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Functional Compatibility, Markov Chains,
and Gibbs Sampling with Improper
Posteriors

James P. HOBERT and George CASELLA

The members of a set of conditional probability density functions are called compat-
ible if there exists a joint probability density function that generates them. We generalize
this concept by calling the conditionals functionally compatible if there exists a non-
negative function that behaves like a joint density as far as generating the conditionals
according to the probability calculus, but whose integral over the whole space is not nec-
essarily finite. A necessary and sufficient condition for functional compatibility is given
that provides a method of calculating this function, if it exists. A Markov transition func-
tion is then constructed using a set of functionally compatible conditional densities and
it is shown, using the compatibility results, that the associated Markov chain is positive
recurrent if and only if the conditionals are compatible. A Gibbs Markov chain, con-
structed via “Gibbs conditionals” from a hierarchical model with an improper posterior,
is a special case. Therefore, the results of this article can be used to evaluate the conse-
quences of applying the Gibbs sampler when the posterior’s impropriety is unknown to
the user. Our results cannot, however, be used to detect improper posteriors. Monte Carlo
approximations based on Gibbs chains are shown to have undesirable limiting behavior
when the posterior is improper. The results are applied to a Bayesian hierarchical one-
way random effects model with an improper posterior distribution. The model is simple,
but also quite similar to some models with improper posteriors that have been used in
conjunction with the Gibbs sampler in the literature.

Key Words: Bayesian hierarchical model; Compatible conditional densities; Improper
prior; Markov transition function; Monte Carlo; Null Markov chain.

1. INTRODUCTION

Consider two real valued functions f (z;, z;) and f> (z1,x;) with domain R2. Sup-
pose that there exist two sets, A; and A, in R such that for any z, € A,, fi is a
probability density in z; whose support is A; and similarly, for any z; € A, f; is
a probability density in x, with support A,. The functions f; and f, may be thought
of as conditional probability densities and will hereafter be written as fi (z1]z,) and
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h (a:2|x1). Arnold and Press (1989) gave necessary and sufficient conditions for the ex-
istence of a joint density function f (x;,z,;) whose conditionals are given by f; and f5.
When such an f exists, fi and f, are called compatible conditional densities. Arnold and
Press (1989) allowed A; and A, to depend on z;, and x;, respectively. If f; and f, are
compatible and the support sets are fixed—that is, A;(z2) = A; and A;(z;) = Ar—then
results of Besag (1974) show that the joint density is unique (and satisfies the positivity
condition). The following simple example from Gourieroux and Monfort (1979) shows
that uniqueness does not necessarily hold when the support sets are not fixed.
Example 1. Define f; and f, by

Iy (z1) if 2 € (1,2)
f1 (x1|a:2) = I(273)(z1) if 2, € (2,3)
0 otherwise;

Iap(z2) if 21 € (1,2)
fa(zlz1) = ¢ Ios)(z2) if 21 € (2,3)
0 otherwise,

where Is(-) is the indicator function of the set S. The support sets of f; and f, clearly
depend on z, and z;, respectively. These conditionals are compatible, but any joint
density of the form

[ @1, 22) = ad(19)(x1) I ,2)(22) + (1 — @) 2.3y (1) (2,3) (x2)

with o € (0, 1) will produce them.

In Section 2, we consider the compatibility of a general set of conditional densities,
fi(zilz2, .., @m) - -, fm (Tml21, ..., Zm—1), under the assumption that the support
sets are fixed. Our approach is to introduce first a necessary (but not sufficient) condi-
tion for compatibility, which we call functional compatibility. Conditional densities are
functionally compatible if there exists a nonnegative function g that, if treated as a joint
density, generates the conditionals, but whose integral over the whole space is not neces-
sarily finite. For example, f; and f, are functionally compatible if there exists a function
g(z1,z2) such that g/ [gdz, = fi and g/ [gdzs = f,. Clearly, if no such g exists, the
conditionals cannot be compatible. On the other hand, the existence of g does not guaran-
tee compatibility since g may not be normalizable. For instance, consider the exponential
conditionals of Casella and George (1992, example 2): fi (z1|z2) = 2 exp (—z;22) and
f2 (z2]z1) = 1 exp(—z12,). The nonintegrable function g (z1,z;) = exp(—z122), if
treated as a joint density, does yield f; and f, as its conditionals, thus f; and f, are
functionally compatible, but they are not compatible (see Theorem 2).

A necessary and sufficient condition for functional compatibility is given (Theorem
1) that allows one to check for functional compatibility and construct g if it exists.
Compatibility of the conditionals follows if and only if g is integrable. Thus, if the
compatibility of a set of conditionals is in question, one may first check whether or not
they are functionally compatible. If they are not, then they are not compatible either, and
if they are, the integral of g must be checked.

The necessary and sufficient condition for functional compatibility is based on the
following argument. Assume that the support sets of f; and f, are fixed. If f; and f, are
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compatible, and we let f (1, z;) denote the unique joint density, then for any particular
z] € Ay and z} € A,, we have (Besag 1974; Gelman and Speed 1993)

fi (z1lz2) fo (z2l2}) f2 (z2]@y) fi (z1|2))
fi (allz2) fr(@yle)

Therefore, if we are given f; and f,, and compatibility is in question, a necessary
condition for compatibility is that the ratio of the two right-hand sides be constant for
any point (a:’l,xé) This condition is actually necessary and sufficient for functional
compatibility and when it is satisfied, either of the right-hand sides will serve as g.

