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Empirical Bayes methods have found increasing use in statistical analyses, These methods allow the modelling of complicated
systems and provide a mechanism For obtaining parameter estimates. They are based on Bayesian models, but employ alternate
estimation techniques. n this article these methods are explained and illusirated with many examples taken from real situations.
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0. Discussion .. ...oo ittt

1. WHAT IS EMPIRICAL BAYES?

Empirical Bayes (EB) is a term that has many
meanings, reflecting different approaches to soly-
ing problems. It can describe a methodology for
both estimation and inference, an important dis-
tinction. In a majority of applications, statistical
inference tends to be made using frequentist
(classical) statistics, This is the type of inference
that is applicable to a ‘long-run’ interpretation.
That is, inference about a process is referred to 2
(usually imagined) sequence of replicated experi-
ments. In contrast, the inference from Bayesian
statistics is targeted to the data at hand. Each of
these approaches has its strengths and weak-
nesses, and EB methoeds attempt to borrow the
strengths from each approach.

The general EB approach can be pictured as a
comprontise between. classical and Bayesian ap-
proaches, since EB methods sit ‘in between’ clas-
sical and Bayesian statistics, borrowing pieces
from each. Although this is an oversimplification,
it does allow us to see where EB methods fit
among more standard ones. The basic methodol-
ogy is to model a situation using standard
Bayesian techniques, and derive parameter esti-
mates for quantities of interest. This uses one of
the strengths of Bayesian statistics, the ability to
derive estimates for all parameters of interest in a
model. These Bayesian estimates, however, will
usually contain some unknown quantities, param-
eters which the Bayesian specifies. This is where
the empirical Bayesian separates from the
Bayesian. Instead of specifying these unknown
quantities, the empirical Bayesian estimates them,
and substitutes these estimates into the Bayes
" quantities, Thus, the empirical Bayesian uses
Bayes techniques for modelling, but zlternate

techniques for constructing estimates from these
models. Then for the inferential stage of the
analysis, EB can take many directions. Most of-
ten, the inference from an EB analysis will be a
frequentist inference, in rare cases it can be a
Bayesian inference. Morris [1] also defines an EB
inference, which is, as expected, a hybrid of fre-
quentist and Bayesian inference. We will see an
example of this later.

Here we will mainly be concerned with de-
scribing how EB methodology is useful for deriv-
ing statistical procedures, and will not directly
address their formal evaluation. It is fair to say
that most good EB procedures perform well
against most criteria, but, of course, each case
shonld be checked separately. The abundance of
uses found by EB, however, is strong evidence
that these procedures perform admirably.

Within EB methodology, the EB approach can
be split into two distinct types. These are para-
metric and nonparametric EB. Nonparametric EB
was the original EB formulation [2). However, in
recent years the parametric formulation has found
numerous applications, especially in small sample
situations. Here we will concentrate on paramet-
ric EB techniques. Techniques of nonparametric
EB, while quite powerful, are more suitable for
farge sample analyses.

This tutorial is composed of both theoretical
explanations and illustrative examples. All exam-
ples have been taken from the literature, and
illustrate EB analyses of real data sets. The tuto-
rial presents some basics underlying the EB ap-
proach in Sections 3 and 4, which should provide
enough background to understand the principles
behind the methodology. In Section 6 the theory
is developed a bit further, allowing for a deeper
understanding and appreciation of the later ex-
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amples and methods. A shorter and much less
detailed introduction to EB methodology is given
in ref. 3, which could serve as a companion to this
tutorial.

2. EXAMPLES

Before plunging into the more technical as-
pects of EB estimation, two short examples are
presented where EB methods can be extremely
useful.

2.1. Interspecies extrapolation

DuMouchel and Haurris [41 investigated inter-
- species extrapolation of dose—response experi-
ments. They were analyzing data on the effect of
different environmental agents (e.g. engine emis-
sions, cigarette smoke) on different species {e.o.
mice, humans). Because cach species was not
exposed (o each agent, they werc particularly
interested in models that would atlow inter-
species extrapolation. They used the model

yi= 0t €
i=1,...,k
Bijﬂp,+ai+yj+6,-j

j=1,....1

where: y; = observed dose-—response slope (log),
of species i exposed to environmental agent IS
6, = true dose—response  slopes; i = overall
mean; o; = species-specific effect; and y; = agent-
specific effect.

Notice that even though each (, J) combina-
tion has its own dose—Tesponse slope (6;)), the 8
values are assumed (o have a cominon (simpler)
underlying structure. Using EB estimation meth-
ods, this model allows for interspecies extrapola-
tion, For example, the effect of diese! engine
emissions on humans can be estimated (even
though such data do not exist) by extrapolating
from the effect of diesel engine emissions on
mice. We will return to this example later.

2.2. Selenium in non-fat mitk powder

Eberhardt et al. [5] describe statistical proce-

dures for combining independent estimates of

TABLE 1

Selenjnm in non-fat milk powder {units are ng/ fia]

Analytical method o X S
Atomic absorption spectrometiy

(hydride generation) g 1050 9,258
Neutron activation '

(jnstrumental) 2 10075 4355
Neuiron activation

(radiochemical) 14 109.5 1.652
Isotope dilution mass

pectrometry (Spark source) g 11325  5.800

 spectrometsy (Sparksonree? L ———

means, procedures that are used in the process of
certifying standard reference materials at the Na-
tional Bureau of Standards. For example, the
concentration of selenjum in non-fat milk powder
is measured in four different ways, as shown in
the data set in Table 1. ‘

Eberhardt et al. [S] use the model

X,.j=p.+r,-+e,-}-
i=1,..,kj=L..

where Xj; is the jth observation from group i, B
is the common mean, #; is a bias.term, and €; is
random error. Then they describe a number of
estimation approaches, highlighting a minimax
approach. SR :

A simple Bayesian model that would be a first
step in an EB analysis is ) -

Xij= 1t e _
(1)
()
incorporating an underlying common mean ina
hierarchical model. Starting from this model, an

EB analysis can be developed in a rather straight-
forward manner, as we will see later.

izl,...,k',j=1,...,n,-
py= i+ 8y

3, NOTATION AND STATISTICAL FORMULATION

We now deseribe the EB problem in some
generality, also explaining some necessary nofa-
tion and terminology. The general problem is to
make an inference about an unknown parametexr
g (which could be a yector) based on observing a
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sample of n observations ¥Y15-0., ¥, whose sam-
pling distribution is described by the known func-
tion f(yy,...,y,16). In Example 2.1 we have, for
species 7, a sample (y,,..., Yin,d With each y,,
having sampling distribution f( Yi; 18,2, and all y,;
values are independent.

