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Abstract: Decision-theoretic interval estimation usually employs a loss function that is
a linear combination of volume and coverage probability. Such loss functions, however,
may result in paradoxical behavior of Bayes rules. We investigate this paradox in the
case of Student’s ¢, and suggest ways of avoiding it using a different loss function.
Some properties of the resulting Bayes rules are also examined. This alternative
approach may also be generalized,
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1. Introduction

A set estimator for a parameter 8, based on-ohserving X = @ according to
- some distribution f(«(6), is a set C, in the parameter space @, The question of
. measuring optimality (either frequentist or Bayesian) of a set estimator against
a loss criterion combining size and coverage does not yet have a satisfactory
answer. For the case of Student’s ¢ interval, we examine some difficulties with
the commonly used linear loss function and suggest alternative loss functions
which eliminate these problems. A

There are a number of advantages to a loss function approach to set esti-
mation. From a theoretical view, this is the simplest way to address optimality
properties such as admissibility or minimaxity. Furthermore, derivation of Bayes
or generalized Bayes sets is straightforward (for example, as in Berger (1980},
* Casella and Hwang (1983), or Meeden and Vardeman (1985)). From a practical
view, consideration of a meaningful loss function would allow interplay between
the size and coverage components. This avoids possibly undesirable behavior that
may occur if the components are considered separately. (For example, bounding
coverage probability and then optimizing size might lead to a set estimator whose
size is t0o large to be of use.)
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Although there has been much research into optimal set estimation, no satis-
factory loss function has emerged. Most vesearchers who have combined size and

coverage have used losses of the form
L,C)=a .vol(C) - I(0 € ay), a> 0, (1.1)
where vol(C) denotes the volume of the set C,

1 if 6eC
I(Bec)ﬂ{o £ 0gC

and @ is a fixed constant. Although a loss function of this type is reasonable to
work with theoretically (see, for example, Joshi (1969)), and can sometimes be re-
lated to a componentwise loss (Casella and Hwang (198'2),A00he11 and Sackrowitz

(1984)), this loss can lead to a paradox, as shown in Section 2.

Fortunately, the more general class
Lg(8,C) = S[vol{(C)] - 1(¢ € C), . (1.2)

where S(:) is an appropriately chosen nonlinear, nondecreasing, size function can
climinate the paradox. We give conditions on losses of the form (1.2) to obtain
more coherent behavior. '

The history of optimal set estimation is long and varied, dating back (at least)
to Wilks (1938), who investigated optimal likelihood regions. Decision-theoretic
treatments of the set estimation problem are contained in Blyth (1951), Brown
(1966) and J oshi (1067, 1969). Blyth and Joshi were tangentially concerned witk
the relationship between the linear corabination loss of (1.1) and a vector valuec

“loss like
Ly(6,0) = (vol(C), 10 € ). (1.3

This relationship was further explored in Casella and Hwang (1991), where som
correspondence between admissibility and rainimaxity was derived. Also, Cohe:
and Sackrowitz (1984) established a relationship between Ly(0,C) of (1.3) an
another type of single-valued loss, one that introduces an auxiliary paramete:
Other decision-theoretic approaches to set estimation, based on linear combint
tion losses like (1.1), have been given by Winkler (1972), Cohen and Strawderma
(1973b), and Meeden. and Vardeman (1985). -