In Section 3, we consider a Markov transition function constructed using a set
of functionally compatible conditional densities. It is shown that a o-finite measure,
m, constructed using g, is an invariant measure for the associated Markov chain (see
Theorem 3). Results from Section 2 imply that 7 is a finite measure if and only if the
conditional densities (used to construct the transition function) are compatible. It follows
that the chain is positive recurrent if and only if the conditional densities are compatible.
Section 3 ends with a general result for a class of null chains that describes the limiting
behavior of averages.

The results of Sections 2 and 3 are relevant in situations where the Gibbs sampler
(Gelfand and Smith 1990; Tierney 1994) is applied in an attempt to explore an improper
posterior distribution. The remainder of this section is a discussion of this particular
application.

Often, either from a lack of prior information or simply for convenience, improper
priors are assigned to the hyperparameters of Bayesian hierarchical models. When im-
proper priors are used at any stage of a hierarchical model, the resulting posterior distri-
bution must be checked for propriety. The integration necessary to check propriety and
calculate posterior quantities of interest can be daunting, however. When the posterior
is proper, the Gibbs sampler can often be used to simulate from the posterior distribu-
tion. The simulation results can then be used to calculate Monte Carlo approximations
of the posterior quantities of interest, thus avoiding difficult integration. Unfortunately,
if one mistakenly assumes propriety, it may still be possible to apply the Gibbs sampler.
Consider the following example.

Example 2. Let Y7,Y;,Y3 be iid N(u,0?) and suppose that the improper prior is
7 (u,0%) = In, (0?). It is not difficult to show that the posterior is improper; that is

_3 1
/§R /ﬂ (6%) 2 exp (—ﬁ > Wi u)2> dpdo? = co. (1.2)
+ i

Given this knowledge, consider what would have happened had we assumed that the
posterior distribution was proper and applied the Gibbs sampler. If we had assumed
propriety, we would have written the posterior as

(1.1)

f(@1,22) and f(z;,22) x

- 1
T (1, 0 |y1,v2,93) o (0?) %CXP (—533 Z(yz’ - #)2> In, (0%). (L3)

Use of the Gibbs sampler in this situation requires f; (1|o?,y), the conditional density
of p given o and the data, and f, (0%|u,y), the conditional density of o? given y and
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The Value of In || for 1,000 lterations
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Figure 1. The Natural Logarithm of the Absolute Value of the /,t(i) ’s Versus i for the First 1,000 Iterations of
a Gibbs Chain. The data, (y;, Y, y3), were realizations of independent standard normals. The densities used to

build the chain were y|o?y ~ N (ﬂy 02/3) and 0|,y ~ IG (1/2’2 (Z (yi - “)2)_1)‘

the data. These densities can be calculated by recognition based on (1.3) and it follows
that f; is N(g,0?/3) and f, is IG(l /2,2 (2 (ys — w?) —1) , where IG stands for inverse

gamma. (We say X ~ IG (a, b) if it has support R and fx (z) o [z9+!exp (1/zb)] )
Note that f; and f, are functionally compatible, with 7 serving as g, but not compatible
since 7 is not integrable.

Given a starting value for u, say u(®) =7, a Gibbs chain,

oW, M 2@ @ 523 3 20 (14)

could be constructed in the usual manner. (The symbol o*() represents the ith value of o2
in the Gibbs chain.) We would then be under the impression that (u(™, g2(™) converges
in distribution to a random variable whose distribution is the “posterior distribution.”

Figures 1 and 2 show the first 1,000 values of In |u("| and In (¢2(¥)), respectively,
for one realization of this Gibbs chain. (The data, y;,y,, and y3, were simulated from
a standard normal distribution.) The chain is apparently out of control. At the 1,000th
iteration, the magnitude of the x4 component is up to about 10*7 and the o> component
is up to about 10%.

The Gibbs chain in Example 2 provides a “red flag,” warning us that there may
be a problem. If an experimenter had mistakenly assumed propriety of the posterior in
Example 2, collected three data points whose mean and standard deviation were near 0
and 1, respectively, and then simulated a Gibbs chain like the one shown in Figures 1
and 2, he would probably question his assumption regarding propriety and discover his
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The Value of In (¢*®) for 1,000 Iterations
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Figure 2. The Natural Logarithm of the 0*()’s Versus i for the First 1,000 Iterations of a Gibbs Chain. The
data, (y1, 2, y3), were realizations of independent standard normals. The densities used to build the chain were

ulo?y ~ N (5.0%/3) and oy ~16 (12,2 (s - w?) ™).

mistake before any damage was done.

If Gibbs chains corresponding to improper posteriors always “misbehaved,” there
would be no reason to worry about demonstrating propriety before applying the Gibbs
sampler, since an improper posterior would be discovered through the Gibbs output.
This is not the case, however. Sometimes the output from Gibbs chains corresponding to
improper posteriors appears perfectly reasonable; that is, the Gibbs chains do not provide
a red flag. These situations are very dangerous because one ends up making inferences
about a nonexistent posterior distribution. Section 4 gives an example concerning a
Bayesian hierarchical random effects model (with an improper posterior) that is similar to
models with improper posteriors that have been employed in the literature. The properties
of such chains, and the associated Monte Carlo approximations, are therefore of practical
interest.