In classical statistics it is assumed that there js
one true value of 4, and we try to estimate that
value. In contrast, the Bayesian view is that 0
itself is a random variable whose variability can
be described by the distribution #(6). This dis-
tinction, between f(reating the unknown & as ei-
ther fixed or random, is a premier difference
between Bayesian and classical statistics. (Discus-
sions of the implications of these assurniptions can
be found in the book by Press [6] or, at a more
advanced level, in Berger [7]1.) In brief, the classi-
cal view is that there is some fixed (unknown)
value of the parameter that is driving a process
and, hence, its value is reflected in the data we
sec. The Bayesian view is that this underlying
parameter varies (often about its mean). The data
we see also give information about the underlying
parameter, but now there are two sources of
variation present in the model. There is the ran-
dom variation in the observations (as in the clas-
sical model), but there is also variation in the
observations caused by the variability of the un-
derlying parameter. Thus, the Bayesian model
immediately yields a second source of variability
to be accounted for. The prior distribution (6}
is then used to parameterize this second source
of variability,

Once 7(#) is specified, the Bayesian combines
this information with the data, and updates ()
using Bayes’ rule (see, for example, ref. 8). The
updated prior is called a posterior distribution,
denoted =(8¢] y,,. .+»¥,), and is given by the for-
mula

f(yl’ < Wy '9)’77'(3)
ff(yl,-..,y,. [6)m(8) do
(2)

W(Giyl,...,y") =

The posterior distribution now becomes the basis
of all inference for the Bayesian statistician. For

example, a Bayesian point estimator of @ is given
by the mean of =w(8]y,,..., ¥,), that is,

E(Blyl,...,y")=[|91-r(9|y1,...,y,,)d6 (3)

is a Bayesian point estimator.,

The EB methodology borrows from both
Bayesian and classical statistics. Whether or not ¢
is perceived to be random, EB analysis will start
with a Bayesian model in which a prior distribu-
tion is specified for the parameter. However, in
parametric EB methodology, the most commeon
approach is to specify a family of prior distribu-
tions indexed by another parameter, called a hy-
perparameter. Thus, we could specify the family
of prior distribution 7(8[A), indexed by the hy-
perparameter A, Analogous to Eqns. 2 and 3, we
can caiculate the posterior distribution

(0 yy,...,y, A)
_ e y,10)m(]2)
ff(yl,...,y"iﬂ)w(ﬂlx\) do

(4)
and posterior mean

E@ly,....y,, A)=f6‘17(6|y1,...,y,,, A) do
(5)

Now, the ‘empirical’ in empirical Bayes comes
into use. In the EB methodology, the hyperpa-
rameter A is now estimated by A Using this
estimate we can calculate 7(8|y,,..., Vo A),
E@[y,,...,¥,, A), and any other quantity that is
needed. These estimates, which are Bayesian in
form but use the data to estimate hyperparame-
ters, are empirical Bayes estimates.

Using a family of priors indexed by a hyperpa-
rameter places EB squarely between classical and
Bayesian models. In a formal Bayesian model
only one prior is used, and a classical model, in
which there is no specified prior, is mathemati-
cally equivalent to allowing the prior distribution
to be anything. So by using a parameterized class
of priors, EB models are somewhat more specific
than classical models, but less specific than
Bayesian models, (Models with classes of priors
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are also used in robust Bayesian analysis. See
Berger [7] for a discussion of this methodology.)
The use of a hyperparameter plays an impor-
tant role, as <an be seen in the example of
Section 2.1. In Eqn. 1 the hyperparameter is p,a
common mean level of all groups. The impor-
tance of this is that the EB model (or the Bayes
model) specifies a structure between the groups,
and tries to estimate this structure, This level of
modelling is not present in a classical model.
Before going further, a word of caution is
needed. Hstimates such as E(@lyp-oosVm A)
based on Ean. 5 will, in many cases, be very
respectable point estimates of 0. Analogous cal-
culations of variances, for example var(8| ¥y,
+eesYps A) hrave an undesirable property of being
gnderestimates. This is because the variability of
1 as an estimate of A is not accounted for. Morris
{11 was one of the first to address this point, and
also to develop good EB yariance estimates. More
recently, some general formulas for variance ap-
proximations have been developed and imple-
mented to obtain good EB variance estimates and
confidence intervals [9-12]. Some of these calcu-
lations are ilfustrated in later examples.
Although there arée many ways to estimate A,
most of them are based on using the marginal

distribution of the data, m(yl,...,y,,'l)t). This is

given by

m(yl,...,y,,l)\) =ff(y1,...,y”16)'qr(9|)\) de
(6)

which is the denominator of Eqn. 4. Using
m(yi,...,y,,l)t), techniques such as maximum
likelihood estimation [8] can be used to obtain
estimates of A (as in ref. 13).

Keeping these cautions in mind, EB estimation
proceeds with A in place of A, and can be the
basis of inference within classical or Bayesian
statistics.

4. DETAILED CALCULATION IN A SIMPLE CASE

To illustrate some EB calculations, we usé &
very simple situation of Bernoulli trials (coin toss-

ing). We start with a Bayesian formulation of the
problem.

4.1. Bayesian coin tossing

Toss a coin n times, and let p be the (un-
known) probability of a head. {QObserve 1
Bernoulli trials with success probability pyLety
denote the observed number of heads (successes),
then the sampling distribution of y, f(y | p)is the
binomial distribution

fotpy = (3)a-
y=0,1,....% (N

where (’;)ﬁu! sy n—y) is a binomial coeffi-

cient. We next consider a simple prior distribu-
tion on p:

w(p) =6p(1-P) (®
which is symmetric about L

This choice of prior is mainly for convenience,
as its form will simplify the ensuing calculations.
1t is a conjugate prior density for the binomial.
Conjugate priors always greatly simplify calcula-
tions. If we were 10 consider w(p} on more
practical grounds, it is a symmetric prior, reflect-
ing that we have no prior opinion as to which side
of % the parameter P lies. Also, it has prior
standard deviation = 0.22. 1t is pictured in Fig. 1.