In contrast to the loss function approach, other authors have worked direct.
with the vector loss (1.3). Most often, the technique is to restrict consideration
set estimators satisfying a minimum coverage probability requirement and, with
this class, to optimize volume (or some other measure of size). These types
considerations also have a long history, being considered by Neyman (1937) &
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the aforementioned Wilks (1938). Different distributions have been considered
by many authors; for example, Sterne (1954) looked at the binomial and Tate
and Klett (1959) looked at a normal variance. Pratt (1961) showed, among other
things, the relationship between volume and false coverage, The decision theo-
retic implications of this relationship was explored by Cohen and Strawderman
(1973a), who showed that admissibility using the pair {probability of true cov-
erage, volume} implies admissibility using the pair {probability of true coverage,
* probability of false coverage}. Then Stein (1962) explained how the usual confi-
dence sphere for a multivariate normal mean could be dominated under the vector
valued loss (1.3). This led to the papers of Brown (1966) and Joshi (1967) who es-
tablished existence of dominating sets, and Hwang and Casells, (1982, 1984), who
exhibited such sets, Taking a slightly different approach, relying on invariance
arguments, Hooper (1982) derived best invariant sets.

We might ask, at this point, what are the shortcomings of (1.1) and (1.3),
and how can they be remedied by considering (1.2)? Although consideration of
the individual loss components is very important, the vector-valued loss allows no
interplay of volume and coverage, which makes it restrictive. Since one component
must be fixed and the other optimized, there is no Jjointly optimal solution. Also,
consideration of the vector loss complicates the decision-theoretic comparisons,
as the risks are no longer single-valued. (The vector loss function is not free of
paradoxical behavior either. As shown by Casella and Hwang (1986), vector loss,
along with many other losses, allows a type of paradox hased on the Stein effect.)

The linear combination loss (1.1) eliminates the complications of a vector-
valued loss, but introduces serious problems of its own, which will be addressed in
the next section, It might also appear that the approach of Cohen and Sackrowitz
(1984) would allow interplay. Their loss function, however, contajns an unknown
auxiliary parameter, so the actual value of the loss is not available to the ex-
perimenter, Their approach equates vector loss with a class of single-valued loss
functions. Although consideration of a class of losses will implicitly involve the
relationship between size and coverage, in actuality it still results in consideration
of both components separately.

Loss functions of the form (1.2) can solve our problems, and allow the exper-
imenter to describe the desired relationship between volume and coverage. Also,
it is possible to put bounds on the ranges of the optimal sets (for a given S),

- bounds that will give cither a minimal length or minimal coverage. Furthermore,
adoption of the S function eliminates the undesirable behavior of the linear com-
bination loss, and allows us to evaluate set estimators using a single-valued loss
function, .

In Section 2 we describe a paradox associated with the loss (1.1), and in
Section 3 conditions are given on a loss of the form (1.2} which can eliminate
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the paradox, Section 4 establishes a few results concerning the general behavio:
of Bayes sets using losses of the form (1.2). A more thorough development of
decision-theoretic properties under losses (1.2) can be found in Casella, Hwang
and Robert (1990).

2. A Paradox Related to the Linear Loss Function

" We now show the paradoxical behavior of the linear combination loss (1.1
when estimating a univariate normal mean with unknown variance.
I Xy,...,X, are iid n(p,02), the interval

8§ s
Ot(iﬁ,S):{ﬁ!E“t%SpSﬁ-kt%—},' (2‘1

' 1 & 1/2 '
where & = Xz;/n, and § = [m E(w@ - 9‘3)2] , is a Bayes highest posterio
i=1 .

density (HPD) region against the improper prior
1
w(p,0?) = B_-idp,daz.

The posterior distribution of /n(s—&)/s is Tn-1, Student’s ¢ with n—1 degrees ¢
freedom. Moreover, the frequentist {unconditional) distribution of JVa(E—p)/si
also Tj,_1. Thus, the frequentist and Bayesian answers agree in a widely respecte
statistical procedure. :

Here, now, is a paradox (or, at the very least, an undesirable feature), firs
pointed out by J. O. Berger (personal communication). Consider the loss functio
(1.1). For Cy(E,s) of (2.1), the posterior expected loss is given by

2ts

L(@,Ot(ﬁ;,s)li:,s) = a(—\/ﬂg) - P[p, € C’t(ﬁ':,s)]:?,s]. (2.