In general, “Gibbs conditionals” calculated via a proportionality, as are those in
Example 2, are functionally compatible. Therefore, the results from Sections 2 and 3
may be applied and show that, under some mild regularity conditions, a Gibbs Markov
chain is positive recurrent if and only if the posterior distribution is proper. (Note that
this fact precludes the use of standard “convergence diagnostics” (Robert 1995; Cowles
and Carlin 1996) for detection of improper posteriors through Gibbs output, since the
diagnostics are based on the assumption that the Gibbs chain is positive recurrent.)
It follows from the results of Section 3 that, although the output from Gibbs chains
corresponding to improper posteriors may appear reasonable and can even lead to nice
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looking pictures of (nonexistent) marginal posterior densities, the limiting behavior of
the Monte Carlo approximations can be quite undesirable.

2. COMPATIBILITY OF CONDITIONAL DENSITIES
2.1 THE PROBLEM

Consider A; C R™, for i = 1,...,m, and let u; be Lebesgue measure when A;
is uncountable and counting measure otherwise. Put A = A; x --- x A, and A_; =
Ay X oo X Aj_y X Ajp1 X --- X Ap. Let z; denote an element of A; so that x =

(z1,...,x,) represents an element of A. Also, elements of A_; will be written x_; =
(561, sy Tim1, Tigly - - - ,wm)~
Suppose that there are functions f; (z;|x—;) : A = [0,00), i = 1,...,m, such that

for every x_; € A_;, f; (-|x_,-) is a probability density function with respect to p;
whose support set is A;. The sets A; are assumed fixed; that is, they may not depend on
X_;.
Example 3. Take A; = R and let fy,..., f,, have the Gaussian forms

2

1 1
ECXP ) $i—PiZ$j )

J#

fi (%‘lx—i) =

where the p;’s are constants.

The question of interest is as follows: Does there exists a joint probability density
whose conditional densities are the f;’s? We refer to fi, ..., f, as candidate conditional
densities. They are called compatible if there exists a function, f(x1,...,Zx,) : A —
[0, 00), that is a probability density with respect to the product measure 1 = ) X - - X fi,
having support set A, such that

f(@y,...,zm)
Ja, f @1y zm) pildzs)

= fi (wilxs) (2.1)

fori=1,...,m.

Armold and Press (1989) gave necessary and sufficient conditions for compatibil-
ity when m = 2 in the more general setting where the support sets of the candidate
conditionals are not assumed fixed. In the remainder of this section, we consider the
compatibility of fy,..., fm.

2.2 COMPATIBILITY VERSUS FUNCTIONAL COMPATIBILITY
We begin by defining functional compatibility.

Definition 1. Let fi,..., fi, be the above set of candidate conditional densities. If
there exists a function g(zy,...,T,) : A — [0,00) such that

g(zl,..‘,zm)
Ja, 9@, Tm) pi(dz:)

= fi (zilx_s) (2.2)



48 J.P. HoBERT AND G. CASELLA

fori=1,...,m, then fi,..., fm, are functionally compatible.

Functional compatibility is necessary, but not sufficient, for compatibility since g
may not be a probability density. For instance, the function g (z1, ;) = exp(—z1x2)
generates the exponential conditionals discussed in Section 1, but it is clearly not a
probability density since its integral over the positive quadrant diverges. Note that Gibbs
conditionals calculated via a proportionality, like (1.3), are functionally compatible. A
necessary and sufficient condition for functional compatibility is now developed. The
condition is constructive in that it gives the form of g in terms of fi,..., fm.

Suppose, for a moment, that our candidate conditionals are compatible. Write the
joint density as f (z,...,Zm). Besag (1974) showed that if (z},...,z},) is any fixed
point in A and (Iy,...,l,) is any one the m! permutations of (1,2,...,m), then

m ! /
Hj:l flj (wlj |zll’ e ’wlj—l’$lj+17 Ce ,:L‘lm)

m ! / /
IT= i, (:1;,]_ |z, .. ,xlj_l,zlj+l,...,a:lm)

f@i,.. @) x (2.3)

on A. (Note that f; (z;|x_;) > 0 whenever (z1,...,Zm) € A so the denominator is never
zero.) Thus, f(zi,...,Zn) is unique when the candidate conditionals are compatible.

If, on the other hand, the compatibility of fi, ..., f, is in question, the m! versions of
(2.3) can be constructed and compatibility ruled out if the ratio of any two is not constant.
Fori=1,...,m!let ' = (I{,1i,...,1}) represent the permutations of (1,2,...,m).
For fixed (z,...,z,) € A, define

1—[7'71_1 fli (.’Eli |.’Eli,...,$li ,fl)’i ,...,fl)’i )
J=1J0 \7 Y i-1" " i

m ) / ) ) / !
ITj= fl; (a;l; |:1;l;,...,z,;_l,a:l;+l,...,xl%)

gi (:vl)’";xm) = (2~4)

Theorem 1. The candidate conditional densities f, ..., fm are functionally com-
patible if and only if for each fixed (x’l, ..., Th,) € A, the ratio
gi(1,...,Tm)
9g; (Il)], . ,.'llm)
is constant for all i # j. Moreover, if they are functionally compatible, then any g; will
serve as g which is unique up to constant multiples.