R

a =
0.0 01 02 03 04 05 08 07 08 09 1.0

Fig. L. Bayes prior and posterior for binomial example of
Section 4.1, The solid line is x(p) and the dashed line is
11(171)").
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We can calculate the posterior distribution of
p given y, w(ply), as
7T(ply)

__Jp)m(p)

folf(ylp)frr(p) dp
[(3) "=y 1601 - )]

. fol[(;)l”’(l —p)"""][ﬁp(l -l dp
9

‘The denominator of Eqn. 9 is m(y), the marginal

distribution of y (there is no hyperparameter
here) and is given by

o [ 5

=6(3)I‘(y+2)I'(n -y +2) (10)
Pln+4)
a distribution known as the beta-binomial, (The
notation I'(a) denotes the gamma function I'(q)
=fet et dr) .
. Continuing with our calculation, we obtain the
posterior distribution of p given v as

[('}f )py(l —p)"_y]ﬁp(l -p)
ay Dy +2)I'(n —-y+2)
)ty
I(n+4)
T T(y+2)T(n—y12)

Xp¥Hi(1 = pyr ot (11)
which is a form of the beta distribution,

As mentioned before, the posterior distribu-
tion contains all information for Bayesian infer-
ence, Thus, if there is interest in a point estimate
of p, a Bayes point estimator is the mean of
7(p|y), given by

E(ply)=fulpfr(ply) dp
y+2

“nTd (2

using Eqn. 11 for «(p] y).

m(ply)=

We can compare the Bayes estimate to a clas-
sical estimate of p, the maximum likelihood esti-
mator. This is the observed success rate, y/n,
and is denoted by P =y/n. With some algebra,
Wwe can write :

y+2
Bl =iy
i )A+ ] 7 1 13
_(n+4 P ("n+4)(5) (13)

a weighted average of the classical estimate and
the prior mean, with the weights dependent on
the sample size. Thus, the .Bayes estimate is a
combination of the classical and prior estimates,
with weights that reflect the amount of informa-
tion (that is, variance or sample size) in the
respective estimators. :

If we perform » = 50 Bernoulli trials and. ob-
serve y = 35 successes, we get a classical estimate
of p, =35/50=0.7, and a Bayes estimate of p,
E(p | y) = (50/54)(0.7) + (4/54)0.5) = 0.685,
which pulls thé sample estimate toward the prior.
We can also form interval estimates for the classi-
cal and Bayes estimators. A simple classical 95%
(approx.) confidence interval is give by

N Ay 1/2
5t 2(‘”—(1”—‘”)] =0.74.0.13= (057, 0.83)
A Bayes credible interval can be computed from
m(p|y). For y =35 we have

T(54)
T(37)T(17)

which is the beta (37, 17) distribution. Based on
this distribution we can calculate a Bayes 95%
credible region (0.56, 0.80), which is done by
allocating 2.5% to each {ail of the posterior (see
Fig, 1).

Note that the inferences from the classical and
Bayesian approach are very different. One reason
for cailing the frequentist interval a ‘confidence’
interval and calling the Bayesian interval a ‘credi-
ble’ interval is to highlight this difference. The
95% classical guarantee is that in 95% of ali
experiments, the procedure p + 2(p(1 -- By/m)t/?
will cover the true value of p. In any one realiza-

m(ply=35)= p*(1-p)*°
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tion, however, W& do not know if p has been
covered. In contrast, the 959% Bayes guarantee is
that the probability is 95% that p lies between
0.56 and 0.80. That is, for the particular dafa
observed, we specify a 05% coverage probability.

These inferences again show an essential dif-
ference between Bayesian and classical inference.
The coverage of the classical interval applies to a
jong series of replications of the experiment, al-
towing us to state that in 95% of all experiments
the true value of p will be covered. Experi-
menters tend to iike this inference, since it lends
credibility to the repeatability of an experiment.
However, this interpretation must be somewhat
tempered by the fact that no experiment is truly
repeated, as there is always some difference in
experiments. For the most part, with careful ex-
perimentation, the classical inference should be
close to the actual behavior of a process. In
contrast, there is no repeatability assumed for the
Bayesian inference. Starting from the prior prob-
ability distribution, the Bayesian constructs the
posterior distribution to make an inference for
the particular experiment done. There is no infer-
ence tO a series of replicated experiments, One
can say that the Bayesian is only concerned with
getting the inference correct for the particular
experiment that was performed, and has no inter-
est in a (usually imagined) series of possible repli-
cations.

4.2, An empirical Bayes approach

In the empirical Bayes approach, we model as
a Bayesian, but specify a family of prior distribu-

tions. Thus, we might start with the model

f(y\p)==($)py(1-p)"_y (14a)
PN gy
(I = TPt (1-p) (14v)

where here we have 2 family of prior distribu-
tions. We use a symmetric beta family indexed by
the parameter A, which are all conjugate prior
densities.

As specified in Eans. 14a and b, the model
cannot be used for an empirical Bayes analysis

for a simple reasoi there are more parameters
than data. We need to estimate both p and A,
but only have one data value y. To be able to
estimate p and A we need at least two data
points. This poiuts ouf a weakness in empirical
Bayes (that it cannot be used in very simple
situations) but also illustrates a strength of empir-
ical Bayes methods. The strength is that it is well
suited for complicated situations, and provides a
methodology for obtaining estimators in these
situations.

The model in Eans. 14a and b can be written
in statistical shorthand as the hierarchical model

(15)
(15b)

Y | p ~ binomial (i, P}
pIA ~beta (A, A)

To illustrate an empirical Bayes analysis, we con-
sider a situation of the form

Y, lp~ binomial (1, P1)
¥, 1 pp~ binomial {1, P2)
pl, pZN beta (Ay )‘) . (16)

Here we assume that there are two parameters,
py and po, that are tied together at some underly-
ing level (since there is a common hyperparame-
ter A). In the context of coin tossing, we arc
saying that there are two coins which may have
different probabilities of heads (p; or p»), but
they come from the same underlying process (with
parameter A

This is the strength of the empirical Bayes
methodology: it allows us to combine information
in such a way as {0 construct good estimators for
each parameter. Using this methodology, we cait
often find our way through difficult modelling
situations and arrive at sensible estimates. In the
examples of Section 2, each model combines in-
formation in useful ways. In Example 2.1, infor-
mation is combined across species. That is, the
different species represent different problems. In
Example 2.2, the information is combined across
experiments. This modelling in a hierarchy is
often useful, and will usually be a reasonably
aceurate represcntation of the process in ques-
tion, This will be the case whenever the full
experiment has parts that have some common
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thread. Modelling this communality with a pa-
rameter allows the data to use this information to
possibly achieve better estimates of each part.
However, we also want our estimation method to
indicate how much weight this ‘common’ part
should have. This will help us in constructing
good estimates,

Returning to the empirical Bayes meodel in
Eqn. 16, we calculate the posterior distribution of
each p; as

Ly, +24)
I'(y; +)I'(n =¥ tA)
xpy,+a—1(1 _p)n—yﬁ/\*l
=beta (y;+4, n—y, +A)
i=1,2,
giving posterior expectation
v A
n+2A

W(Pf’yi) =

E(P,-I Yis A) =

i=1,2
We now calculate the marginal distribution of the
¥; values and find

ny T'(2A) I‘(y,.+;\)1’(n—y,-+/\)
m(y;|A) = (yi) [TV T(n+21)

(17)

a beta-binomial distribution. Using this distribu-
tion we can estimate A, and construct our EB
cstimates of p;,

¥+ A
= 18
n+2A ( )

Notice that our estimate of P E(p, |y, A) uses
information from y, (through 1). This is how EB
combines information across problems,

Suppose we now observe y;=35and y,=27,
Using the method of moments on Eqgn. 17 (which
is computationally easier than maximum likeli-
hood estimation in this case), we obtain an esti-
mate A =15.205, which yields EB estimates

E(P: I Yis X) =

~ 35+15.205

E(pl | Y J\) = m =0.624
~ 27 + 15.205

E(pz [ Y2, A) = m =0.525

Note that the EB estimate of Py gives more
weight to the symmetric prior than the Bayes
estimator of Eqn. 13, which estimated it to be
0.685. This is because the additional information
(y,=27 out of 50) gave more credence to a
symmetric model.