The set estimator C(#, s) can be uniformly dominated in posterior expected loi
by the set estimator

- . Vn
< X
Ci(Z, s) 1f s< o

. ; v
{z} it s> 570"

Cy (ﬁa 5) = (2.:

But Cy(%,s) is a ridiculous estimator, which is even more apparent when v
realize that {Z} can be replaced by @ or the set {17}. If s becomes large, indicatit
uncertainty, Cy (%, s) indicates certainty in the estimation of i1 by collapsing to
point. Clearly there is a problem with such an estimator, as increased uncertain
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in the data should lead to increased uncertainty in the set estimator. Even though
@ and the parameter space ©(= R) are formally equivalent answers with respect
to the loss function (and are equally useless to the experimenter, as they are both
“noninformative”), they are intuitively different. We think of @ as the Lmiting
case of “precise” sets, and © as the limiting case of “imprecise” sets. :
Not only does the estimator (2.3) dominate a Bayes HPD region, it dominates
Student’s ¢ interval (in the Bayesian sense and, for a > (1—a)/E(2ts /4/n), in the
frequentist sense). Thus, we have a case where a disconcerting rule dominates a
time-honored statistical procedure. The only reasonable conclusion is that there

is a problem with the loss function.

The Bayes rule associated with the lossA(l.l) has the same disconcerting
behavior. Minimization of the posterior expected loss (2.2) leads to the HPD
region : ‘

C’t*(sﬁ,s)z{p::ﬁ—t*%ﬂpﬁﬁ%—t*%}, (2.4)

where t* = t*(s) is either the unique solution of
a
vn
where f,_1(-) denotes Student’s ¢ density with n — 1 degrees of freedom, or
t*(s) = 0 if

'_".fn-—l(t*) =0, 0<¢t'< 00,

0 <int [% - s8] = e a0,

Clearly t*(s) decreases as s increases and, moreover, is equal to zero (with posi-
tive probability) for s large enough. Thus, the Bayes set (2.4) exhibits behavior
similar to Cy(Z, s) in that its size decreases as uncertainty increases. Note fur-
ther that the value of @ really plays no role. As long as a is a fixed value the
aberrant behavior persists. (Of course, decision theory can accommodate a being
a function of the data, but the experimenter should be able to examine the Joss
function, and consider its consequences, before the experiment is performed.)

Thus we have a paradox. Our intuition would lead us to use the ¢ interval
Ci(#,s) but a formal, statistically sound, derivation leads us to a nonintuitive
interval such as Cy(&,s). The obvious candidate for blame is the loss function
(1.1), which, we conclude, does not provide a coherent basis for decision-theoretic
set.estimation, To substantiate this claim, we now present a class of loss functions
that do not lead to this paradox,

3. Resblving the Loss Function Paradox

As we blame the undesirable behavior of Cy(, 5) on the loss function (1.1),
Wwe now attempt to resolve the paradox by investigating other loss functions. If
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a decision-theoretic set estimation theory is to be viable, we must find a lo
function that both eliminates the paradox and is reasonable to an experiment(
To minimize complexity, we examine loss functions of the form (1.2), that is,

Lg(6,0) = Sfvol(C)] - 1(0 € O), (3

where S(-) is a continuous, increasing function. The class of losses (3.1) conftal
the linear loss (1.1), and we shall see that conditions on S can be derived
climinate the paradoxical behavior. :

We first classify the unwanted behavior of the Bayes sets into the follow
three types:

1. The Bayes set is empty for some values of s.
9. The Bayes radius st*(s) | 0 as s 1 00,
3. The Bayes radius st (s) decreases for some range of s.

We focus on the generalized prior that leads to the t-interval, but it is c
that the same requirements are natural for other prior distributions. The t}
requirements are increasingly restrictive, but at least we should avoid the:
paradox. A Bayes set from a proper prior should not be § or R, other tha
limiting cases. BEven if there is no additional information from the sample,
prior alone should provide more than a “degenerate” interval.