2.5)

Proof:  First assume that fi,..., f,, are functionally compatible. Consider some
permutation [*. Define the function g* Tyiy Tpiy oo, Ty | = g(x1,Za,...,Zy). Clearly
gi (T, .-, Tm)

o / . oo / * ) )
g* (zl:,wlg,...,xl,;n)g* (zl}’zlz’wz;‘""’wl;)"'9 (x,:,.‘.,z,:n)

X ! 12 . X / / . . /
g* (xlf,a:l;,...,a:l:-n) g* (.’l)l:,.’l)l;,.’l)l;-,...,xl%l) <o g* (a;lf""’a;l%,_l’wlin)

X

Thus, for every i, g; (x1,...,Zm) x g(z1,...,Zm) and the condition is satisfied.
Now assume that the condition is satisfied. Take any I* and any fixed point (z}, .. .,z},)
€ A. It will be shown that g; generates fi,..., fn, as in (2.2). It is clear that
gi(xl, .. .,(L‘m)
fAli g (@, ..., Tm) pys (days )

= fu (2 |x_s)
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since z;; appears only once in g;. Let u € {1,2,...,m — 1}. Employing the condition
of the theorem, we have

/ 9 (@1, Tm) pus (dyi ) =C($'1,~--,fﬂ'm)/ 9 @1, .., Tm) pui (dys ),

A, i,
where ¢ (z,...,x,) is a constant and I/ is such that I, = ;. Now use the fact that
gi(@y,...,Tm)
/ 9 @1, @) s (doy) =
Ay Cc (1‘1, ey :L‘m) fl:“ (:L‘lz |X__l:")
and the result follows. a

In terms of the Hammersley-Clifford Theorem (Besag 1974), functional compatibility
is equivalent to having constructed the candidate conditional densities using appropriate
“G-functions” without regard for the integrability condition.

Example 3 (continued). Consider the case m = 3. Simple calculations show that

3
1
gi (z1, 2, T3) X CXP{—E {Z 53%;1 - 2(%‘%;; (Pz;’ —Pz;‘) + wl;'fﬂig (sz —Pz;‘)
j=1

+ x,;x;; (Pz; - Pz;') + Py (wz; + xz;) + Pl;‘fﬂz;'wz;‘)] }

Thus, for instance, if I' = (1,2,3) and 2 = (1,3,2), we have

91/92 = exp { (P2 — p3) (227} + T3 — T23) } (2.6)

which is constant only if p, = p;. Similar considerations lead to the conclusion that these
three candidate conditionals are functionally compatible only when p; = p. Analogously,
fi,---, fm are functionally compatible only if p; =p, i = 1,...,m, and in that case

g(T1,y. . Tm) mexp{—%x’me}, (2.7)

where M,,, = —pJ,, + (1 + p)I,, where J,,, is an m-dimensional square matrix of 1’s
and L, is an m-dimensional identity matrix.

If the compatibility of a general set fi,..., fm is in question, the first step is to
check that they are functionally compatible using the condition in Theorem 1. If they
are not functionally compatible, then they are not compatible. If they are functionally
compatible, then they are compatible if and only if g is integrable. More formally, we
have the following theorem.

Theorem 2. The functionally compatible conditional densities fi,. .., fm are com-
patible if and only if

A .../ g(.’l)l,...,fl)m) /Lm(d$m)"ﬂl(d$l)<00

Proof: If they are compatible, then g must be proportional to the joint density.
Conversely, if the integral is finite, then g is normalizable and compatibility follows. O
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Example 3 (continued). Assume that p; = p so that fi,..., f,, are functionally
compatible. According to Theorem 2, they are compatible if and only if (2.7) is integrable,
which will be the case only if M,, is positive definite. Since the eigenvalues of M,,, are

(1+p) and 1 — p(m — 1), (2.7) will be integrable only when p € (—1, ﬁ) and in
that case the joint density corresponding to fi, ..., f,, is an m-dimensional normal with

mean 0 and covariance matrix M;,!.

3. A MARKOV CHAIN

In this section, a Markov transition function is constructed using the functionally
compatible conditional densities f,. .., f,,. The measure 7 (S) = f 5 9 is shown to be
invariant for the associated Markov chain which, in light of Theorem 2, implies that the
chain is positive recurrent if and only if fi, ..., f,, are compatible. Gibbs Markov chains
corresponding to improper posterior distributions are a special case and are therefore null
(not positive recurrent). We conclude with a general result for null chains that can be
used to describe the limiting behavior of some standard Monte Carlo approximations.