We could proceed to estimate an EB variance
with Var( Y AR A) and even the posterior, with
w{p;| ¥, A). However, as mentioned before, such
estimation results in overly optimistic variances
and confidence intervals, Instead, we suggest esti-
mating EB variances using more sophisticated
methods like those of Morris [1] or of Kass and
Steffey (13]. This would lead to a variance esti-
mate of the form

_ (y,-+ﬁ)(n—yi+ﬂ:)

Pl A-+C*
(n+A+1)(n+24)

Var(p;l y;, A)

(19)

where the first term in Eqn. 19 is a direct substi-
tution into the Bayes variance formula, The C*
term is a correction, and can be computed in
different ways. The methodology of Morris [1] is
detailed in Section 8. For details of the other
method, see refs. 13 or 14,

5. EMPIRICAL BAYES IN THE ANALYSIS OF VARI-
ANCE

In this section we describe some EB methodol-
ogy in the analysis of variance (ANOVA) model,
a very popular setting for the analysis of experi-
ments. First we will look at an example.

3.1. A simple analysis of variance
An experiment was run to assess the effect of

linseed oil meal on the digestibility of food by
steers. The data are from Hsu [15]:

Treatment

1 2 3 4 5
Mean 79.23 74.4% 74.68 72.35 7132
Std. dev. 6.96 377 1.72 4.04 2.57
1 6 6 6 6 6

The measurements are a digestibility coeffi-
cient, and the treatments are different amounts
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TABLE 2

of linseed oil meal added to the feed (approxi-
mately 1, 2, 3 4 and 5 kg/animal/day). An
ANOVA model for this situation is

iy = U T e (20)

where ¥, j-;jth digestibility measurement in ith
treatment group, g, is the true mean digestibility
of the group, and €; is random €rrofx, assumed to
be normally distributed with mean 0 and variance
o2 (e~ normal ©, oM.

To specify a hierarchical (or Bayes) model, the
first step in an empirical Bayes analysis, we must
specify a model for the g, values. The experi-
menter believes that increasing amounts of lin-
seed oil meal decreases digestibility, and suspects
that the 8, values will behave approximately as

9i=a+ﬁXf+3i (21)

where « and B are parametexs (hyperparameters),
X, is the amount of linseed oil meal, and & is
random eItor, 5, ~ normat (0, r2). This model
specifies a linear trend in the responsces, the exact
form of which is to be estimated. We thus have
the Bayes model

(22a)
(22b)

Notice that the submodel for the 6, values ties
them togethet. Altiiough there are five §; values,
the submodel describes them as being on a line,
which is two-dimcnsional. The Bayes estimate of
0; is

y;16;~ normat (9;, 02)
g\, B~ normal (o + BX;, %)

0_2

R

2
: 23
+(02+'r2)y’ (23)

and the marginal distribution of ¥; is

E(silyi’a’ﬁ)=( )(a+ﬁX£)

y; ~ normal (a+BX o2 +7%)

As before, we use the marginal distribution of
y; to estimate the unknown prior parameters. We
can estimate @ and B by performing a simple
lincar regression of y on X, and use maximum
likelihood (or least squares) to estimate o? and
%, (More details of these calculations are in the

Estimates of §;

Treatment

Treatment

1 2 3 4 5

4 N3

y; (cell means) 7002 744 747

6, (regression) o 161 144 126 70.9
Empirical Bayes )9 7149 4.6 125 1.2

next section), Coding X, =iwe obtain the regres-
sion estimates

9, =79.66 — 176X, (R*=0.87) (24)

and substituting estimates into Fqn. 23, the EB
estimates are

E(8; vi, & ) ~0.296,+0.71y; (25)

Table 2 shows a summary of these estimates.
Notice that the empirical Bayes estimates, €ven
though pulled toward the line in Bqn. 24, do not
necessarily have to lie on a line. The fact that
they do (Fig. 2) is evidence that the linear sub-
model for 8; is reasonable. The amount by which
the EB estimates are pulled toward the line is
data-dependent. The stronger the data support
the lincar model, the more the EB estimates are
puiled to the line.

As usual, attachirig standard errors to the BB
estimates is not trivial. However, it should be
mentioned. that there is a quick, conservative

80

76 78

Digest.

Coeff. of
74

o
P~

2 3

Linseed Ol
Fig. 2. Estimates of the cellﬁmeans for the steer data. The line
represents the submodel = 19.66—1.76X. The crosses are
the cell means, and the squares arc the EB estimates.
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approximation. That is to use the usual standard
errors and confidence intervals together with the
EB estimates. Most often, intervals constructed
in this way will be conservative, For example, the
usual 90% #-interval centered at an EB estimate
will most often have coverage probability greater
than 90%. There is a small chance that the inter-
val will have coverage probability less than 90%,
but this is slight enough not fo cause worry. So
attaching the usual standard errors to the BB
estimates is a simple, conservative tactic. It is also
possible to use more sophisticated methods and
obtain simultanecus EB confidence statements
that yield improvements over the classical Scheffg
intervals. Unfortunately, the simultaneity of the
confidence statement leads to rather wide inter-
vals that are often not used in practice, Details of
the EB simultaneous construction will not be
given here, but can be found in ref, 16.

5.2, Extrapolation

The paper of DuMouchel and Harris [4], al-
ready mentioned in Section 2, provides a nice
illustration of how the EB model can be used to
bring together similar problems. By doing so,
conclusions can be extrapolated to different pop-
ulations. Of course, we must be wary of any
cxtrapolation, since doing this puts ultimate faith
in the model, That is, since extrapolation involves
making inferences where no data have been col-
lected, the only basis for the inference is the
model. Moreover, this lack of data means we
cannot check the adequacy of our model in these
regions, hence we must have ‘ultimate faitlh’. With
that disclaimer, EB provides a nice methodology
for extrapolation.