As we will see in Section 4, prior distributions must be absolutely conl
ous with respect to Lebesgue measure on ©, otherwise problems may arise.
particular, there could be problems even defining Bayes sets.) Under thit
sumption, the Bayes sets associated with (3.1), for suitably chosen S, are |
regions given by :

C(3,5) = {0 : w(0)8,5) > k(&%) }-

This illustrates another advantage of working with losses of the form (3.1)
than more general forms. More general losses may result in Bayes estimators
are not HPD regions, a result which can bé considered undesirable.

First we show that volume and coverage piobability must be weighted e
in order to avoid counterintuitive Bayes sets. Without loss of generality, W
assume that S(0) = 0, which makes the loss of 0 equal to 0. In the foll
argument we repeatedly use the fact that the posterior loss of 2 Bayes 1

nonpositive.

Proposition 3.1, If §(+o0) > 1, @ parados occurs in that the radius
Bayes set approaches 0 as 8 — +oo. That s, :

lim st*(s) =0,

s—r+00
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where t*(s} is the value of t that minimizes

S(2ts/\/f_z)-—~P([Tn_1| <t - (82)

and T,,_1 denotes o Student’s ¢ random veriable with n — 1 degrees of freedom.,

Proof. As HEI S(v) = B > 1, there exists vo such that S(v) > 1 for v > v,
- V00
Therefore, necessarily,

i S

which implies Iiﬂ_n 1*(s) = 0. But then, the posterior probability satisfies
=00 . .

lim P(IT;,.| < t*(s)) =0.

s—++o00

¢ Cp e
Therefore, we must have Iim (2—@) = 0 which implies Jim st*(s) = 0,
3—+too \/’E s—-too
and the proposition is proved.
It S{+00) < 1, there is not the same undesirable behavior, but we choose to
eliminate this case for the following reason. As s T o0, eventually it will happen

S[ee(s)o/va] - P(Tas] < () > S(400) - 1, (33)

which implies that the Bayes set will equal © for finite values of s, Although this
behavior is not terrible, as we argued before, it is more desirable that the Bayes

" set not be the entire space, except in the limit, Additionally, as the empty set

and the entire parameter space are equally noninformative, they should Teceive
the same weight,

Even the loss functions satisfying the condition
Lg(0,0) = Lg(9,0) =0 (3.4)

may result in paradoxical behavior if the size function $ grows too rapidly. Thig
is illustrated in the following proposition.

Proposition 3.2, If there exists 8, wy such that
$(8w) - P(IT] < w) 20 (3.5)
Joré > 8, w> wo, the solution of (3.2) satisfies

dim st*(s) =0,
8—r4-c0
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- 2 Hs) < i lim
Proof. We have necessarily, for 2 7 > 8o, t*(s) < wy. But then, if s_%l?mt (s) #
0, it follows that
oy
lim s(zst (s)
8—3--co .\/ﬁ

which is strictly positive (as t*(s) < wp). This contradicts the Bayes assumption‘,
and implies Einw t*(s) = 0. A similar argument will establish liI_l'.f_l st*(s) = 0.
& $§—>T00

) (Tl < () =1 = fim P({Tomt] < t(s)),

An example of a loss function that satisfies both conditions (3.4) and (3.5),
and hence displays undesirable behavior, is given below.

Example 3.1. Consider the size function
Sa(ﬂ) _‘-:" 1 - e—avgjz,

which results in a loss function of the form (3.1) satisfying (3.4) and (3.5), The
derivative of the posterior expected loss, with respect to ?is

2
225 et in _9f 1(8).
n .
This expression is negative for ¢ close 0 0 and t large, so the solution of '(3.2) is

the smallest solution of
as’t e_aszt'z n

= fnﬂl(t)' (3'6.
As s — +00, the smallest solution of (3.6) goes to 0. It can then be established

as in the previous propositions, that lim st*(s) = 0.
=0

For the {-interval, we can exhibit sufficient conditions for a loss function to b
nonparadoxical. Under the assumption that S(-) is continuously differentiable
we have the following result.