3.1 CONSTRUCTION

Let fi,..., fm be a set of continuous functionally compatible conditional densities
and let B represent the product o-algebra corresponding to A. Consider the function
P:AxB—|0,1] given by

P(X,S)=/Sfl (t1|x27-~"xm)f2(t2’t1,$37”-,$m)
o Sm (b, b)) (@ (G- Em)) (3.1

For any x € A, P(x,-) is a probability measure on B. Also, for any S € B, P(-,5) is
a lower semicontinuous function (see the Appendix), which implies that it’s measurable
(Billingsley 1986, p. 188). Therefore, P is a Markov transition function (Meyn and
Tweedie 1993, chap. 3) that defines a discrete time, time homogeneous Markov chain
@ = {¢o, ?1, D3, ...} on the product space A>°. The initial state of the chain is ®¢ = ¢
and the transition probabilities are now briefly described. For any ¢ = 0,1,2,.. ., the
conditional distribution of ®;; given that &, = ¢; is P(¢;,-). For n > 2, define the
n-step Markov transition functions inductively as

P"(x,5) = / P(x,dy) P"\ (3, 5).
A

For any i = 0,1,2,... and any n = 2,3,.. ., the conditional distribution of ®;,, given
that ®; = ¢, is P™(¢;, ). Thus, for example, P™(¢y, S) is the probability that the chain
is in the set S after the first n steps. The Markov chain @ is u-irreducible and aperiodic
since the f;’s are strictly positive on A.
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3.2 PosSITIVE RECURRENCE AND COMPATIBILITY

Define a measure, 7 (-), on the measurable space (A, B) using g of (2.2) as follows
7r(S)=/Sg(zl,...,mm)u(d(zl,---,mm)). (3.2)

It is assumed throughout that 7(-) is o-finite.

Theorem 3. The measure 7 (-) defined in (3.2) is a o-finite invariant measure for
®; that is, forany S € B

7 (S) = / 7(dx) P (x, S). (3.3)
A

The proof of Theorem 3 is straightforward and is therefore omitted. Indeed, the calcula-
tions are the same as those required to show that the probability measure associated with
a proper posterior density is the invariant measure for the corresponding Gibbs chain
(see Geweke 1996, sec. 6.3).

If 7 is finite, it is the unique (up to constant multiples) invariant measure and ®
is positive recurrent, otherwise ® is null (Meyn and Tweedie 1993, p. 230). This fact,
together with Theorems 2 and 3, gives us the following result.

Theorem 4. The Markov chain ® is positive recurrent if and only if fy, ..., fm are
compatible.

Although our main interest is in the chains resulting from incompatible f;’s, the well-
known compatible case is discussed briefly for completeness. Tierney (1994) showed that
if ® is positive recurrent, and the probability measure P(x,-) is absolutely continuous
with respect to 7 for all x € A, then ® is positive Harris recurrent. (Harris recurrence is
stronger than recurrence: for any set V' € B such that u(V) > 0 and any starting point
¢o € A, a Harris recurrent chain visits V' an infinite number of times with probability
one, while a recurrent chain has only an infinite expected number of visits to V.) Since
the f;’s are all strictly positive on A, 7(S) = 0 implies that u(S) = 0 for any S € B,
which clearly implies that P(x,S) = 0, no matter what the value of x. Thus, if 7 is
finite, ® is positive Harris recurrent.

Assuming that 7 is finite, let 7' () = w(-) /7 (A). Successful use of the Gibbs
sampler relies on two facts about & which follow from positive Harris recurrence (Meyn
and Tweedie 1993, theorems 13.0.1 and 17.0.1). First, for any starting value ¢p € A,
the probability measures given by P™(¢y, -) converge in total variation to the probability
measure 7’ as n — oo. This implies that the ®,, converge in distribution to a random
variable with distribution 7’. Second, the Ergodic Theorem holds; that is, if ¢ is a real-
valued function with domain A such that [ |t (x) |n’(dx) is finite, then n ™' 7, ¢(®;) —
J t(x) 7'(dx) with probability one.

3.3 A GENERAL RESULT FOR NULL CHAINS

We have now established that the Gibbs sampler driven by an improper posterior
produces a null Markov chain. This section is devoted to a result explaining the limiting
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behavior of Monte Carlo approximations for null Gibbs chains. This result can be used
to demonstrate that many standard Monte Carlo approximations used in Gibbs sampling
have undesirable limiting behavior when the posterior is improper. In Section 4 we
consider a Gibbs sampler based on a hierarchical one-way random effects model with
an improper posterior, and use the results from the current section to show that some
standard Monte Carlo approximations cannot converge to anything but zero.

Let I' = (7,I'1,I,...) be a Markov chain on a product space, A>°, where A is
a Euclidean space of the type described at the beginning of Section 2.1. Let R and
P.,, denote the Markov transition function and the probability law for the entire chain,
respectively. (We use I" and R here to avoid confusion with & and P.) One definition is
required before the result is stated. The chain, T', is called a Feller chain if R(-,S) is a
lower semi-continuous function for every S € B.