TABLE 3

Data analyzed in ref. 4 (X =data present and O = data absent)

The DuMouchel and Harris [4] model is

y,-}- = BU + EU—

(26a)

3fj=,LL+a,-+'yj+6i}- (26b)
where the terms are all defined in Section 2.1,
The model for i is known as a ‘cell means’
model, since it relates the data clement y, ; to the
cell it comes from. In contrast, the model for the
f;; is a ‘no interaction’ model. That is, each 8,; is
related only to a row effect {e;) and a column
effect (y;). Hence, knowledge of the individual
cell is not needed to estimate ;. This i the
feature of the model that allows for extrapola-
tion. '

A schematic diagram of the data analyzed in
ref. 4 (somewhat abridged) is given in Table 3.
The goals were both to provide estimates for cells
with no data and to improve precision of esti-
mates (using posterior standard deviations (SD)).
Both goals were to be accomplished by modelling
the data as having common underlying structure,
and borrowing ‘ensemble strength’ through EB
models to help improve estimates,

A portion of their results, relating lung cancer
risk in humans, is summarized in Table 4. They
presented not only EB estimates, but also Bayes
estimates and maximum likelihood estimaftes,

The methodology of DuMouchel and Harris
provides a modelling structure for reasonable ex-
trapolation. Although we should not put ultimate
faith in the extrapolated dose-response slopes
for humans exposed to diesel engine fumes, these
estimates do give us some idea of the risks associ-
ated with this exposure (subject, of course, to the
approximate correctness of the model),

Species Roofing Coke oven Diesel engine Gas engine Benzopyrene Cigarette smoke
tar emissions emissions emmissions emissions

Human X x O < Q x

Mice X x X X X X

Hamster X X X X X X
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TABLE 4

Estimates of dose response in humans, from ref, 4

Estimate Posterior SD
(log slope)
Roafing tar
Orig. data 0.50 1.41*
Bayes 0.12 1.02*
EB 0.12 1.01*
MLE -0.01 0.70 *
Coke oven
QOrig. data 1.48 0.41**
Bayes 1.38 0.02 **
EB 1.38 0.01**
MLE 1.30 0.70 **
Diesel engine
Bayes 0.46 1.45 ***
EB .46 1.40
MLE ) 0.57 0.80

* Estimates change greatly because of high SD of original
estimate.

** Estimates do not change much because of small SD of
original estimate.

*** These values are extrapolated from the analysis. There is
no data on humans exposed to diesel engine fumes. The
extrapolation results in a high SD.

6. A DEEPER LOOK AT EMPIRICAL BAYES

In this section we illustrate some of the under-
lying statistical theory of EB analyses. Although
the material in this section is important in fully
understanding the mechanisms of EB, the section
can be skipped without serious consequences.

A general form of an ANOVA model is

y; ~normal (6;, 0*}) i=1,...,p (26)

all statistically independent, Here we can think of
y; as obscrved ANOVA cell means and 6, as true
cell means. For now we assume o2 is a known
number (to ease exposition). This assumption is
easily relaxed in practice, where o can be re-
placed by an estimate 2

In an EB model we assume an underlying
structure for the #; values, which leads us to
comsider the extension of Eqn. 26

(27a)
(27b)

(i=1,..., p) where ¢; ~normal (0, ¢*) and §; ~

normal (0, r%) are the associated errors. The
vector Z; contains covariates that (hopefully) link
the 8, values together (as in Section 5.1, for
example, where the Z; values would reflect the
amount of linsced oil meal in the feed).

Notice that there is no subscript on the vector
B, as this is the EB part of the model, the part
that ties things together. We would like to model
B to have as small a dimension as possible, mod-
elling a strong underlying structure into the 6,
values. This would allow the EB estimates to
offer the most improvement.

Although we will not consider it here, the
model of Eqns. 27a and b can be further general-
ized to

y; =X/[0; + ¢ (28a)
BI' = Z;ﬂ + 6{‘ (28b)
where X, are covariates for the y; values, with
only a slight increase in algebraic effort. Calcula-
tions for this case are given in detail in refs. 4 or
17.

A typical set of distributional assumptions for
the model Eqns. 27a and b is

y:16; ~ normal (8, 0*) i=1,...,p (29a)
0;1 8 ~ normal (Z/B, 7°) (29b)
B; ~ uniform ( —o, ®) (29¢)

where Z;=r X1 vector of known predictor vari-
ables, 72 = unknown variances, 8 =r X 1 vector
of unknown regression coefficients. Using matrix
notation we can write this model as

Y |6 ~ normal (8, o°T) (30a)
618 ~ normat (Z'8, 7°1) (30b)
B; ~ uniform R” (30c)

More complicated covariance structures than
those given in Eqn, 30a~c are also possible, again
bringing an increased amount of algebraic effort.

As outlined in Section 3, we can perform a
number of distributional calculations on the basis
of the model Eqn. 30. Although these are more
complicated, they reflect the same underlying
principles as we have given before. Our ultimate
goal is to calculate a posterior distribution for 8,
(@] y), which will provide the basis for our EB
inference,
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Briefly, the prior distribution on 0, #(8) is
given by

w(0) = [m(01p) dp (31)

where (8| 8) ~ normal (Z'8, +2I) from Fqn. 30.
After completing this integration, we can calcu-
late the posterior w(8]| y), as
f(yl0)m ()
T(8]y) = (32)
[#(y10)m(0) do

where the denominator is the marginal distribu-
tion of y. These calculations are somewhat
lengthy, but when completed we find that « (8| y)
is a multivariate normal distribution with

72 . o? ily “
mean = ——— [ [+ — .
o+ 1.2 ’1'2 ( )
1
. . o’r? . o’ .
covariance matrix = -
o412 ot+q?

(33b)
where
H=Z(Z'Z) " '7’

Thus, the Bayes estimator of Y, the posterior
mean, is

1_2 0,,2
B(01y) =5 |1+ H|Y
2

1- U—)(Y—HY) (34)

=HY +
o272

(The guantity HY can be obtained by regressing ¥
on Z using the marginal model Y =Zg + error.)
The EB estimate is obtained by replacing the
unknown quantity 1 —[¢?/(a? +72)] by an esti-
mate based on the marginal {unconditional on 0)
distribution of Y. Marginally, the quadratic form
Y (I-H)Y
o’ +7?
has a y? distribution with p —r degrees of free-
dom, which implies its expected value is

(p—r—2)o? o
Y'(I-H)Y

(35)

g+ r?

so we have an unbiased estimator of o2 /{o? + 77)
based on the marginal distribution, Substituting
into Eqn. 34, we obtain our empirical Bayes esti-
mator of 8,
(p—r—2)0?
Y/(I-H)Y
X (Y —HY) (36)

The form of Eqn. 36 is quite interesting, and
bears comment. The part in square brackets is
the BB part of the estimator, and acts as a
weight, vielding an EB estimate of the vector 0
that is a weighted average of Y and HY. Estimat-
ing @ with Y would be most desirable if we
believed only in Eqn. 27a (the full model), and
estimating @ with HY = Z(Z'Z)~'Z'Y would be
most desirable if we believed only in Eqn. 27b
(the submodel). Thus, the EB estimate is a
weighted average of full model and submodel
estimates, (Recall that the submodel ties together
the @, values, and allows EB to result in an
improvement.)