Proposition 8.8. Let the size function of the loss (3.1) satisfy (3.4) and 1
continuously differentiable. If either '

%{S(Zts/\/ﬁ) — P({Tn-1| £ t)} <0 for sufficiently small >0,
or 5
o {S(ts/ Vi) ~ P(Ta] <} >0 for 2> M,
where M is a constant, then t*(s) is o solution of
S,[2t*(s)é] 8

Jn ”\/_7—1 = fa-1[t" (s)}:
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We now have, for a class of size functions, conditions on the loss function to
eliminate paradoxical behavior. The next example gives a particularly simple,
and appealing, size function that satisfies these conditions.

Example 3.2. Consider a size measure of the form

v
atv

Sa(v) = (3.7)

5

- Notice that this size measure decreases as the Cauchy distribution (Student’s ¢

with one degree of freedom) and thus is well suited for use with ¢ densities. This
is because, as we have seen, we would like the size function to decrease more
slowly than the density function.

5.6
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" Figure 3.1a. For the Bayes set against the loss (8.1) with 8(v) = v/(a + v), graphs of

£*(s) for a = 1/2 (solid), 2 (long dashes), 5 (dotted), 20 (short dashes). The distribution
is Student’s t with 25 degrees of freedom.
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Figure 3.1b. For the Bayes set against the loss (3.1) with 8(v} = v/(a +v), graphs of
8t*(s) for 4 = 1/2 (solid), 2 (long dashes), 5 (dotted), 20 (short dashes). The distribution
is Student’s t with 25 degrees of freedom.
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'The derivative of the posterior expected loss is

oy~

which has either one or two zeros (in ), as shown in the proof of Theorem 4.3.
If there is one zero, it corresponds to the minimum. If there ave two zeros, the
larger zero is the minimum. In both cases, it is easy to sce that £*(s) goes to
+oo with s. Thus, ngfw st*(s} = +oo, and there is no paradoxical behavior for

- this size function. Moreover, the third requirement for non-paradoxical behavior,
that st*(s) 1 s is also satisfied. In Figure 3.1a and Figure 3.1b we illustrate the
behavior of t*(s) and st*(s) for different values of a. From Figure 3.1a we see
that t*(s) is not a monotone function of s but Figure 3.1b shows that the more

important quantity, the Bayes radius st*(s), is a monotone ‘function. '

4, Some Decision-Theoretic Consequences

With an acceptable loss function for set estimation, one that takes values in
the set of real numbers, we could now investigate some standard decision-theoretic
properties such as minimaxity or admissibility. This, as mentioned before, was
one of the goals of searching for a loss function suitable for set estimation. -In
this section we present two conseguences of such decision-theoretic investigations.
A more thorough development of decision-theoretic properties may be found.in
* Casella, Hwang and Robert (1990).

There are some technical difficulties associated with the comparisons of set
estimators using a loss function, as mentioned by Joshi (1969). For a set estimator
C of §, the new set estimator ¢! = C U {fp} dominates C in risk. Hence,
according to the usual delinition, there can.be no admissible estimators. To
avoid these difficulties, we only consider Lebesgue-admissibility. That is, the
set C is Lebesgue-admissible if, for any set ¢, R{8,C) — R(6,C') > 0 (a.e.)
= R(9,0) — R(#,C") = 0 (a.e.). This is why we only consider priors that are
absolutely continuous with respect to Lebesgue measure.