Theorem 5. Suppose that T is an aperiodic, p-irreducible, null, Feller Markov
chain where the support of u has nonempty interior. If t : A — R is a bounded measur-
able function for which, given € > 0, there exists a compact set C € A such thatt(y) < e
YV y € CC then

n—oo N

1 n
liminf — Y " t(T) =0 as. (3.4)
i=1

Proof: Choose € € (0,1) and let C; C C; C - - - be a sequence of compact sets in
A such that 4 € C; and such that ¢ (y) < ¢/ wheny € C;. The conditions of the theorem
imply that if C € A is a compact set containing -y, then lim,_, o R"™ (70, C) = 0 (Meyn
and Tweedie 1993, pp. 127, 454). Furthermore, by the consistency of Cesaro summation
(Billingsley 1986, p.572) we have lim, oo™ ' Y - | R*(70,C) = 0. Thus, we may
choose a subsequence, {n;}, of the positive integers such that

i

> (1
> (s

Rt (70,Cj)> < .
1

i=

It will be shown that

According to the first Borel-Cantelli Lemma, it is enough to show that for any § > 0,
[oe] 1 n;
;P% (;{; ;t(ri) > 6) < o0.

Let M be an upper bound for ¢. Since t < MI¢; + € IC; for any j (I is an indicator),
we have
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> P <ni L >5) < 2P (%ZJ(MIQ T +&1; @) >5>

J =

j=1 j=1 7 4=1
< 1i—1- j E (MIc, @) + € Ic: T))
-9 j=1 mj i=1 ’ ’
MS 1 & 11 &
kind - i I — J
S Tl B00C) 5D =D
Jj=1 T i=1 j=1 I i=1
< 00,
where the second step follows from Markov’s inequality. O

The example developed in the next section shows that, although a Monte Carlo
approximation may possess undesirable limiting behavior, this may not be apparent from
the Gibbs output.

4. A GIBBS SAMPLING APPLICATION

In this section we illustrate our results using a Bayesian hierarchical version of the
one-way random effects model that has an improper posterior. This model is similar to
the hierarchical model in Example 2 in that if one assumes that the posterior is proper, the
Gibbs conditionals and hence a Gibbs chain may be constructed. Unlike the Gibbs chain
in Example 2, however, this chain provides no warning that the posterior is improper.
The results from the previous sections are used to demonstrate that, although they may
seem well-behaved, the Monte Carlo approximations constructed using this Gibbs chain
have undesirable limiting behavior.

Gelfand, Hills, Racine-Poon, and Smith (1990, model I in sec. 4) and Wang, Rut-
ledge, and Gianola (1993, p. 44) applied the Gibbs sampler to similar models with
improper posteriors (see Hobert and Casella 1996). Thus, the results of this section are
of practical as well as theoretical interest.

Consider the simple one-way random effects model

Yij = B+ u; + €5, (4.1)

where ¢t = 1,2,..., K, j = 1,2,...,J. It is assumed that the u;’s (the random effects)
are iid N(0,0?) and the €;;’s (white noise) are iid N(0,02). The u;’s and €;’s are
assumed independent. The overall mean, 3, and the variance components, o? and af, are
considered unknown parameters.

This frequentist model fits nicely into a Bayesian conditionally independent hier-
archical model (Kass and Steffey 1989) by writing (4.1) as a two stage hierarchy and
specifying priors on the three unknown parameters

yijlB, w07~ N(B+us;07)
B ~m(B) wlo® ~ Ng(0,I0%) o2 ~x(0?)

€

o~ w(d?), 4.2)
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where W' = (uy, ..., uk) and the priors m(83), 7 (¢2) and 7 (0?) must be elicited. (It is
often assumed that the variance components are not independent a priori; that is, 7 (0?)
is often allowed to depend on o2. The Gibbs sampler is more difficult to implement
in these situations, however, because the Gibbs conditionals have nonstandard forms.
Lehmann (1983, p. 248) and Chaloner (1987) discussed such models and give further
references.)

A specific example of model (4.2) discussed by Hill (1965) and Tiao and Tan (1965)
has 7(8) « 1, 7 (6%) o 1/0? and 7 (%) ox 1/0?, where the last two are restricted to
R4. Hill (1965) showed that the posterior distribution corresponding to this model is
improper. If, however, propriety of the posterior is incorrectly assumed, as was done for
similar models in Gelfand et al. (1990, model I, sec. 4) and Wang et al. (1993, p. 44),
then the Gibbs conditionals can be computed (see Example 2) and the result is

2 2 a? olo? )
fi (wilu_y, 8,07,0%y) = N _J—o_z——l_-——z ﬂ)’Jz—+0§ i=1...,K

2

2 2 _ _ O
fK+1 (ﬁluvaevaay) = N(y u’JK>
-1

frir (02w, B,0%y) = 16| JK/2,2[ S5 (i - B—w)®
i

frss (020, B,0%y) = IG (K/z,z(u'u)“), 4.3)

where 7., = Zi’j vij/JK, yi. = Zj Yij» B. = »_,u;/K, and y represents the data.
Thus, fi,..., fk+3 are a set of continuous functionally compatible conditional densities.
They are not compatible, however, since the posterior is improper (see Theorem 2).
Theorem 4 tells us that the Markov chain, ®, constructed using f, ..., fx+3 is null; that
is, the Gibbs chain is null.