However, there is another important feature of
the EB estimate. The weight function {in square
brackets in Eqn. 36) depends on the data through
the quantity Y'(I — H)Y. This quantity is the
residual sum of squares from the regression of Y
on Z, hence it is a measure of how well the
submodel fits the data (large values of Y'(I — H)Y
imply that the submodel does not fit the data,
small values imply that it does). Moreover, if
Y'(1— H)Y is large (so the data do not support
the model), the EB estimator is very close to Y,
the full model estimate. Conversely, if Y'(I — H}Y
is small (and the data do support the submodel),
the EB estimator is close to HY, the submodel
estimate. Thus, the EB estimate allows the data
to select the appropriate model, and produces an
estimate which is close to optimal for that model.

The performance of E(F]Y, ) of Eqn. 36 can
be improved with the slight modification

_(» —r—=2)g?
YA Wy
X (Y — HY) (37)

where the superscript ‘-’ denotes that the quan-
tity in square brackets is replaced by zero if it is

E(6]Y, #*) =HY + |1

+

E*(0]Y,#) =HY + |1
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negative, ‘This stops the estimator from pulling
past the submodel.

For the more general case of unknown o and
n; observations in cell 7 the theory remains essen-
tially unchanged, except that the algebra gets
more difficult. Using a similar development, an
empirical Bayes estimator of & is

E(0IY, #, &)

v 5 +
(p—r—2)¢
—GY+[1-2t2
Y'(I—-G)D(I-G)Y
X (Y - GY) . (38)

where D is a diagonal matrix with entries (s,
Hyyooiy i), G = Z{(Z'DZ)"'Z'D, 6% = estimate of
o? from the full model, and » = error df.

7. MORE EXAMPLES OF EMPIRICAL BAYES ANALY-
SES

In this section we briefly present five applica-
tions of EB methods, illustrating the breadth of
influence that these methods have had. There are
numerous other applications of EB in the litera-
ture, too many to mention here. The field is
continually expanding, and quick perusal through
some statistical methodology journals will almost
certainly contain a new EB application.

7.1. Estimation of means

Using the model Eqn. 1, which is similar to
models discussed by Eberhardt et al. [5], we can
employ the methods of the previous section to
obtain empirical Bayes estimates of selenium
concentration, Starting from the model Eqn. 1,
we can write the following model for the means
X

H

X,=p;te i=1,..,4 (3%a)

M=t (39b)

where ¢, has a normal distribution with mean
zero and variance o2/n;, € ~normal (0, o/n,),
n; = number of observations in X;, and §;~
normal (0, 7). Thus we have a hierarchical model

that specifies that the individua! selenium means
() have a common underlying value (), The
observed differences are due to two sources of
error that we have modelled with normal distri-
butions,

As written in Fqn. 39, the mode! does not
appear to be in the form of Section 6 because the
first stage variances (the variances of X;) are not
all equal. However, Eqn. 38 is applicable, and we
will use that to estimate the selenium concentra-
tions. To use Eqn. 38 we identify

(il,...,i,)': (105.0, 109.75, 109.5, 113.25)
(1,1,1,1) = Z

(ny, ny, 1y, ny) = (8, 12, 14, 8) = diagonal of D
Fhis leads to

Mmoo My Ry Ny

nHy Hy My Ny

1
Nl# o ny By oy
By H, Hy Wy

where N=X!_,n,=42, and

G=

r 4 — =2
Y'(I-6)DI-6)Y= ¥ (X, -X]
i=1
with X = E?ﬂlrzii,-/N. Also, we calculate the
pooled variance by
4

62= Y (n;— 1)8/(N—4)=28925 (40)

i=1
with » =N — 4 =38 degrees of freedom. Finally,
since p =4 and r = 1, we calculate

D (p-r-2)
p—r—2}a
2 v+2
B-1-
)_'_‘,n,.(x,.ﬁx)
i=1
38
38(98.925)
=1 9 41
275.036 00 (41)

This yields empirical Bayes estimates

iy =109.429 4 0.9 (105.0 - 109.429) = 105.443

fi,=109.429+ 0.9 (109.75 - 109.429) = 109.718

fiy=109.429 + 0.9 (109.5 - 109.429) = 109.493

fiy=109.429 + 0.9 (113.25 — 109.429) = 112.868
(42)
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Note that the EB estimates are not very differ-
ent from the X,. This is because the submodel,
which specifies that the w, values have common
mean g, is not strongly supported by the data, In
particular, 21 and )_(4 are far from the grand
mean, Thus, although the theory says that the EB
estimate is an improvement over the usual esti-
mate, in this case the practical difference is small.

7.2, Growth curves

Strenio et al. [18] applied EB methods to esti-
mation of growth curves. They modelled growth
for an individual as a polynomial in age, using a
second-stage model that relates individuals (using
covariates), Calculations are done in general, us-
ing some of the Lindley—Smith [17] formulas,
However, here we will just do an example. Let
¥, = weight of ith rat at the rth week. Then we
have

E(¥i| Byis Bai) =By + By (£ — 1)

where 8;; and B,; are regression coefficients for
the growth curve of individual {. In the submodel,

E{By| 115 ¥12) =¥11 + Y12 X
E(Ba:| ¥ar» ¥22) = Va1 + Y22 %

where the v, values are unknown regression
coefficients, and x, = mother’s weight (covariate),

The EB estimate of 3y; is a linear combination
of

B (from regression of ith individual on time)

and
TR T (from regression of f3;; on x,-)

The EB estimate of 8,; is obtained similarly. The
growth curve (a line in this case) is thus a linear
combination of the curve for the individual and
the curve for the ensemble. Note that the sub-
model estimates, $;; and ,,, are based on data
that is summed over time, hence use all of the
information. This model was applied to data on
growth in rats, and an illustration of the results is
given in Fig. 3.

Note how the EB growth curve pulls the indi-
vidual curve toward the population average. This

Weight
70 BO 90 100 110 120 130 140 150 160

1 : I

4 S

!
[=]
&)
(¥

Time
Fig. 3. Typical growth curve for data taken from ref. 18. Lines
shown are for rat No. 8. ( ) Submedel; (---) individual
estimate; (~ — —) EB estimate.

results in a reduced variance {and hence more
reliable estimates) of the individual curves.

7.3. Contingency fables

EB methods can be applied to the analysis of
contingency table data, proving especially useful
with large, sparse tables. 'The usual contingency
table can be described by

x,;; = observed frequency in cell (i, f)

where x;; has a multinomial distribution with
expectation Np;, X, ;x;=N, L, p;=1 Tt is
common to use a log—linear model for the cell

probabilities, given by
log p;j = g+ oy + Boj + tynyy (43)

where py, is the row effect, u,; the column
effect, and u,; the interaction effect.