With respect to Lebesgue-admissibility, all of the regular decision theory
results hold. For example, the admissible procedures form a minimal complete -/
class, Bayes procedures are HPD regions and, if unique, are admissible. Also, -
there exists a minimax rule, and suitable limits of Bayes procedures are a complete
class, Some results of this type can be found in Browa (1977), and others are in
Casella, Hwang and Robert (1990). ‘

We focus here on two decision theoretic properties of the sets arising from the
size function (3.7). We first give necessary and sufficient condition for a Bayes
set to be nontrivial (a Bayes set is nonirivielif it is neither § nor © with positive
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posterior probability). In Section 4,2 we exhibit a minimum coverage probability

of the Bayes t-interval sets,

4.1. Nontrivial Bayes sets

Recall from Section 2 that we required reasonable loss functions, when used
with proper prior distributions, to produce Bayes sets that arve nontrivial. For
the size function (3.7), Sq(v) = v/(v + a), which has already been seen fo be

. reasonable, we are able to provide a simple sufficient condition for this to hold.

Theorem 4.1. If {0 : w(6|z) > (1 Ja)} has positive Lebesgue measure, the Bayes

‘rule T ={8:7(8le) > k} against the loss function L{8,0) =8, (vol(C))- 10 € )

is nontriviel, since k= k(z) < 1/a.

Proof. The derivative of the posterior expected loss of a set O (kY = {0 :
w{(f|z) > k} is ‘
0 - (1 _ ! . ’ ' ‘——1
D p(cz) = (k- SubellCIO) [ o 1V TORIT
: @ ‘

- @ ~1ds
(k (a+vol(og(k)))2) Jp 7 O

where ds represents the infinitesimal surface area of the set {0 : m(f]z) = k}, and

= yn(0]z) is the gradient of w(8]x) for fixed @. Since

a 1
. < — 4
(a +vol(CZ (k) ~ a for every ,

if f{‘n(ﬂ[m):k}" v w(8}w)| " ds is different from 0 for some k > 1, L(CF (k)|w) will
be increasing for k& > 1/a and the minimum, in k, of the posterior loss will occur
for k < %. A

Note that for any value of a and any sample distri‘bl_ltion, there are always

- prior distributions satisfying m(6le) < 1/a. However, this does not necessarily
- imply that the associated Bayes set is empty. The situation can be even more
. complicated, as the next corollary shows.

Corollary 4.2. If {0 : w(0]z) > ko} has Lebesgue measure 0 for ko < L the
posterior loss L(OT(k)|w) = Sa[vol(CZ (k)] — P(8 € CZ(k)|e) is decreasing as

@ i
(a+vol(C3(k))? o

< &,
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Therefore, if ko — k < 6,

; N = kb — @ L.
k — S [vol(CT (k)] = & (a+v01(0g(k)))2<’” — 4e<0.

Corollary 4.2 does not necessarily imply that § is the Bayes rule in this case,

as it is still possible that L(CF(k)|z) is also decreasing for k close to 0 (see
Example 4.1). ' _
Example 4.1. Suppose X ~ Np(0,I) and 8 ~ Np(0,72I). Then w(0]z) is
Ny(nz,nI) and the Bayes set isCr={0:]0- ne?| < ¢} where 1 = r2f(r2 +1).
If a satisfies @ > (27r)P/ 2> (2«11)” 2, the Bayes set is never empty, according to
Theorem 4.1. Tf a < (2mn)P/? then {n(flz) > (1/a)} is empty; however, there
still exists a nontrivial Bayes set (see Casella, Hwang and Robert (1990)).

4,2. The range of Bayes sets

In Example 3.2 we saw that the size function (3.7) results in non-paradoxical
behavior for the Bayes ¢-interval. In addition, here we investigate the range of
values of the posterior coverage probabilities as a function of a. This range is of
interest in evaluating the flexibility of the loss function in answering the needs o
the experimenter. We want the probability to have a reasonable range, but we
would also like to give the assurance of a-lower bound.

Theorem 4.3, For the size function (3.7), S.(v) = v/ (v + a), the minimun
coverage probability for the Bayes t-interval is %, regardless of the value of a.