This is an example of a situation in which the Gibbs output does not provide a red
flag informing us that the posterior is improper. Suppose that we are under the impression
that the posterior corresponding to the model (4.2) is proper and that we have data for
which this model is appropriate. It is desired to simulate from the posterior (using the
Gibbs algorithm) and construct Monte Carlo estimates of (1) foz)y (-Iy), the marginal
posterior density of o2, and (2) E™ 11,2 (8), the posterior probability that 3 is in the
interval [1,2]. Write the Gibbs chain as

o, = [u@),ﬂ(i),af("),a?(i)] i=0,1,2,..., (4.4)

where the zeros indicate starting values. We might approximate f,z|y (|y) at the point
a using

b+n

1
Forry (aly) = - Z Fras (a|u(‘) B, 520) y) (4.5)

i=b+1
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Histogram and Supposed Effect Variance Density
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Figure 3. Histogram of the 1,000 Values of the Effect Variance from the Null Gibbs Chain. That is, a histogram
of g2 +15,000) g 5 — 1.2 ... 1,000. Superimposed is the approximate (supposed) marginal posterior density
of a. An appropriately scaled version of f, 2]y (a!y) is on the ordinate with a on the abscissa. (Actually, eight
of the 1,000 values of the effect variance, ranging from 38.1 to 169.7, were not included in the histogram.)

and E™ I} 5) (B) using (Liu, Wong, and Kong 1994)

b < JK_ K (3.~ ﬁgi))z) dt, (46

n2 b+1/‘2] \/271’0’2(1')/JK

where b is the “burn-in” and n is “large.”

Before considering the limiting behavior of these approximations, we give an exam-
ple of how well-behaved they appear. Figure 3 shows the pointwise estimate faz'y (a|y)
(b=15,000, n=1,000) from a realization of (4.4) based on data simulated using K = 7,
J=35,8=10,0% =5, and 62 = 2. A histogram of ¢2(0+15000) 4 — 1 1000,
is shown in the same figure. Note that the density approximation and histogram appear
reasonable and in no way warn the user of an improper posterior. Some of these chains
were run for millions of iterations and never misbehaved.

Theorem 5 shows that for any point a,

b4n
1 i % 4
lgg}lo%f_ § fK+3 (a'lu( )aIB( )703( ),Y) =0 as.
i=b+1

Thus, at each point, the Monte Carlo approximation has an almost sure limit of zero or
none at all. Similarly

JK (t—y..—ﬂ(l)) >dt=0 as.

n—oo M _b+1/1 [1,2] /27r02(’)/JK (_ZJf(i)
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There are many approximations to which Theorem 5 does not apply. For example,
a more intuitive approximation of E™I[; 5 (8), which is sometimes more variable than
(4.6) (Liu et al. 1994) is

1 b+n

- Y Ipeypoxmy xvy (20). (4.7)
i=b+1

Theorem 5 cannot be applied to this approximation because the indicator function does

not satisfy the necessary conditions. On the other hand, if the indicator in (4.7) were

replaced with Ij_as iy w12y x (M1, My x (M1, 0] (@i), where M is some large, positive

number, the approximation would be practically the same, and Theorem 5 could be

applied.

5. CONCLUDING REMARKS

When Bayesian hierarchical models with improper priors are employed, the integra-
tion required to calculate posterior quantities of interest is often extremely difficult. The
ability to use the Gibbs sampler in these situations is usually a blessing, but may be a
curse. Sometimes a perfectly good set of Gibbs conditionals may be calculated from a
hierarchical model with an improper posterior distribution. Since demonstrating propriety
of the posterior is not a necessary step in calculating the Gibbs conditionals (and usu-
ally involves the same complicated integration that one is avoiding by using the Gibbs
sampler), the experimenter might simply assume propriety and use the Gibbs sampler to
calculate the “posterior quantities of interest.” The problem is that the resulting Gibbs
output may appear reasonable (see Section 4) which could lead to inferences about a
nonexistent posterior distribution.

This article contains some general theory that can be used to characterize the be-
havior of “improper” Gibbs chains; that is, Gibbs Markov chains constructed using a
set of “conditional” densities associated with an improper posterior. We have general-
ized Arnold and Press’s (1989) notion of compatibility by calling conditional densities
functionally compatible if there exists a positive function, g, that behaves as the joint
density function in every way except that it need not be integrable. Theorem 1 gives
a necessary and sufficient condition for functional compatibility as well as the form of
g (when it exists). Gibbs conditionals corresponding to improper posteriors are always
functionally compatible due to the manner in which they are constructed. One impli-
cation of this is that improper Gibbs chains are special cases of the chain defined by
the Markov transition function in Section 3 and are thus rot positive recurrent; that is,
they are either transient or null recurrent. A second implication is that our necessary and
sufficient condition for functional compatibility is of no use in checking that a particular
set of Gibbs conditionals correspond to a proper posterior.

It is often the case, however, that at least one of the Gibbs conditionals associated
with a complicated hierarchical model is difficult to sample. It may be tempting to replace
such an unwieldy conditional density with another that is easier to sample. Although we
do not recommend this as a general strategy, it is interesting to note that Theorem 1 can
be used to check that the “new” Gibbs conditionals are functionally compatible, and to



FunctioNaL COMPATIBILITY, MARKOV CHAINS, AND GIBBS SAMPLING 57

construct the “new” posterior, if it exists.