EB methods for contingency tables now place
prior distributions on the g values and estimate
unknown prior parameters from the marginal dis-
tribution of the x;; values. A popular method [19]
is to use a Dirichlet prior, which yields estimates
of Np;;=n; of the form

Agg=W;+(1-w)A,
where fi,, is the maximum likelihood estimator
under independence, W;; is an estimate based on

the log—linear model, and W is estimated from
the marginal distribution.
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Leonard [20] uses a Bayesian approach with
normal prior distributions on the j;; values, and
uniform distributions on the hyperparameters.
Laird [11] uses an EB approach, employing nor-
mal and uniform distributions in a different way,
and estimating variances from the marginal distri-
bution. In either case, much compuiation is in-
volved in obtaining estimates.

7.4, ANOVA with unequal variances

An important assumption in the analysis of
variance (ANOVA) is that the variances for each
cell are the same. This is reflected in model Eqns.
26 or 27, where it is assumed that each cell has
variance ¢? (not dependent on ). If the equal
variance assumption is relaxed, we get a model of
the form

y; ~ normal (6, o) (44)

Although it may not be immediately obvious,
model 44 is even more general than the model
leading to the EB estimator in Eqn. 38, where it
is assumed that there are different numbers of
observations per cell (z;), but each cell has the
same variance parameter a2,

Efron and Morris [21] apply model 44 to EB
estimation of toxoplasmosis rates in 36 cities in El
Salvador. They use the model

y; ~ normal (6, o?) i= 1,...,36 (452)

(45b)

where y, = observed prevalence rate in city i
9, = true prevalence in city , o = variance of the
observation in city #, and 7> is a common prior
variance. The EB estimate of ; is

8, ~ normal (0, 7%)

E(eld., 7 & 46
( Ois T) &i2+$2y‘. ( )
where ¢ and #? are estimates from the marginal
distribution. In the unequal variance case these
estimates are more difficult to calculate, but there
are simple algorithms for doing so (1,21l

The results are quite interesting, and a selec-
tion of the estimates is given in Table 5. Notice
how the X; values with large variance get changed

TABLE 5

Selected estimates and empirical Bayes estimates of toxoplas-
mosis prevalence rates

City X; % EB;
1 0.293 0,304 0.035
4 0.152 0.115 0.075
5 0.139 0.081 0.092
8 0.098 0.087 0.062

13 0,035 0.056 0.028
21 0.034 0.073 0.024
25 0.098 0.068 0.072
28 0.138 0.063 0.106
29 0.156 0.077 0.107
31 0.241 0.106 0.128
R 0.294 0.179 0.083
33 0.296 0.064 0.225

more; in particular note the change in estimates
for cities 1 and 32. City 33 has virtually the same
X, value as city 32, but a much smaller variance.
Hence, its EB estimate changes very little., If we
had assumed o2 = o%, each X, would have been
changed by an equal, smailer amount.

Thus, we see how the EB estimation proce-
dure tends to trust individual observations with
smaller variance, and not change them much.
However, if the individual estimate has a higher
variance, the EB estimate tends to trust the over-
all information more, and changes the estimate
substantially.

7.5. Regression equations

Allus et al. [22] describe a series of response
surface experiments fo investigate the effect of
metals on the growth of plants, They did two
experiments, cach with three metals. Their meth-
ods, and the EB modification that follows, can be
casily extended to N metals.

A model for plant growth as a function of
three metals is, from Allus et al. [22],

y=by+bx +byxy+byxs
by X Xy b by X Xy b3 XXy (47)

where y=measure of plant growth (e.g. root
length), b, is 2 constant, b, and by measure the
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effect of metal {, and b;; measures the interaction
effect of metals { and j.

In models such as Eqn. 47, it is common to
inquire about the interaction terms. Specifically,
there is usually interest in the tenability of the
submodel which excludes interactions, which
could be of the form

y=by+bx;+byx,+byxy
+ by X7+ by xi+byyx? (48)

The submodel 48 is only one of many that could
be used, each submodel being suggested by some
aspect of the underlying process. For example,
Allus et al. [22] found in their experiments that
some b;; are considerably smaller in magnitude
than the other coefficients, suggesting a no-inter-
action submodel. Also, with other mefals it was
noted that they were not very toxic to plants at
the levels studied, suggesting another submodel.
It is generally acknowledged that pre-testing
for the appropriate model, then using that model,
is a non-optimal strategy. However, EB ‘methods
allow us to incorporate submodel information
into the full model estimation, The resulting EB
estimators for the coefficients will be closest to
whichever model is best supported by the data.
Specifically, adapting the formulas of Section 6,
the EB estimate of a coefficient b; is given by

bE® b5+ [1—B] " (bF - b5) (49)

where the superscripts ‘S’ and ‘P refer to the
submodel and full model. These estimates are
caleulated by performing ordinary regressions on
tAhe model Eqns, 47 and 48, The shrinkage factor
B is given by

(p—r—2)6*
¥ (BF - B) + (b5~ 53)’

B= (50)

The shrinkage factor B has an interesting in-
terpretation, one that holds in general. The de-
nominator of B is actually the sum of squares for
testing the hypothesis of no interaction, Further-
more, &2, which is the residual mean square from

the full regression, i§\ the error term used to test a
hypothesis, Int fact, B can be written

(p—r-2) 1

ﬁ:
(p—r) F

(51)

where [ is the calculated F statistic for testing
Hy: no interaction. Comparing Eqn. 51 with Eqn.
49 we see that bE® will be closest to the estimate
(either b3 or bF) that the F test best supports.

The form of Eqn. 51 tends to hold in a wide
varicty of cases. That is, the shrinkage factor is
proportional to the F statistic that tests the via-
bility of the submodel.

8. ESTIMATION OF EMPIRICAL BAYES VARIANCES

A conservative approach to attaching variance
estimates to EB point estimates is to use the
usual estimates of variance. For example, a stan-
dard variance estimate for a maximum likelihood
estimate (standard output from many statistical
packages) will serve as a conservative estimate of
the variance of the EB estimate. Of course, we
would like to do better, Since the EB estimates
supposedly have improved precision, this should
be reflected in our ability to attach smaller vari-
ances to our EB estimates. We know these vari-
ance estimates will not be as small as the ‘naive’
ones, obtained by direct substitution (as men-
tioned in Section 3), but we hope that good EB
variance estimates will be smaller than the classi-
cal ones.