Proof. The Bayes set is
Cpe(B,8) = {,u g —pl < t"‘%}

where t* is the solution of

min {M ~ P({Tns] < t)} (41

t \a+2s/\/n

Differentiation of the expression in the braces shows that t* is a solution of

__alsfy/n I'(n/2) 2 o\ ‘
(o 2ts/ /)" 2<<n—1)w)1/2r(<n—1)/z)(”n_l) =0 (44

Now, some algebra will show
n—2 n s ]
3

+2 nf2
3 (1 + o 1)
= = sign[25—~——~ + ——at —4—=
o (a+2ts/ﬁ)2 ' nolye nd v

sign
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which implies that, if s < ay/nT'(n/2)/+/(n = )aT((n—1)/2), Equation (4.2) has
one solution, otherwise it has two. In this latter case, t* is the larger value.
Furthermore, it is straightforward to check that

R
a+ 2t*(s)s/Vn

H

sign [%t* (s)] = sign {2

and therefore £*(s) is decreasing if (2t*(s)s//n)/(a + 2t*(s)s/ yn) < 1./ 2 and
increasing otherwise. Thus, it follows that the unique minimum value satisfies

26*(s)s//n 1

R + 2t*(s)s//n =9

Remembering that the posterior expected loss (4.1) must be negative, we obtain

m§QP(|T ] <t(8) 2 % - (43

Thus, the minimum coverage probability (either frequentist or Bayesian) must
be at least 1/2,

- B. Conclusions

Our interest in decision-theoretic set estimation stemmed from Jim Berger’s
Student’s ¢ paradox of Section 2, The fact that such a time-honored proce-
dure could be dominated by an obviously silly procedure convinced us that the
decision-theoretic approach to set estimation needed a long look. We have learned
that a nonlinear size function not only can eliminate the paradox, but also such
size functions are, in general, analytically tractable. .

‘There is an important relationship between the size function and the un-

. derlying sample density. The fact that the size function of (3.7), which lias a
Cauchy-like tail, is a reasonable one for the ¢ distribution is partially due to the
fact that the rate of change at the tails is larger than that of the Student’s ¢ cdf.
(Or, that the derivative of 8 decreases more slowly than Student’s t pdf.) Also,
although we have focused on Student’s ¢, the requirements we introduced apply
to every distribution. In particular, size functions S(-) should always satisfy

S(0) =0, S(+o0)=1.

The choice of Joss function, that is, the manner in which size and coverage Pl‘f}b'
ability are to be combined, is of major importance. We have no overwhelming
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reason to prefer a loss function using (3.7} except for its simplicity and perfor-
mance in the cases considered. Other loss functions, some of which are partic-
ularly applicable to bounded parameter spaces, are discussed in Casella, Hwang
and Robert (1990). '

To approach the entire set estimation problem decision-theoretically, instead
of being concerned with separate measures of size and coverage, leads to com-
bining these measures in a single-valued loss function. In this decision-theoretic
setting, after specifying the loss function, the model and the data specify the size
and coverage. A disadvantage of this approach is that it requires more careful
thinking about the relative importance of these measures, while an advantage is
that it allows interplay between size and coverage probability. Also, we can eas-
ily define typical decision-theoretic quantities like admissibility and minimaxity,
definitions which are ambiguous with a vector-valued loss, for example.

" The decision-theoretic approach to set estimation provides us with powerful
methods, l_etting us appropriately balance size and coverage. Thus far, three main
forms have heen examined; the vector loss approach, the linear combination loss

"as in (1.1), and the nonlinear combination loss examined here. Although the first
two approaches can sometimes yield reasonable answers, they have disadvantages.
We believe that the use of a nonlinear size function provides the most attractive
alternative. The nonlinear size function provides coherent behavior of optimal
set estimators, provides. nontrivial Bayes sets, and can give minimum coverage
guarantees. '
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