Sometimes when an improper Gibbs chain is simulated, the output appears “out of
control” (see Example 2) and therefore warns the user that there is a problem. The danger
occurs when improper Gibbs chains produce nice looking output either because they are
“almost” positive recurrent (like a chain constructed with the normal conditionals in
Example 3 with p = 1/(m — 1)) or because they get stuck in a “nice” part of the space
(Geyer 1992). Our results show that although some improper Monte Carlo approximations
may appear legitimate, they either have an almost certain limit of zero or none at all.

Suppose that 7(@|y) is an improper posterior density for the parameter 8 given the
data y. Gelfand and Sahu (1996, secs. 3.2 and 5.2) suggested that it is sometimes possible
to use an improper Gibbs chain based on 7(8]y) to make valid inferences about lower di-
mensional functions of € occuring in what Gelfand and Sahu (1996) called an “embedded
proper Bayesian model.” Theorem 5 clearly rules out some Monte Carlo approximations
through which one might attempt to make such inferences. However, Roberts, Sahu, and
Gilks (1995) outlined a technique based on a so-called ratio limit theorem that can be
used to make valid inferences. This technique entails the use of Monte Carlo approx-
imations of the form 37, hi(®:)/ 27—, ha(®;), where [ |h;(8)|m(8]y)d6 < oo for
i = 1,2. Our results do not apply to this type of approximation because a constant h;
is not permitted. We note that the ratio limit theorem used by Roberts, Sahu, and Gilks
(1995) holds only for Harris recurrent chains. Thus, in order to apply their technique, one
must first demonstrate that the improper Gibbs chain is null recurrent and not transient,
which can be very difficult.

Ideally, a hierarchical model (with improper priors) should always be shown to pos-
sess a proper posterior distribution before being used as a model for data. However,
for many hierarchical models, demonstrating propriety is extremely difficult, while em-
ploying the Gibbs sampler is almost trivial. Thus, the ability to use the Gibbs output to
diagnose positive recurrence (propriety) would be useful. One such diagnostic, described
in Hobert (1994), is based on the fact that an infinite mean return time (to a compact
set with positive measure) implies that the Gibbs chain is null; that is, that the posterior
is improper. Independent Gibbs chains are used to collect a random sample of return
times (to some arbitrary compact set) and the technique suggested by Hill (1975) is used
to decide if the return time distribution has an infinite mean or not. Unfortunately, this
technique seems to be effective in detecting improper posteriors only in cases where the
chain is clearly out of control.

There is an important distinction between the diagnostics for positive recurrence
and the so-called convergence diagnostics proposed in the Markov chain Monte Carlo
literature (see, e.g., Raftery and Banfield 1991; Roberts 1992; Gelman and Rubin 1992;
Robert 1995; Tanner 1996). The latter assume that the chain is positive recurrent and use
the output to provide information about when Monte Carlo approximations are “close
enough” to the true values. They are not designed to detect if the Gibbs chain converges
(positive recurrence), nor even when the Gibbs chain has converged; it never does. Thus,
one should not count on convergence diagnostics to detect an improper posterior.

In summary, our results can be used to evaluate the consequences of applying the
Gibbs sampler when the posterior’s impropriety is unknown to the user. The basic issue
of determining whether an improper posterior has generated a particular Gibbs chain
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remains unresolved. Currently, the only foolproof way of avoiding the pitfalls described
previously is to use proper priors or to prove that a particular set of improper priors
yields a proper posterior (see, e.g., Ibrahim and Laud 1991; Natarajan and McCulloch
1995; Hobert and Casella 1996).

Finally, many Monte Carlo approximations are Cesaro averages of functions that do
not satisfy the conditions of Theorem 5. Although our intuition tells us that many of
these approximations should also have undesirable limiting behavior, our results do not
apply. Results describing the limiting behavior of averages of functions that do not satisfy
the “arbitrarily small off of compact sets” condition of Theorem 5, (like the indicator
function in (4.7)) would clearly be useful.

APPENDIX
Recall (Bartle 1976, p. 180) that P (-, S) is lower semi-continuous at the point x* € A
if
l)l(rg;?fP(x, S)> P (x*,S),
where

l}ltxggng(x,S)=}gl})1nf{P(x,S):0< IIx - x*|| < r,x € A}.

Lemma 1. For any S € B and any sequence X,, € A such that X, — x*
liminf P (x,,S) > P (x*,5).
n—o0

Proof:  Write the integrand in (3.1) as k (t,x). Define f, (t) = k(t,xy). By the
continuity of the conditional densities, we have f, (t) — k (t,x*) for all t and the result
follows by Fatou’s Lemma. O

Theorem 6. For S € B, P(-,5), is lower semicontinuous.
Proof: Define the following notation

$(r) =inf{P(x,5):0 < [x —x"|| < 7, x € A}.

First, if x* is not a limit point of A, then the theorem is trivial, so assume x* is a limit
point and that the theorem is false, that is,

l)l(nlgng(X,S) =1< P (x*,5).

Let r,, — 0. Then lim,,_,o ¢(r,) = [ and for each k = 1,2,..., there exists an Ny
st |p(rn) — 1] < 2~k whenever n > Ni. We may clearly assume that Ny, > Ng.
Let x; € {x:0 < ||x — x*|| < rn,,z € A} be such that |P (xx,S) — ¢ (rn,) | <27F.
Then x; — x* and |P (x, S) — I| < 2!, but this contradicts Lemma 1. O
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