Constructing good EB variance estimates, and
thus good EB confidence intervals, has been the
subject of much research, There have been theo-
retical investigations [16,23], approximations
[1,13], and applicaiion of computer-intensive
techniques on construction of BB confidence in-
tervals [9,10,24]. Here, we describe the approach
of Morris [1], one of the first to construct EB
estimates, The concerns addressed by Morris are
the fundamental ones in EB variance estimation,
and are concerns of all Iater work.
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Recall the EB anova model as in Eqn. 29

y;10; ~ normal (8, o*/n) {52a)
8;1 8 ~normal (Z/B, 7*) i=1,...,p  (52b)
B ~ uniform { — o, c0) (52c)

where y, = cell means based on n observations
per cell, 8, are the parameters of interest, the
true cell means, 8 =rX1 (r <p) vector of un-
known regression coefficients, Z; = vector of co-
variates for cell i, and the variances are o? and
72, Under this setup, the Bayes estimator of 8, is

é\m=§i+(1_B)(}’fH§f): (53)
where

B=oc?%/(0*+n1?)

3f=zf'l§

and

B=(z'2)"'Z"y
The EB estimate of B, using arguments similar to
the previous ones is

ﬁz(p—:-Hz)(Uiz)?; .

A 2

p (J’i - BE) .
where we have used the operation ‘4’ as de-
seribed in Eqn. 37, The variance of the Bayes

estimator, @y;, is given by
Var(6,) = (1B 55
ar =—(1-

(fn) =~ (1-B) (55)

" Morris [1] notes that, for the variance of EB
estimator, we must also account for increase in
variance due to both estimating B and estimating
B, and suggests using

N a? D—F .,
Variance(BEB[) = (1 " B)
n

+U(ﬁ)()’f“§:)2 (56)

Although Eqn. 56 appears to be formidable, it
is composed of very sensible pieces. The first
term mimics the Bayes variance of Eqn. 55, where
{(p- r)/p]ﬁ is substituted for B (the factor (p —
r)/p is for bias correction). The second term in
Eqn. 56 is the important one, as it estimates the
variance of B. In the Bayes variance Bqn. 55 it is
assumed that B is a fixed, known constant, hence
B has no variance itself. The estimate ﬁ, however,
does have a variance. If we just use the first term
of Eqn. 56 as a variance estimate we are ignoring
the inherent variance of B as an estimation of B.
This is what the second term in Egqn. 56 ad-
dresses.

Note that the EB variance estimates for each
cell can be different. In fact, the variance for cell
i increases as the cell mean y; moves further
from the submodel, and decreases as the cell
mean moves closer to the submodel. This will
result in some EB variances being larger than the
classical estimates, and others being smaller.

8.1. Variance estimation for the steer data

For the steer data of Section 5.1, the classical
standard deviation estimate is &/vn = 1.24, and
the EB standard deviations, using Eqn. 56, are

Treatment
1 2 3 4 5
EB standard deviation 1.23 132 113 113 L14

In contrast to the variance estimate from the
usual analysis of variance, the EB variance esti-
mates differ according to how closely the treat-
ment mean follows theAsubmodcl (and, of course,
how well the factor B is estimated). The EB
standard deviation of the cell mean from treat-
ment 2 is the highest, as that cell mcan was
further from the submodel.

8.2, Variance estimation for the selenium data

For the selenium data of Sections 2.1 and 7.1
we can also attach EB variance estimates to our
individual mean estimates. Here, however, we
have different numbers of observations in each
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mean., Adapting the variance Eqn. 56 to the EB
estimates of Eqn. 42, we have

&? 4-1,
Variance( 4;) = Vi = —(1 - TB)
n;

T+ 25(X, - %) (57)

where X, and X are the cell means and grand
mean, #; is the number of observations in X,, ¢
is the pooled error of Eqn. 40 and B is the
shrinkage factor of Eqn. 41. Substituting into
Eqn. 57 vields

Group

1 2 3 4
EB mean 105.443 109.718 109.493 112.868
EB st. dev. 5.740 0.975 0.824 4.983

Again, the largest variance estimates are for those
means farthest from the submodel.

It should be emphasized that the EB estimates
arc valid whether or not the submodel is true.
Data that are cosnsistent with the submodel will
have smaller EB variances, since the submodel
ties things together and effectively gives us more
observations, Data that are inconsistent with the
submodel will have larger variances, since ‘sub-
model pooling’ occurs and the EB estimates re-
vert back to usual estimates. In fact, they can
yield higher variances than usual estimates, since
we are penalized for estimating a submodel that
does not apply. This can be seen in the selenivm
data by looking at groups 1 and 2. Group 2
closely follows the submodel, so the EB standard
deviation ((1.975) is smaller than the usual stan-
dard deviation (¢?/12 = /28.925/12 = 1.553),
However, group 1 does not agree with the sub-
model and its EB standard deviation (5.740) is
larger than the usual (J&2/8 =/28.925/8 =
1.901).

Eberhardt et al. [5] are most interested in
obtaining an estimate of the overall mean sele-
nium concentration. That is, they want to com-
bine the individual estimates-of mean selenium
concentration and provide a method for minimax
combining, which leads to a robust estimate of
the overall mean. Their method is based on com-

bining the usual estimates of the means and vari-
ances, X; and ¢2/n;, and can be adapted to use
the EB estimates given above.

A simple EB combined estimate can be calcu-
lated using the usual weighting scheme of recip-
rocal variances. That is, a combined EB estimate
of the overall mean is

4
DA

figp = o =109.589
)IRVAS

=1
This estimate is similar to the usual combined

estimate, and slightly smaller than the Eberhardt
et al. minimax estimate,

9. DISCUSSION

The true test of the worth of a statistical
procedure is its longevity, and it seems that em-
pirical Bayes has passed that test in an admirable
fashion. The first empirical Bayes analyses started
to appear in the early 1970s and, as of 1991, the
methodology is still finding new uses and applica-
tions.

For the most part we have illustrated empirical
Bayes as a modelling and estimation techaique,
two aspects of statistics in which empirical Bayes
has proven most useful. What has been referred
to as EB models are also called hierarchical mod-
els, since they allow the modelling of a process in
hierarchical layers. By imposing such a structure,
it is often the case that complicated situations can
be modelled with relatively simple layers. More-
over, the empirical Bayes strategy leads to specifi-
cation of simpler submodels which can result in
estimates with improved precision, and increased
ability to extrapolate.

Once EB is applicd to any situation other than
the most simple, calculation of estimates can be-
come formidable. The explosion in computer-in-
tensive statistical methods, which have resulted in
greatly increased calculational ability, has
widened the applicability of EB methods. Indeed,
almost any EB application has accomplished its
calculations through use of the EM algorithm [25]




and more recently researchers have employed
bootstrapping algorithms [26] to aid in the calcu-
lation of BB confidence intervals [9,10,24). Even
newer computational methods such as the data
augmentation algorithm [27] or the Gibbs sam-
pler [28,29] will certainly find uses in the in-
creased applicability of empirical Bayes method-
ology.
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