 + β2 + γ1 +B2)

−1

4
(α1 + β1 + γ2 +B2 + α1 + β2 + γ2 +B1)

= α2 − α1,

since all of the βs, γs, and Bs cancel.
(d) Here we add the term (αγ)ik to the model. The expected value of the

contrast, again keeping track of the Bs, is

1

4
([α2 + β2 + γ2 + B2 + (αγ)22] − [α1 + β2 + γ2 +B1 + (αγ)12])

−1

4
([α2 + β2 + γ1 + B1 + (αγ)21] − [α1 + β2 + γ1 +B2 + (αγ)11])

+
1

4
([α2 + β1 + γ2 + B1 + (αγ)22] − [α1 + β1 + γ2 +B2 + (αγ)12])

−1

4
([α2 + β1 + γ1 + B2 + (αγ)21] − [α1 + β1 + γ1 +B1 + (αγ)11])

=
1

2
([(αγ)22 − (αγ)12] − [(αγ)21 − (αγ)11]),

since all of the αs, βs, γs, and Bs cancel.

Exercise 6.35

(a) The Rk will always cancel since we would get a + contribution of Rk from
ȳi and a − contribution from ȳiR. Similarly, in ȳiC we get the sum of the
Rk with a − sign and in ¯̄y we get the sum with a + sign.



6 Confounding in Blocks 89

(b) Carefully substituting from (6.12) into the least squares estimator (6.13)
will give the expression for τ̂i. Then note that it is free of R, as we know,
and that all of the βs and γs cancel. So they make no contribution to the
variance.

(c) From part (b):
(i) The cancellation that occurs in the special case will persist in general,

the structure of the design guarantees it.
(ii) Since all of the random effects cancel, and the τi are fixed and do not

contribute to the variance, we can ignore the i index and just have
the variance of the residuals εjℓm.


